Solutions

ENEE/CMSC/MATH 456: Cryptography Stream Cipher Class Exercise 3/30/20

ALGORITHM 6.1 Init algorithm for RC4 Input: 16-byte key kOutput: Initial state (S, i, j)(Note: All addition is done modulo 256) for i = 0 to 255: S[i] := i $k[i] := k[i \mod 16]$ for i = 0 to 255: j := j + S[i] + k[i]Swap S[i] and S[j]j := 0, i := 0return (S, i, j)

ALGORITHM 6.2 GetBits algorithm for RC4 Input: Current state (S, i, j)Output: Updated state (S, i, j): output byte y (Note: All addition is done modulo 256) i := i + 1j := j + S[i]Swap S[i] and S[j]t := S[i] + S[j]y := S[t]return (S, i, j), y

Let S^0 denote the initial state, S^i denote the state after i calls to **GetBits**.

Consider Event 1: $(S^0[2] = 0) \land (S^0[1] = X \neq 2)$

What is the probability that Event 1 occurs? (For this part, assume Init outputs a perfectly random permutation of the values from 0 to 255) $\frac{1}{256}$

Assuming Event 1 occurs, what is the value of $S^1[X]$ (i.e. the value in position S[X] after the first iteration? X

Assuming Event 1 occurs, what is the value of $S^2[X]$, $S^2[2]$ (i.e. the values in positions S[X] and S[2] after the second iteration? Λ

Assuming Event 1 occurs, what value (call this V) is outputted in the second iteration?

Assuming Event 1 does not occur, V is uniformly distributed. biased towards O Towards what value is V biased and with what probability? $\frac{1}{256} + \frac{1}{256} = \frac{2}{256} = \frac{2}{2$

First iteration:

$$i = 1$$

 $j = S(1) = X$
Swap $S[1]$ and $S[x]$
 $S[1] = S[x]$
 $S[x] = X$

Second iteration:

$$i=2$$

 $j=X+S[2]=X+0=X$
 $y:=S(t)=S[x]=0$
Swap $S[2]$ and $S[X]$ return, 0 .
 $S[2]=S[x]=X$

$$t = S[a] + S[x] = X$$
 $y = S[t] = S[x] = 0$
return, 0.

. •

.