Cryptography ENEE/CMSC/MATH 456: Homework 2

Due by beginning of class on 2/15/2023.

1. Prove that, by redefining the key space, we may assume the key-generation algorithm Gen chooses a key uniformly at random, without changing Pr[C = c|M = m] for any m, c.

Hint: Define the key space to be the set of all possible random tapes for the randomized algorithm Gen.

Let *E* = (Gen, Enc, Dec) over message space *M* with keyspace *K* and ciphertext space *C* be an encryption scheme that achieves perfect secrecy. Let *M*₁ ⊆ *M*, *M*₂ = *M* \ *M*₁ be two subsets of *M* such that |*M*₁| ≥ 1, |*M*₂| ≥ 1. Furthermore, let *D*₁ be the uniform distribution over *M*₁, *D*₂ be the uniform distribution over *M*₂.

Finally, let C_1 (resp. C_2) be the random variable corresponding to the distribution over ciphertexts when messages are sampled from \mathcal{D}_1 (resp. \mathcal{D}_2) and keys are sampled by Gen.

Is it possible that there is a ciphertext $c \in C$ such that $\Pr[C_1 = c] = 0$ and $\Pr[C_2 = c] > 0$? If yes, give an example of a specific encryption scheme that is perfectly secret and for which the above holds. If not, prove that for any encryption scheme that is perfectly secret, the above cannot hold.

- 3. In this problem we consider definitions of perfect secrecy for the encryption of two messages (using the same key). Here we consider distributions over pairs of messages from the message space M; we let M₁, M₂ be random variables denoting the first and second message, respectively. We generate a (single) key k, sample messages (m₁, m₂) according to the given distribution, and then compute ciphertexts c₁ ← Enc_k(m₁) and c₂ ← Enc_k(m₂); this induces a distribution over pairs of ciphertexts and we let C₁, C₂ be the corresponding random variables.
 - (a) Say encryption scheme (Gen, Enc, Dec) is perfectly secret for two messages if for all distributions over M × M, all m₁, m₂ ∈ M, and all ciphertexts c₁, c₂ ∈ C with Pr[C₁ = c₁ ∧ C₂ = c₂] > 0: Pr[M₁ = m₁ ∧ M₂ = m₂|C1 = c₁ ∧ C₂ = c₂] = Pr[M₁ = m₁ ∧ M₂ = m₂]. Prove that no encryption scheme can satisfy this definition.
 Hint: Take m₁ ≠ m₂ but c₁ = c₂.
 - (b) Say encryption scheme E = (Gen, Enc, Dec) is perfectly secret for two distinct messages if for all distributions over M × M where the first and second messages are guaranteed to be different (i.e., distributions over pairs of distinct messages), all m₁, m₂ ∈ M, and all c₁, c₂ ∈ C with Pr[C₁ = c₁ ∧ C₂ = c₂] > 0: Pr[M₁ = m₁ ∧ M₂ = m₂|C1 = c₁ ∧ C₂ = c₂] = Pr[M₁ = m₁ ∧ M₂ = m₂]. Show an encryption scheme that provably satisfies this definition. Hint: The encryption scheme you propose need not be efficient, though an efficient solution is possible.
- 4. When using the one-time pad with the key k = 0^ℓ, we have Enc_k(m) = k ⊕ m = m and the message is sent in the clear! It has therefore been suggested to modify the one-time pad by only encrypting with k ≠ 0^ℓ (i.e., to have Gen choose k uniformly at random from the set of non-zero keys of length ℓ). Is this modified scheme still perfectly secret? Explain.

- 5. For each of the following encryption schemes, state whether the scheme achieves perfect secrecy. Justify your answer using Definition 2.3, Lemma 2.4, Theorem 2.10 and/or Theorem 2.11.
 - Message space $\mathcal{M} = \{1, \ldots, 6\}$. Key space $\mathcal{K} = \{1, \ldots, 6\}$. Gen() chooses a key k at random from \mathcal{K} . Let k' be such that $k \cdot k' \equiv 1 \mod 7$ (e.g. for k = 5, we have k' = 3 since $(5 \cdot 3) \mod 7 \equiv (15) \mod 7 \equiv 1 \mod 7$). Enc_k(m) returns $m \cdot k \mod 7$. Dec_k(c) returns $c \cdot k' \mod 7$.
 - What happens when we use the same scheme as above except with $\mathcal{M} = \{1, \ldots, 8\}$ and $\mathcal{K} = \{1, \ldots, 8\}$? I.e. Gen() chooses a key k at random from \mathcal{K} and $\text{Enc}_k(m)$ returns $m \cdot k \mod 9$.