ENEE/CMSC/MATH 456
 Feistel Class Exercise

1. Consider a two-round Feistel Network with input length ℓ, key length n and round functions $F F(k) \cdot$, where $\left.F\{: 0\} 1^{n} 0,\right\}^{\ell / 2} \rightarrow\{0,1\}^{\ell / 2}$ is a pseudorandom function. Prove that the output of the Feistel Network is not a pseudorandom permutation (PRP).

See attached sheet for the structure of a Feistel Network.

Solution:

1. Query $L_{-} 0| | R_{-} 0$, get back $F_{-} k\left(R_{-} 0\right)+L_{-} 0| |^{*}$ (we don't care what's on the right)
2. Query L_0 + \Delta||R_0, get back F_k(R_0) + L_0 + \Delta||*
3. XOR the two left hand sides. If you get back \Delta, then output 0 . Otherwise output 1.

The probability of outputting 1 when the oracle is a 2 -round Feistel is 1 . The probability of outputting 1 when the oracle is a random permutation is approximately $1 / 2^{\wedge}\{\backslash e l l / 2\}$. The difference is clearly non-negligible. Thus, this is a valid attack on the security of the 2-round Feistel.
2. **Challenge** Consider a three-round Feistel Network with input length ℓ, key length n and round functions $)_{F F F F_{k}} \cdot$, where $F\{0,\}^{n} \times 0\left\{1 / 1^{\ell / \ell} \rightarrow 0,1^{\ell / 2}\right.$ is a pseudorandom function. Prove that the output of the Feistel Network is not a strong pseudorandom permutation (SPRP).
See attached sheet for the structure of a Feistel Network.
Hint: The sequence of queries needed is:

1. Forward direction on (L_0||R_0), getting back (L_3||R_3)
2. Backward direction on (L_3||R_3 + \Delta), getting back (L'_0||R'_0)
3. Forward direction on (L_0 + \Delta||R_0), getting back (L"_3||R"_3)

There will be a relationship between R_0, L_3, R'_0 and L"_3

Solution: When we query (L_0||R_0), we get back (L_3 || R_3).
When we query the backward direction on (L_3||R_3+\Delta), we get $L^{\prime} _2=R^{\prime} _1=$
$L_{-} 2+\backslash$ Delta, and $L^{\prime} _1=R^{\prime} _0=L_{-} 3+f\left(L_{-} 2+\backslash\right.$ Delta $)$, where $L_{-} 2=L_{-} 0+f\left(R _0\right)$

When we query the forward direction on (L_0+\Delta || R_0), we get back L"_3 = R_0 $+f\left(L _0+\backslash\right.$ Delta $\left.+f\left(R _0\right)\right)=R _0+f\left(L _2+\backslash\right.$ Delta $)$.

So we have the relationship: $\mathrm{R}^{\prime} _0$ + L_3 = R_0 + L"_3.

If the above relationship occurs, the distinguisher outputs 1 . The probability of outputting 1 when the oracle is 3 -round Feistel is 1 . The probability of outputting 1 when the oracle is a random permutation is approx. $1 / 2^{\wedge}\{\backslash$ ell $/ 2\}$.

FIGURE 6.4: A 3-round Feistel network.

