Cryptography

Lecture 20

Announcements

HW7 due on Monday, 4/22

Agenda

- More Number Theory!
- Hard Problems

Multiplicative Groups Mod N

- What about multiplicative groups modulo N, where N is composite?
- Which numbers $\{1, ..., N-1\}$ have multiplicative inverses $mod\ N$?
 - a such that gcd(a, N) = 1 has multiplicative inverse by Extended Euclidean Algorithm.
 - a such that gcd(a, N) > 1 does not, since gcd(a, N) is the smallest positive integer that can be written in the form Xa + YN for integer X, Y.
- Define $Z_N^* := \{a \in \{1, ..., N-1\} | \gcd(a, N) = 1\}.$
- Z_N^* is an abelian, multiplicative group.
 - Why does closure hold?

Order of Multiplicative Groups Mod N

- What is the order of Z_N^* ?
- This has a name. The order of Z_N^* is the quantity $\phi(N)$, where ϕ is known as the Euler totient function or Euler phi function.
- Assume $N = p \cdot q$, where p, q are distinct primes.
 - $-\phi(N) = N p q + 1 = p \cdot q p 1 + 1 = (p-1)(q-1).$
 - Why?

Another Special Case of Generalized Theorem

Corollary of generalized theorem:

```
For a such that gcd(a, N) = 1: a^{\phi(N)} \equiv 1 \mod N.
```

Another Useful Theorem

Theorem: Let G be a finite group with m = |G| > 1. Then for any $g \in G$ and any integer x, we have $g^x = g^{x \mod m}$.

Proof: We write $x = a \cdot m + b$, where a is an integer and $b \equiv x \mod m$.

- $g^x = g^{a \cdot m + b} = (g^m)^a \cdot g^b$
- By "generalized theorem" we have that $(g^m)^a \cdot g^b = 1^a \cdot g^b = g^b = g^{x \bmod m}.$

Background for RSA

Recall the fact that

$$a^m \equiv a^{m \mod \phi(N)} \mod N.$$

For $e \in Z_{\phi(N)}^*$, let $f_e: Z_N^* \to Z_N^*$ be defined as $f_e(x) \coloneqq x^e \mod N$.

Theorem: $f_e(x)$ is a permutation.

Proof: To prove the theorem, we show that $f_e(x)$ is invertible.

Let d be the multiplicative inverse of $e \mod \phi(N)$.

Then for $y \in Z_N^*$, $f_d(y) := y^d \mod N$ is the inverse of f_e .

To see this, we show that $f_d(f_e(x)) = x$.

$$f_d(f_e(x)) = (x^e)^d \mod N = x^{e \cdot d} \mod N = x^{e \cdot d \mod \phi(N)} \mod N = x^1 \mod N = x \mod N.$$

Note: Given d, it is easy to compute the inverse of f_e

However, we saw in the homework that given only e, N, it is hard to find d, since finding d implies that we can factor $N = p \cdot q$.

This will be important for cryptographic applications.

Toolbox for Cryptographic Multiplicative Groups

Can be done efficiently	No efficient algorithm believed to exist
Modular multiplication	Factoring
Finding multiplicative inverses (extended Euclidean algorithm)	RSA problem
Modular exponentiation (via repeated squaring)	Discrete logarithm problem
	Diffie Hellman problems

We have seen the efficient algorithms in the left column. We will now start talking about the "hard problems" in the right column.

The Factoring Assumption

The factoring experiment $Factor_{A,Gen}(n)$:

- 1. Run $Gen(1^n)$ to obtain (N, p, q), where p, q are random primes of length n bits and $N = p \cdot q$.
- 2. A is given N, and outputs p', q' > 1.
- 3. The output of the experiment is defined to be 1 if p' · q' = N, and 0 otherwise.

Definition: Factoring is hard relative to Gen if for all ppt algorithms A there exists a negligible function neg such that

$$\Pr[Factor_{A,Gen}(n) = 1] \le neg(n).$$

How does *Gen* work?

- 1. Pick random n-bit numbers p, q
- 2. Check if they are prime
- 3. If yes, return (N, p, q). If not, go back to step 1.

Why does this work?

- Prime number theorem: Primes are dense!
 - A random n-bit number is a prime with non-negligible probability.
 - Bertrand's postulate: For any n > 1, the fraction of n-bit integers that are prime is at least 1/3n.
- Can efficiently test whether a number is prime or composite:
 - If p is prime, then the Miller-Rabin test always outputs "prime." If p is composite, the algorithm outputs "composite" except with negligible probability.

Miller-Rabin Primality Test

```
ALGORITHM 8.44
The Miller-Rabin primality test

Input: Integer N > 2 and parameter 1^t
Output: A decision as to whether N is prime or composite if N is even, return "composite" if N is a perfect power, return "composite" compute r \ge 1 and u odd such that N - 1 = 2^r u for j = 1 to t:
a \leftarrow \{1, \ldots, N - 1\}
if a^u \ne \pm 1 \mod N and a^{2^i u} \ne -1 \mod N for i \in \{1, \ldots, r - 1\} return "composite" return "prime"
```

Why does it work?

First, note that $a^{2^i u} = \sqrt{a^{2^{i+1} u}}$, and that if p is prime then $\sqrt{1} \mod p \equiv \pm 1$.

- If N is prime: By Fermat's Little Theorem, $a^{N-1} \equiv a^{2^r u} \equiv 1 \mod N$.
 - Case 1: One of $a^{2^i u} \equiv -1 \mod N$.
 - Case 2: None of $a^{2^i u} \equiv -1 \mod N$. Then by the facts above, all of $a^{2^i u} \equiv 1 \mod N$. In particular, $a^{2u} \equiv 1 \mod N$. So by facts, $a^u \equiv \sqrt{a^{2u}} \equiv +1 \mod N$.
- If N is composite: At least half of $a \in Z_N^*$ will satisfy $a^u \neq \pm 1 \mod N$ and $a^{2^i u} \neq -1 \mod N$ for $i \in \{1, ..., r-1\}$.

The RSA Assumption

The RSA experiment $RSA - inv_{A,Gen}(n)$:

- 1. Run $Gen(1^n)$ to obtain (N, e, d), where $gcd(e, \phi(N)) = 1$ and $e \cdot d \equiv 1 \mod \phi(N)$.
- 2. Choose a uniform $y \in Z^*_N$.
- 3. A is given (N, e, y), and outputs $x \in Z^*_N$.
- 4. The output of the experiment is defined to be 1 if $x^e = y \mod N$, and 0 otherwise.

Definition: The RSA problem is hard relative to Gen if for all ppt algorithms A there exists a negligible function neg such that

$$\Pr[RSA - inv_{A,Gen}(n) = 1] \le neg(n).$$

Relationship between RSA and Factoring

Known:

- If an attacker can break factoring, then an attacker can break RSA.
 - Given p, q such that $p \cdot q = N$, can find $\phi(N)$ and d, the multiplicative inverse of $e \mod \phi(N)$.
- If an attacker can find $\phi(N)$, can break factoring.
- If an attacker can find d such that $e \cdot d \equiv 1 \ mod \ \phi(N)$, can break factoring.

Not Known:

Can every efficient attacker who breaks RSA also break factoring?

Due to the above, we have that the RSA assumption is a stronger assumption than the factoring assumption.

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$\langle g \rangle = \{g^0, g^1, ..., g^{m-1}\}$$

 $\langle g \rangle$ always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the above list.

Thus $\langle g \rangle$ may be a subgroup of order smaller than m.

If $\langle g \rangle = G$, then we say that G is a cyclic group and that g is a generator of G.