ENEE/CMSC/MATH 456: Cryptography Chinese Remainder Theorem Class Exercise 4/20/20

1. Use the method described in class to find the unique number x modulo 35 such that:

$$x \mod 7 = 4$$
$$x \mod 5 = 2$$

We first look for the elements x_1 , x_2 modulo 35 that map to the basis elements (1, 0) and (0,1). Thus x_1 is such that $x_1 \mod 7 = 1$ and $x_1 \mod 5 = 0$. x_2 is such that $x_2 \mod 7 = 0$ and $x_2 \mod 5 = 1$. To find x_1 , x_2 , we find X, Y such that 7X + 5Y = 1. Then $x_1 = 5Y$ and $x_2 = 7X$. Note that $7^*(-2) + 5(3) = 1$. So $x_1 = 15$ and $x_2 = -14$. Thus $(4,2) = 4^*(1,0) + 2^*(0,1) \rightarrow 4^*x_1 + 2^*x_2 = 4^*15 + 2(-14) = 60 - 28 = 32$. Final answer: x = 32.

2. Use the method described in class to find the unique number x modulo 56 such that:

$$x \mod 7 = 5$$
$$x \mod 8 = 3$$

We first look for the elements x_1, x_2 modulo 56 that map to the basis elements (1, 0) and (0,1). Thus x_1 is such that x_1 mod 7 = 1 and x_1 mod 8 = 0. x_2 is such that x_2 mod 7 = 0 and x_2 mod 8 = 1. To find x_1, x_2, we find X, Y such that 7X + 8Y = 1. Then x_1 = 8Y and x_2 = 7X. Note that $7^*(-1) + 8(1) = 1$. So x_1 = 8 and x_2 = -7. Thus (5,3) = $5^*(1,0) + 3^*(0,1) -> 5^*x_1 + 3^*x_2 = 5^*8 + 3(-7) = 40-21 = 19$. Final answer: x = 19.