
Cryptography ENEE/CMSC/MATH 456: Final Review Sheet

1 Overview

The final exam will be held on Monday, 5/18/20 from 1:30pm-3:30pm (Canvas submissions will be accepted
until 4pm). It is not cumulative. It is open book and notes. I will also post a cheat sheet.

2 Sections Covered

The exam will cover the following Sections from the textbook:

– Chapter 5: 5.1.2, 5.2, 5.3.1
– Chapter 6: 6.1, 6.2, 6.3
– Chapter 8: 8.1, 8.2, 8.3
– Chapter 10: 10.3
– Chapter 11: 11.2, 11.4, 11.5
– Chapter 12: 12.2, 12.4, 12.7, 12.8

The following is a list of general topics focused on in the final exam and several practice problems for
each topic.

3 Practice Problems

3.1 Domain Extension for Collision Resistant Hash Functions

1. For each of the following modifications to the Merkle-Damgard transform, denoted Hs, determine
whether the result is collision resistant. Justify your answer.
(a) Instead of setting z0 := IV , where IV is the initialization vector, set z0 := x1 to be equal to the

first block of the message, and for i > 0, set zi := hs(zi−1||xi+1) (i.e. first hs is called on input
z0||x2 = x1||x2, yielding output z1; then on input z1||x3 yielding output z2, then on input z2||x4
yielding output z3, etc.).

(b) On input message m consisting of L bits, split m = m′||m′′ into two parts of length d`/2e bits and
b`/2c bits, respectively. Output Hs(m′)||Hs(m′′).

3.2 Practical Constructions of Symmetric Key Primitives

1. In this question, you are asked to recover the first round key for a 1-round SPN with 6-bit input, 6-bit
output and two 6-bit round keys, given two input-output pairs. Make sure to show all work.
The SPN has the following structure:

To compute the permutation Fk(x) on input x (6 bits) with key k (12 bits):
– Parse k = k1||k2, where k1 and k2 are the round keys and each have length 6 bits.
– Compute the intermediate value z = x⊕ k1.
– Parse z = z1||z2, where z1 and z2 each have length 3 bits.
– For each i ∈ [2], input zi to the corresponding S-box Si defined below, obtaining outputs w1, w2.

Let w = w1||w2 (length 6 bits) be the combined output.
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– Permute the bits of w to obtain w′ as described in the chart below.
– Output y = w′ ⊕ k2.

S-box S1:

000 100
001 111
010 010
011 000
100 011
101 101
110 001
111 110

S-box S2:

000 110
001 111
010 011
011 101
100 000
101 010
110 100
111 001

The following chart shows how the 6 bits of w are permuted to obtain w′.

1 2 3 4 5 6
3 4 5 6 1 2

Namely, on inputw := w1, w2, w3, w4, w5, w6, we permute the bits to obtain outputw′ := w3, w4, w5, w6, w1, w2.
Assume you are given that Fk(000000) = 111000 and Fk(111111) = 001111. Let k1 := k11, . . . , k

1
6 .

You are additionally given that k22 = 0 and that (k11||k12||k13) ⊕ (k14||k15||k16) = 110. Find k1 (first
round key only).
Given the above information, there is an attack that requires you to evaluate the SPN at most 12 times.
Solutions that recover the correct key but take longer, may not receive full credit.

2. Assume an SPN with block length 128. Moreover, assume there is no permutation step—only substi-
tuion steps and assume the same key schedule as our example in class (i.e. for an n-round network,
k = k1, . . . , kn and the i-th part of the key is used in round i). How many round substitution network
can you recover the entire key for in time 240.

3. Feistel network.

(a) Given an input/output pair (L0, R0), (L3, R3), determine the constraints induced on the round func-
tion Fk (assume that the same round function Fk is used in all three rounds).

(b) Given three input/output pairs (L0, R0), (L3, R3), (L0 +∆,R0), (L
′
3, R

′
3), (L

′′
0, R

′′
0), (L3, R3 +∆)

determine the constraints induced on the round function Fk (assume that the same round function
Fk is used in all three rounds). What goes wrong?

3.3 Number Theory

1. Let N = p · q, for primes p, q. Assume m ∈ ZN \Z∗N . Let e, d be such that e · d ≡ 1 mod φ(N). What
happens when we compute (me)d mod N?

