Let F be a length-preserving pseudorandom function. Show that each of the following message authentication codes is insecure. (In each case the shared key is a random $k \in \{0,1\}^n$.)

***Challenge: In (1), show how to create a forgery after seeing a single, random message tag pair $(m_1||m_2), (t_1||t_2)$.

1. To authenticate a message $m = m_1||m_2$, where $m_1, m_2 \in \{0,1\}^n$, compute $t := F_k(m_1)||F_k(m_2 \oplus F_k(m_1))$.

 Attack: query for a signature on m_1, m_2 get back $t := t_1||t_2$ where $t_1 = F_k(m_1), t_2 = F_k(m_2 \oplus F_k(m_1))$

 query for a signature on m'_1, m'_2

 get back $t' := t_1'||t_2'$ where $t_1' = F_k(m'_1), t_2' = F_k(m'_2 \oplus F_k(m'_1))$

 Forge a signature on m''_1, m''_2

 while $m''_1 := m_1$

 $m''_2 := t_1 \oplus m'_1 = F_k(m_1) \oplus m'_1$

 $t'' := t_1||t_1'$

 Tag $t'' := t_1||t_1'$

2. To authenticate a message $m = m_1||\cdots||m_r$, where $m_i \in \{0,1\}^n$, choose $r \in \{0,1\}^n$ at random and compute $t := r||F_k(m_1 \oplus r)||\cdots||F_k(m_r \oplus r)$.

 Attack: query for a signature on $m = m_1||\cdots||m_r$

 get back $t := r||t_1||\cdots||t_r$

 Forge a signature on $m \oplus r||\cdots||m_2 \oplus r$

 by outputting tag

 $t' := 0||t_1||\cdots||t_r$.