Cryptography

Lecture 22

Announcements

- HW7 due on Monday, 4/27
- HW8 due on Monday, 5/4

Agenda

- Last time:
 - Cyclic groups
 - Hard problems (Discrete log, Diffie-Hellman Problems—CDH, DDH)
- This time:
 - Elliptic Curve Groups
 - Key Exchange, Diffie-Hellman Key Exchange
 - Public Key Encryption, ElGamal Encryption

(Finite) Fields:

- A (finite) set of elements that can be viewed as a group with respect to two operations (denoted by addition and multiplication).
- The identity element for addition (0) is not required to have a multiplicative inverse.
- Example: Z_p, for prime p: {0, ..., p-1}
 - Z_p is a group with respect to addition mod p
 - Z*_p (taking out 0) is a group with respect to multiplication mod p
- We can now consider *polynomials* over Z_p as polynomials consist of only multiplication and addition.

- Z_p is a finite field for prime p.
- Let $p \ge 5$ be a prime
- Consider equation *E* in variables *x*, *y* of the form:

$$y^2 \coloneqq x^3 + Ax + B \mod p$$

Where A, B are constants such that $4A^3 + 27B^2 \neq 0$. (this ensures that $x^3 + Ax + B \mod p$ has no repeated roots). Let $E(Z_p)$ denote the set of pairs $(x, y) \in Z_p \times Z_p$ satisfying the above equation as well as a special value O.

$$E(Z_p) \coloneqq \{(x, y) | x, y \in Z_p \text{ and } y^2 = x^3 + Ax + B \text{ mod } p\} \cup \{0\}$$

The elements $E(Z_p)$ are called the points on the Elliptic Curve E and O is called the point at infinity.

Example:

Quadratic Residues over Z_7 .

$$0^2 = 0, 1^2 = 1, 2^2 = 4, 3^2 = 9 = 2, 4^2 = 16 = 2, 5^2$$

= 25 = 4, 6² = 36 = 1.

 $f(x) \coloneqq x^3 + 3x + 3$ and curve $E: y^2 = f(x) \mod 7$.

- Each value of x for which f(x) is a non-zero quadratic residue mod 7 yields 2 points on the curve
- Values of x for which f(x) is a non-quadratic residue are not on the curve.
- Values of x for which $f(x) \equiv 0 \mod 7$ give one point on the curve.

$f(0) \equiv 3 \bmod 7$	a quadratic non-residue mod 7
$f(1) \equiv 0 \bmod 7$	so we obtain the point $(1,0) \in E(Z_7)$
$f(2) \equiv 3 \bmod 7$	a quadratic non-residue mod 7
$f(3) \equiv 4 \bmod 7$	a quadratic residue with roots 2,5. so we obtain the points $(3,2), (3,5) \in E(Z_7)$
$f(4) \equiv 2 \bmod 7$	a quadratic residue with roots 3,4. so we obtain the points $(4,3), (4,4) \in E(Z_7)$
$f(5) \equiv 3 \bmod 7$	a quadratic non-residue mod 7
$f(6) \equiv 6 \bmod 7$	a quadratic non-residue mod 7

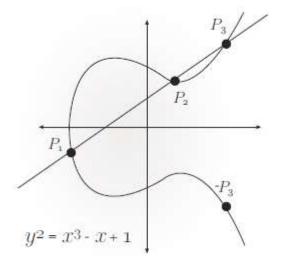


FIGURE 8.2: An elliptic curve over the reals.

Point at infinity: *O* sits at the top of the *y*-axis and lies on every vertical line.

Every line intersecting $E(Z_p)$ in 2 points, intersects it in exactly 3 points:

1. A point *P* is counted 2 times if line is tangent to the curve at *P*.

2. The point at infinity is also counted when the line is vertical.

Addition over Elliptic Curves

Binary operation "addition" denoted by + on points of $E(Z_p)$.

