1. Public Key Encryption

(a) Let \((N, e)\) be the public key for textbook RSA, where \(N = 5 \cdot 13 = 65\) and \(e = 7\). Find the corresponding secret key \((N, d)\). Then encrypt the message \(m = 2 \mod 65\), obtaining some ciphertext \(c\). Decrypt \(c\) to recover \(m\). Do the computations by hand and show your work.

Hint: To speed up your computations, use the following facts: \(64 = 2^6\), \((2)^6 \equiv -1 \mod 65\).

Solution:

\[
\Phi(N) = 4 \cdot 12 = 28. \text{ Using mental math, we can see that } d = 7, \text{ since } 7 \cdot 7 = 49 = 1 \mod 48. \text{ So the secret key is } (65, 7).
\]

To encrypt \(m = 2\), we output \(2^7 \mod 65 = 2^6 \cdot 2 = -1 \cdot 2\) (using the hint) = \(-2 = 63 \mod 65\).

To decrypt \(c = -2\), we output \((-2)^7 \mod 65 = (-1)^7 \cdot 2^7 = -1 \cdot -2 = 2\).

(b) Consider the subgroup of \(\mathbb{Z}_{23}^\times\) consisting of quadratic residues modulo 23. This group consists of the following elements: \(\{1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18\}\). We choose \(g = 2\) to be the generator of the subgroup. Let \((23, 11, 2, x = 5)\) be the secret key for ElGamal. Find the corresponding public key. Then encrypt the message \(m = 2\), using randomness \(r = 3\), obtaining some ciphertext \(c\). Decrypt \(c\) to recover \(m\). Do the computations by hand and show your work.

Hint: To speed up your computations, use the fact that \(3^3 = 4 \mod 23\), \(8^4 = 2 \mod 23\), \(4^{-1} = 6 \mod 23\).

Solution:

The public key consists of \((23, 11, 2, h = 2^5) = (23, 11, 2, 32 \mod 23) = (23, 11, 2, 9)\).

To encrypt \(m=2\) with randomness \(r = 3\), we need to compute \(c_{-1} = 2^3, c_{-2} = 9^3 \cdot 2 \mod 23\)

So \(c_{-2} = 3^3 \cdot 3^3 \cdot 2 = 4 \cdot 4 \cdot 2 = 32 \mod 23 = 9\).

The final ciphertext is \((8, 9)\).

To decrypt \((8, 9)\), we must compute \(9/(8^5) = 9 \cdot (8^5)^{-1}\).

We first compute \((8^5)^{-1} = (8^4 \cdot 8)^{-1} = (2 \cdot 8)^{-1} = 16^{-1} = 4^2 \cdot 4^{-1} = 6 \cdot 6 = 36 \mod 23 = 13\).

So \(m = 9 \cdot 13 \mod 23 = 117 \mod 23 = 2\).