Announcements

• HW3 **extended** due Monday, 3/2
Agenda

• Last time:
 – PRF Class Exercise
 – Block Ciphers (K/L 3.5)
 – Modes of Operation (K/L 3.6)

• This time:
 – Introduction to MACs
 – Security Definition for MAC (K/L 4.2)
 – Constructing MAC from PRF (K/L 4.3)
 – Begin Discussing Domain Extension for MACs (K/L 4.4)
 – Class Exercise
Message Integrity

- Secrecy vs. Integrity

- Encryption vs. Message Authentication
Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms $(Gen, Mac, Vrfy)$ such that:

1. The key-generation algorithm Gen takes as input the security parameter 1^n and outputs a key k with $|k| \geq n$.

2. The tag-generation algorithm Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t.
 $$ t \leftarrow Mac_k(m). $$

3. The deterministic verification algorithm $Vrfy$ takes as input a key k, a message m, and a tag t. It outputs a bit b with $b = 1$ meaning valid and $b = 0$ meaning invalid.
 $$ b := Vrfy_k(m, t). $$

It is required that for every n, every key k output by $Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Vrfy_k(m, Mac_k(m)) = 1$.
Unforgeability for MACs

Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.

Experiment $MAC_{forge_{A,\Pi}}(n)$

Adversary $A(1^n)$

Challenger
Unforgeability for MACs

Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.

Experiment $MACforge_{A,\Pi}(n)$

Adversary $A(1^n)$

Challenger

$k \leftarrow Gen(1^n)$
Unforgeability for MACs

Consider a message authentication code \(\Pi = (Gen, Mac, Vrfy) \), any adversary \(A \), and any value \(n \) for the security parameter.

Experiment \(MAC_{\text{forge}}_{A,\Pi}(n) \)

Adversary \(A(1^n) \)

\(A^{Mac_k(\cdot)} \)

Challenger

\(k \leftarrow Gen(1^n) \)

\(m' \)

\(t' \)

\(\vdots \)
Unforgeability for MACs

Consider a message authentication code \(\Pi = (Gen, Mac, Vrfy) \), any adversary \(A \), and any value \(n \) for the security parameter.

Experiment \(MAC_{forge_{A,\Pi}}(n) \)

Adversary \(A(1^n) \)

\[A^{Mac_k(\cdot)} \]

Challenger

\[k \leftarrow Gen(1^n) \]

\(Q \) is the set of all messages \(m' \) queried by \(A \)
Unforgeability for MACs

Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.

Experiment $MAC_{\text{forge}}_{A,\Pi}(n)$

- Adversary $A(1^n)$
- $A^{\text{Mac} \cdot k}(\cdot)$
- Q is the set of all messages m' queried by A
- Challenger $k \leftarrow Gen(1^n)$
- $m' \leftarrow k \text{ for all } (m, t) \in Q$
Unforgeability for MACs

Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.

Experiment $MAC_{forge_A,\Pi}(n)$

Adversary $A(1^n)$

$A^{Mac_k(\cdot)}$

Q is the set of all messages m' queried by A

$m' \quad t'$

\vdots

(m, t)

Challenger

$k \leftarrow Gen(1^n)$

$MAC_{forge_A,\Pi}(n) = 1$ if both of the following hold:

1. $m \notin Q$
2. $Vrfy_k(m, t) = 1$

Otherwise, $MAC_{forge_A,\Pi}(n) = 0$
Security of MACs

The message authentication experiment $MAC_{\text{forge}}_{A,\Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.
2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.
3. A succeeds if and only if (1) $Vrfy_k(m, t) = 1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1.
Security of MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

$$\Pr[MAC\text{-}forge_{A,\Pi}(n) = 1] \leq neg(n).$$
Strong Unforgeability for MACs

Consider a message authentication code \(\Pi = (Gen, Mac, Vrfy) \), any adversary \(A \), and any value \(n \) for the security parameter.