- The point *O* is defined to be an additive identity for all $P \in E(Z_p)$ we define P + O = O + P = P.
- For 2 points $P_1, P_2 \neq 0$ on E, we evaluate their sum $P_1 + P_2$ by drawing the line through P_1, P_2 (If $P_1 = P_2$, draw the line tangent to the curve at P_1) and finding the 3rd point of intersection P_3 of this line with $E(Z_p)$.
- The 3rd point may be $P_3 = O$ if the line is vertical.
- If $P_3 = (x, y) \neq 0$ then we define $P_1 + P_2 = (x, -y)$.
- If $P_3 = O$ then we define $P_1 + P_2 = O$.

Additive Inverse over Elliptic Curves

- If $P = (x, y) \neq 0$ is a point of $E(Z_p)$ then -P = (x, -y) which is clearly also a point on $E(Z_p)$.
- The line through (x, y), (x, -y) is vertical and so addition implies that P + (-P) = 0.
- Additionally, -0 = 0.

Groups over Elliptic Curves

Proposition: Let $p \ge 5$ be prime and let *E* be the elliptic curve given by $y^2 = x^3 + Ax + B \mod p$ where $4A^3 + 27B^2 \ne 0 \mod p$.

Let $P_1, P_2 \neq 0$ be points on E with $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$.

1. If
$$x_1 \neq x_2$$
 then $P_1 + P_2 = (x_3, y_3)$ with
 $x_3 = [m^2 - x_1 - x_2 \mod p], y_3 = [m - (x_1 - x_3) - y_1 \mod p]$
Where $m = \left[\frac{y_2 - y_1}{x_2 - x_1} \mod p\right]$.
2. If $x_1 = x_2$ but $y_1 \neq y_2$ then $P_1 = -P_2$ and so $P_1 + P_2 = 0$.
3. If $P_1 = P_2$ and $y_1 = 0$ then $P_1 + P_2 = 2P_1 = 0$.
4. If $P_1 = P_2$ and $y_1 \neq 0$ then $P_1 + P_2 = 2P_1 = (x_3, y_3)$ with
 $x_3 = [m^2 - 2x_1 \mod p], y_3 = [m - (x_1 - x_3) - y_1 \mod p]$
Where $m = \left[\frac{3x_1^2 + A}{2y_1} \mod p\right]$.

The set $E(Z_p)$ along with the addition rule form an abelian group. The elliptic curve group of E.

**Difficult property to verify is associativity. Can check through tedious calculation.

DDH over Elliptic Curves

DDH: Distinguish (*aP*, *bP*, *abP*) from (*aP*, *bP*, *cP*).

Size of Elliptic Curve Groups?

How large are EC groups mod p? Heuristic: $y^2 = f(x)$ has 2 solutions whenever f(x) is a quadratic residue and 1 solution when f(x) = 0. Since half the elements of Z_p^* are quadratic residues, expect $\frac{2(p-1)}{2} + 1 = p$ points on curve. Including 0, this gives p + 1 points.

Theorem (Hasse bound): Let p be prime, and let E be an elliptic curve over Z_p . Then

$$p+1-2\sqrt{p} \le |E(Z_p)| \le p+1+2\sqrt{p}.$$

Public Key Cryptography

Key Agreement

The key-exchange experiment $KE^{eav}_{A,\Pi}(n)$:

- 1. Two parties holding 1^n execute protocol Π . This results in a transcript *trans* containing all the messages sent by the parties, and a key k output by each of the parties.
- 2. A uniform bit $b \in \{0,1\}$ is chosen. If b = 0 set $\hat{k} \coloneqq k$, and if b = 1 then choose $\hat{k} \in \{0,1\}^n$ uniformly at random.
- 3. A is given *trans* and \hat{k} , and outputs a bit b'.
- 4. The output of the experiment is defined to be 1 if b' = b and 0 otherwise.

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all ppt adversaries A there is a negligible function neg such that

$$\Pr\left[KE^{eav}_{A,\Pi}(n)=1\right] \leq \frac{1}{2} + neg(n).$$