ENEE/CMSC/MATH 456
 Cyclic Groups Class Exercise

From Wikipedia:

Definition [edit]

Let p be an odd prime number. An integer a is a quadratic residue modulo p if it is congruent to a perfect square modulo p and is a quadratic nonresidue modulo \boldsymbol{p} otherwise. The Legendre symbol is a function of \boldsymbol{a} and \boldsymbol{p} defined as

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a quadratic residue modulo } p \text { and } a \not \equiv 0(\bmod p) \\ -1 & \text { if } a \text { is a non-quadratic residue modulo } p \\ 0 & \text { if } a \equiv 0(\bmod p)\end{cases}
$$

Legendre's original definition was by means of the explicit formula

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \quad(\bmod p) \quad \text { and } \quad\left(\frac{a}{p}\right) \in\{-1,0,1\}
$$

By Euler's criterion, which had been discovered earlier and was known to Legendre, these two definitions are equivalent. ${ }^{[2]}$ Thus Legendre's contribution lay in introducing a convenient notation that recorded quadratic residuosity of a mod p. For the sake of comparison, Gauss used the notation $a R p, a N p$ according to whether a is a residue or a non-residue modulo p. For typographical convenience, the Legendre symbol is sometimes written as $(a \mid p)$ or (a / p). The sequence $(a \mid p)$ for a equal to $0,1,2, \ldots$ is periodic with period p and is sometimes called the Legendre sequence, with $\{0,1,-1\}$ values occasionally replaced by $\{1,0,1\}$ or $\{0,1,0\}$. ${ }^{[3]}$ Each row in the following table can be seen to exhibit periodicity, just as described.

1. Prove that $a \in Z_{p}^{*}$ (where p is an odd prime) is a quadratic residue iff $a^{\frac{p-1}{2}} \bmod p=1$.

Hint: For the backwards direction, use the fact that Z_{p}^{*} is a cyclic group, and thus has some generator g.

(a) If a is a quadratic residue then $a^{\wedge}\{(p-1) / 2\} \bmod p=1$.

To show this, we assume a is a $Q R$ so $a=x^{\wedge} 2$ for some $x \backslash$ in $Z^{\wedge *} _p$.
So $a^{\wedge}\{(p-1) / 2\}=\left(x^{\wedge} 2\right)^{\wedge}\{(p-1) / 2\}=x^{\wedge}\{p-1\}=1$.
where the last equality holds by the "generalized theorem" since $\mathrm{p}-1$ is the order of $\mathrm{Z}^{\wedge *}$ _p.
(b) If $a \wedge\{(p-1) / 2\} \bmod p=1$ then a is a QR.

Since $Z^{\wedge *} _p$ is cyclic, it has some generator g and $a=g^{\wedge} i$ for some $i \backslash i n Z _\{p-2\}$. So $g^{\wedge}\{i *(p-1) / 2\}=$ $1=\mathrm{g}^{\wedge} 0$.
By a theorem we saw in class, this means that $i^{*}(p-1) / 2=0 \bmod p-1$.
By definition of modulo, this means that $(\mathrm{p}-1) \mid \mathrm{i}^{*}(\mathrm{p}-1) / 2$.
Rearranging, we get that $2 *(p-1) / 2 \mid i^{*}(p-1) / 2$, which implies that $2 \mid i$. So $a=g^{\wedge} i$ and i is even. Therefore, a is a Q with square root plus or minus $\mathrm{g}^{\wedge}\{\mathrm{i} / 2\}$.

ENEE/CMSC/MATH 456
 Cyclic Groups Class Exercise

2. Let p be an odd prime, such that $p \equiv 3 \bmod 4$. For quadratic residues $a \in Z_{p}^{*}$, show an efficient algorithm for computing the square roots of a.

Hint: Use the fact from the previous problem that for any $x \in Z_{p}^{*}$
$x^{\frac{p-1}{2}} \equiv \pm 1 \bmod p$ and use the fact that $2 \cdot \frac{p+1}{4}=\frac{p-1}{2}+1$.

Assume a is a QR . So $\mathrm{a}=\mathrm{x}^{\wedge} 2 \bmod \mathrm{p}$.
Consider a $\wedge^{\wedge}\{(\mathrm{p}+1) / 4\}=\mathrm{x}^{\wedge}\{2 *(\mathrm{p}+1) / 4\}=\mathrm{x}^{\wedge}\{(\mathrm{p}-1) / 2+1\}=$ plus or minus x .