Experiment \(MACsforge_{A,\Pi}(n) \)

Adversary \(A(1^n) \)

\(A^{Mac_k}(\cdot) \)

\(Q \) is the set of all message, tag pairs \((m', t') \) queried/received by \(A \)

Challenger \(k \leftarrow Gen(1^n) \)

\(\vdots \)

\((m, t) \)

\(m' \)

\(t' \)

\(MACsforge_{A,\Pi}(n) = 1 \) if both of the following hold:

1. \((m, t) \notin Q \)
2. \(Vrfy_k(m, t) = 1 \)

Otherwise, \(MACsforge_{A,\Pi}(n) = 0 \)
Strong MACs

The strong message authentication experiment \(MACsforge_{A, \Pi}(n) \):

1. A key \(k \) is generated by running \(Gen(1^n) \).
2. The adversary \(A \) is given input \(1^n \) and oracle access to \(Mac_k(\cdot) \). The adversary eventually outputs \((m, t) \). Let \(Q \) denote the set of all pairs \((m, t) \) that \(A \) asked its oracle.
3. \(A \) succeeds if and only if (1) \(Vrfy_k(m, t) = 1 \) and (2) \((m, t) \notin Q \). In that case, the output of the experiment is defined to be 1.
Strong MACs

Definition: A message authentication code \(\Pi = (Gen, Mac, Vrfy) \) is a strong MAC if for all probabilistic polynomial-time adversaries \(A \), there is a negligible function \(neg \) such that:

\[
\Pr[MACsfoarge_{A,\Pi}(n) = 1] \leq neg(n).
\]
Constructing Secure Message Authentication Codes
A Fixed-Length MAC

Let F be a pseudorandom function. Define a fixed-length MAC for messages of length n as follows:

- **Mac:** on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, output the tag $t := F_k(m)$.

- **$Vrfy$:** on input a key $k \in \{0,1\}^n$, a message $m \in \{0,1\}^n$, and a tag $t \in \{0,1\}^n$, output 1 if and only if $t = F_k(m)$.
Security Analysis

Theorem: If F is a pseudorandom function, then the construction above is a secure fixed-length MAC for messages of length n.
Pseudorandom Function

Definition: Let \(F: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^* \) be an efficient, length-preserving, keyed function. We say that \(F \) is a pseudorandom function if for all ppt distinguishers \(D \), there exists a negligible function \(negl \) such that:
\[
\left| \Pr[D_{F_{_{\{\cdot\}}}^k(\cdot)(1^n) = 1]} - \Pr[D_{f(\cdot)}^f(1^n) = 1]} \right| \\
\leq negl(n).
\]
where \(k \leftarrow \{0,1\}^n \) is chosen uniformly at random and \(f \) is chosen uniformly at random from the set of all functions mapping \(n \)-bit strings to \(n \)-bit strings.

Security of MACs

Definition: A message authentication code \(\Pi = (Gen, Mac, Vrfy) \) is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries \(A \), there is a negligible function \(neg \) such that:
\[
\Pr[MAC_{\text{forge}}_{A,\Pi}(n) = 1] \leq neg(n).
\]
Security Analysis

Let A be a ppt adversary trying to break the security of the construction. We construct a distinguisher D that uses A as a subroutine to break the security of the PRF.

Distinguisher D:

D gets oracle access to oracle O, which is either F_k, where F is pseudorandom or f which is truly random.

1. Instantiate $A^{Mac_k(\cdot)}(1^n)$.
2. When A queries its oracle with message m, output $O(m)$.
3. Eventually, A outputs (m^*, t^*) where $m^*, t^* \in \{0,1\}^n$.
4. If $m^* \in Q$, output 0.
5. If $m^* \notin Q$, query $O(m^*)$ to obtain output z^*.
6. If $t^* = z^*$ output 1. Otherwise, output 0.
Security Analysis

Consider the probability D outputs 1 in the case that O is truly random function f vs. O is a pseudorandom function F_k.

- When O is pseudorandom, D outputs 1 with probability $\Pr[\text{MACforge}_{A,\Pi}(n) = 1] = \rho(n)$, where ρ is non-negligible.

- When O is random, D outputs 1 with probability at most $\frac{1}{2^n}$. Why?
Security Analysis

D’s distinguishing probability is:

$$\left| \frac{1}{2^n} - \rho(n) \right| = \rho(n) - \frac{1}{2^n}.$$

Since, $\frac{1}{2^n}$ is negligible and $\rho(n)$ is non-negligible, $\rho(n) - \frac{1}{2^n}$ is non-negligible.

This is a contradiction to the security of the PRF.
Domain Extension for MACs