Hint: Recall that φ(N) = (p− 1)(q − 1) and consider what happens when we compute (me)d mod p
and (me)d mod q and then use CRT.
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2. Use CRT and Fermat’s Little Theorem to prove that for N = p · q, where p, q are prime and x ∈ Z∗N ,
xφ(N) ≡ 1 mod N .

3. Extend CRT to the case where N = p · q · r and p, q, r are prime. Namely, show how to solve for the
unique x mod N , given a ≡ x mod p, b ≡ x mod q and c ≡ x mod r.

4. The Euclidean Algorithm can also be used to find the gcd of two polynomials. Use the Euclidean Algo-
rithm to find the gcd of the polynomials p1(x) = 3x4 +3x3− 17x2 +x− 6 and p2(x) = 3x2− 5x− 2.
Show your work.

5. Let N = p · q be a product of distinct primes. Show that every perfect square modulo N has 4 square
roots.

Hint: Use CRT and the fact that every perfect square modulo p (respectively, q) has exactly two square
roots x, p− x, which are negations of each other modulo p (respectively q).

6. Let N = p · q be a product of distinct primes. Show that an algorithm A for computing square roots
modulo N can be used to factor N .

Hint: Choose x← Z∗N and run A(x2). With probability 1/2, A will output a value y such that y2 = x2

but y 6= x and y 6= N − x. In this case, show how x, y can be used to factor N .

3.4 Key Exchange and Public Key Encryption

1. Consider the following key-exchange protocol: Common input: The security parameter 1n. The protocol:
(a) Alice runs G(1n) to obtain (G, q, g).
(b) Alice chooses x1, x2 ← Zq and sends h1 = gx1+x2 to Bob.
(c) Bob chooses x3 ← Zq and sends h2 = gx3 to Alice.
(d) Alice outputs hx1+x22 . Bob outputs hx31 .
Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e. either prove its
security or show a concrete attack).

2. Assume that p, q are Fermat primes (see here: https://en.wikipedia.org/wiki/Fermat_number).
Explain why RSA cannot be hard for modulus N = p · q.

3. Let (N, e) be the public key for plain RSA, where N = 3 · 11 = 33 and e = 3. Find the corresponding
secret key (N, d). Then encrypt the message m = 16, obtaining some ciphertext c. Decrypt c to recover
m. Do the computations by hand and show your work.

4. Consider the subgroup of Z∗23 consisting of quadratic residues modulo 23. This group consists of the
following elements: {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}. We choose g = 3 to be the generator of the sub-
group. Let (23, 11, 3, x = 4) be the secret key for ElGamal. Find the corresponding public key. Then
encrypt the message m = 9, obtaining some ciphertext c. Decrypt c to recover m. Do the computations
by hand and show your work.
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5. Let PK1 = (N1, 3), PK2 = (N2, 3), PK3 = (N3, 3), where N1 = 51, N2 = 65, N3 = 77, e = 3. Assume
a sender used plain RSA encryption to encrypt the same message m under public keys PK1, PK2, PK3

to yield ciphertexts c1 = 2, c2 = 57, c3 = 50. Find the message m by using the Chinese Remainder
Theorem and solving for m.

6. Show that Textbook RSA and ElGamal encryption are “homomorphic.” This means that given an en-
cryption of a messagem1 and an encryption of a messagem2, we can multiply them to get an encryption
of the message m1 ·m2. Is this property good or bad for security? Justify your answer.

3.5 Digital Signatures

1. Another approach (besides hashing) that has been tried to construct secure RSA-based signatures is to
encode the message before applying the RSA permutation. Here the signer fixes a public encoding func-
tion E : {0, 1}` → Z∗N as part of its public key, and the signature on a message m is σ := [E(m)d

mod N ].

(a) Assume e = 3. Show that encoded RSA is insecure if E(m) = 1||m||0κ−`−1, where κ = |N |,
|m| = ` > (κ+2)/2, κ− `− 1 is a multiple of 3 and it is required that 1 · 2κ−1 +m · 2κ−`−1 < N .

Hint: Consider choosing m such that 7N/8 < E(m) < 7N/8 + 2κ−`−1, which means that 2` <
8E(m) − 7N < 2` + 2κ−`+2. Then convert 8E(m) mod N to the correct format by multiplying
by 2κ−`−1.
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