Cryptography

Lecture 11
Announcements

• HW3 due today
• HW4 is up on course webpage. Due on 3/9/20
Agenda

• Last time:
 – MACs (K/L 4.1, 4.2, 4.3)

• This time:
 – Domain Extension for MACs (K/L 4.4) and Class Exercise solutions
 – CCA security (K/L 3.7)
 – Authenticated Encryption (K/L 4.5)
Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms \((\text{Gen, Mac, Vrfy})\) such that:

1. The key-generation algorithm \(\text{Gen}\) takes as input the security parameter \(1^n\) and outputs a key \(k\) with \(|k| \geq n\).
2. The tag-generation algorithm \(\text{Mac}\) takes as input a key \(k\) and a message \(m \in \{0,1\}^*\), and outputs a tag \(t\).
 \(t \leftarrow \text{Mac}_k(m)\).
3. The deterministic verification algorithm \(\text{Vrfy}\) takes as input a key \(k\), a message \(m\), and a tag \(t\). It outputs a bit \(b\) with \(b = 1\) meaning valid and \(b = 0\) meaning invalid.
 \(b := \text{Vrfy}_k(m, t)\).

It is required that for every \(n\), every key \(k\) output by \(\text{Gen}(1^n)\), and every \(m \in \{0,1\}^*\), it holds that \(\text{Vrfy}_k(m, \text{Mac}_k(m)) = 1\).
Unforgeability for MACs

Consider a message authentication code \(\Pi = (Gen, Mac, Vrfy) \), any adversary \(A \), and any value \(n \) for the security parameter.

Experiment \(MAC_{forge_{A,\Pi}}(n) \)

Adversary \(A(1^n) \)

\(A^{Mac_k(\cdot)} \)

\(Q \) is the set of all messages \(m' \) queried by \(A \)

Challenger

\(k \leftarrow Gen(1^n) \)

\(m' \)

\(t' \)

\(\vdots \)

\((m, t) \)

\(MAC_{forge_{A,\Pi}}(n) = 1 \) if both of the following hold:

1. \(m \notin Q \)
2. \(Vrfy_k(m, t) = 1 \)

Otherwise, \(MAC_{forge_{A,\Pi}}(n) = 0 \)
Security of MACs

The message authentication experiment $MAC_{\text{forge}}_{A,\Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.

2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.

3. A succeeds if and only if (1) $Vrf_y_k(m, t) = 1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1.
Security of MACs

Definition: A message authentication code \(\Pi = (Gen, Mac, Vrfy) \) is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries \(A \), there is a negligible function \(neg \) such that:

\[
\Pr[MAC_{\text{forge}}_{A,\Pi}(n) = 1] \leq neg(n).
\]
Strong Unforgeability for MACs

Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.

Experiment $MACsforge_{A,\Pi}(n)$

Adversary $A(1^n)$

$A^{Mac_k(\cdot)}$

Q is the set of all message, tag pairs (m', t') queried/received by A

Challenger

$k \leftarrow Gen(1^n)$

$MACsforge_{A,\Pi}(n) = 1$ if both of the following hold:

1. $m \notin Q$
2. $Vrfy_k(m, t) = 1$

Otherwise, $MACsforge_{A,\Pi}(n) = 0$
Strong MACs

The strong message authentication experiment $\text{MACsforg}_{A,\Pi}(n)$:

1. A key k is generated by running $\text{Gen}(1^n)$.
2. The adversary A is given input 1^n and oracle access to $\text{Mac}_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all pairs (m, t) that A asked its oracle.
3. A succeeds if and only if (1) $\text{Vrf}_{\cdot_k}(m, t) = 1$ and (2) $(m, t) \notin Q$. In that case, the output of the experiment is defined to be 1.
Strong MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is a strong MAC if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

$$\Pr[MAC_{sforge_{A,\Pi}}(n) = 1] \leq neg(n).$$
Domain Extension for MACs
CBC-MAC

Let F be a pseudorandom function, and fix a length function ℓ. The basic CBC-MAC construction is as follows:

- **Mac**: on input a key $k \in \{0,1\}^n$ and a message m of length $\ell(n) \cdot n$, do the following:
 1. Parse m as $m = m_1, \ldots, m_\ell$ where each m_i is of length n.
 2. Set $t_0 := 0^n$. Then, for $i = 1$ to ℓ:
 - Set $t_i := F_k(t_{i-1} \oplus m_i)$.
 - Output t_ℓ as the tag.

- **Vrfy**: on input a key $k \in \{0,1\}^n$, a message m, and a tag t, do: If m is not of length $\ell(n) \cdot n$ then output 0. Otherwise, output 1 if and only if $t = \text{Mac}_k(m)$.
FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).
Chosen Ciphertext Security
CCA Security*

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

Experiment $PrivK_{A,\Pi}^{\text{cca}}(n)$

Adversary $A(1^n)$

Challenger
CCA Security*

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

Experiment $PrivK_{A,\Pi}^{cca}(n)$

Adversary $A(1^n)$

Challenger

$k \leftarrow Gen(1^n)$
CCA Security*

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

Experiment $PrivK_{A,\Pi}^{\text{cca}}(n)$

Adversary $A(1^n)$

Challenger

$k \leftarrow Gen(1^n)$
CCA Security*

Consider a private-key encryption scheme $\Pi = (\text{Gen, Enc, Dec})$, any adversary A, and any value n for the security parameter.

Experiment $PrivK_{A,\Pi}^{\text{cca}}(n)$

- **Adversary** $A(1^n)$
 - $A^{\text{Enc}_k(\cdot),\text{Dec}_k(\cdot)}$
 - \cdot m'/c'
 - \cdot c'/m'
 - \cdot \ldots
 - \cdot m_0, m_1

- **Challenger**
 - $k \leftarrow \text{Gen}(1^n)$
CCA Security*

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

Experiment $PrivK_{A,\Pi}^{cca}(n)$

Adversary $A(1^n)$

$A^{Enc_k(\cdot), Dec_k(\cdot)}$

m'/c'

c'/m'

\vdots

m_0, m_1

c

Challenger

$k \leftarrow Gen(1^n)$

$b \leftarrow \{0,1\}$

$c \leftarrow Enc_k(m_b)$
Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

Experiment $PrivK_{A,\Pi}^{\text{cca}}(n)$
CCA Security*

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

Experiment $PrivK_{A,\Pi}^{cca}(n)$
CCA Security*

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

Experiment $PrivK_{A,\Pi}^{\text{cca}}(n)$

$$PrivK_{A,\Pi}^{\text{cca}}(n) = 1 \text{ if } b' = b \text{ and } PrivK_{A,\Pi}^{\text{cca}}(n) = 0 \text{ if } b' \neq b.$$
CCA Security

Consider a private-key encryption scheme \(\Pi = (Gen, Enc, Dec) \), any adversary \(A \), and any value \(n \) for the security parameter.

Experiment \(PrivK_{A,\Pi}^{cca}(n) \)

Adversary \(A(1^n) \)

\[A^{Enc_k(\cdot), Dec_k(\cdot)} \]

\[\begin{align*}
 m' / c' \\
 c' / m' \\
 \vdots \\
 m_0, m_1 \\
 c \\
 m' / c' \\
 c' / m' \\
 \vdots \\
 b'
\end{align*} \]

Challenger

\[k \leftarrow Gen(1^n) \]

\[b \leftarrow \{0,1\} \]

\[c \leftarrow Enc_k(m_b) \]

\[\begin{align*}
 A^{Enc_k(\cdot), Dec^*_k(\cdot)} \\
 A \text{ may not query challenge ciphertext } c \text{ to the decryption oracle} \\
 \end{align*} \]

\[PrivK_{A,\Pi}^{cca}(n) = 1 \text{ if } b' = b \text{ and } PrivK_{A,\Pi}^{cca}(n) = 0 \text{ if } b' \neq b. \]
CCA Security

The CCA Indistinguishability Experiment $PrivK^{cca}_{A,\Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.
2. The adversary A is given input 1^n and oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, and outputs a pair of messages m_0, m_1 of the same length.
3. A random bit $b \leftarrow \{0,1\}$ is chosen, and then a challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A.
4. The adversary A continues to have oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, but is not allowed to query the latter on the challenge ciphertext itself. Eventually, A outputs a bit b'.
5. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise.
CCA Security

A private-key encryption scheme \(\Pi = (Gen, Enc, Dec) \) has indistinguishable encryptions under a chosen-ciphertext attack if for all ppt adversaries \(A \) there exists a negligible function \(\text{negl} \) such that

\[
\Pr \left[PrivK_{A,\Pi}^{\text{cca}}(n) = 1 \right] \leq \frac{1}{2} + \text{negl}(n),
\]

where the probability is taken over the random coins used by \(A \), as well as the random coins used in the experiment.
Authenticated Encryption

The unforgeable encryption experiment $\text{EncForge}_{A,\Pi}(n)$:

1. Run $\text{Gen}(1^n)$ to obtain key k.

2. The adversary A is given input 1^n and access to an encryption oracle $\text{Enc}_k(\cdot)$. The adversary outputs a ciphertext c.

3. Let $m := \text{Dec}_k(c)$, and let Q denote the set of all queries that A asked its encryption oracle. The output of the experiment is 1 if and only if (1) $m \neq \bot$ and (2) $m \notin Q$.
Authenticated Encryption

Definition: A private-key encryption scheme Π is unforgeable if for all ppt adversaries A, there is a negligible function neg such that:

$$\Pr[EncForge_{A,\Pi}(n) = 1] \leq neg(n).$$

Definition: A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.