Discrete-Log Based Signatures

Overview of DL-based Signatures

- Discrete-Log-based signatures can be implemented using Elliptic Curves.
 - They are therefore more efficient than RSA-based signatures (signatures are far smaller).
- DL-based are preferred in Bitcoin
- Bitcoin currently uses ECDSA = Elliptic Curve Digital Signature Algorithm
- We will be learning about Schnorr signatures.
- Similar to ECDSA but have some better properties.
- Many proponents of switching Bitcoin signatures to Schnorr signatures.

Outline

- We will first construct an Identification Scheme
 - A way to prove knowledge of a secret key corresponding to a public key without revealing the secret key
 - Provides a form of "zero knowledge"
 - E.g. public key = g^x , secret key = x.
 - Prove that I know x, without revealing what x is
 - If I reveal x, someone can impersonate me next time.
- Use the Fiat-Shamir transform to convert an Identification Scheme into a Signature Scheme.

Identification Schemes

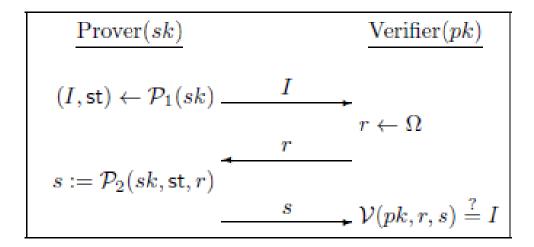


FIGURE 12.1: A 3-round identification scheme.

Identification Schemes

The identification experiment $\mathsf{Ident}_{\mathcal{A},\Pi}(n)$:

- 1. $Gen(1^n)$ is run to obtain keys (pk, sk).
- Adversary A is given pk and access to an oracle Trans_{sk}(·) that it can query as often as it likes.
- At any point during the experiment, A outputs a message I. A uniform challenge r ∈ Ω_{pk} is chosen and given to A, who responds with s. (We allow A to continue querying Trans_{sk}(·) even after receiving c.)
- 4. The experiment evaluates to 1 if and only if $\mathcal{V}(pk, r, s) \stackrel{?}{=} I$.

DEFINITION 12.8 Identification scheme $\Pi = (\text{Gen}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{V})$ is secure against a passive attack, or just secure, if for all probabilistic polynomial-time adversaries \mathcal{A} , there is a negligible function negl such that:

 $\Pr[\mathsf{Ident}_{\mathcal{A},\Pi}(n) = 1] \le \mathsf{negl}(n).$

The Schnorr Identification Scheme

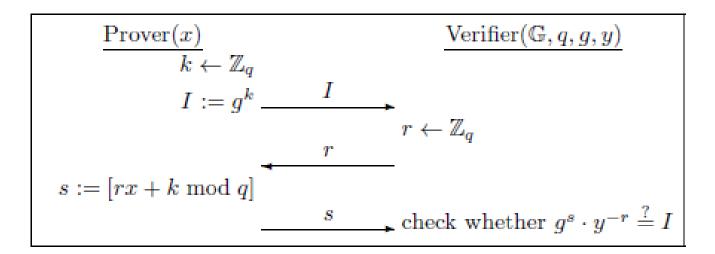


FIGURE 12.2: An execution of the Schnorr identification scheme.

Theorem: If the Dlog problem is hard relative to *G* then the Schnorr identification scheme is secure.

Idea of proof:

• Oracle can generate correctly distributed transcripts without knowing *x*.

- How?

Idea of proof:

 Given an attacker A who successfully responds to challenges with non-negligible probability, can construct an attacker A' who extracts the discrete log x of y by **rewinding**.

From Identification Schemes to Signatures: The Fiat-Shamir Transform

CONSTRUCTION 12.9

Let $(Gen, \mathcal{P}_1, \mathcal{P}_2, \mathcal{V})$ be an identification scheme, and construct a signature scheme as follows:

 Gen: on input 1ⁿ, simply run Gen(1ⁿ) to obtain keys pk, sk. The public key pk specifies a set of challenges Ω_{pk}. As part of key generation, a function H : {0, 1}* → Ω_{pk} is specified, but we leave this implicit.

Sign: on input a private key sk and a message m ∈ {0,1}*, do:

- 1. Compute $(I, st) \leftarrow \mathcal{P}_1(sk)$.
- 2. Compute r := H(I, m).
- 3. Compute $s := \mathcal{P}_2(sk, \mathsf{st}, c)$

Output the signature (r, s).

 Vrfy: on input a public key pk, a message m, and a signature (r, s), compute I := V(pk, r, s) and output 1 if and only if H(I, m) = r.

The Fiat-Shamir transform.

Theorem: Let Π be an identification scheme, and let Π' be the signature scheme that results by applying the Fiat-Shamir transform to it. If Π is secure and H is modeled as a random oracle, then Π' is secure.

The Schnorr Signature Scheme

CONSTRUCTION 12.12

Let \mathcal{G} be as described in the text.

- Gen: run G(1ⁿ) to obtain (G, q, g). Choose uniform x ∈ Z_q and set y := g^x. The private key is x and the public key is (G, q, g, y). As part of key generation, a function H : {0, 1}* → Z_q is specified, but we leave this implicit.
- Sign: on input a private key x and a message $m \in \{0, 1\}^*$, choose uniform $k \in \mathbb{Z}_q$ and set $I := g^k$. Then compute r := H(I, m), followed by $s := [rx + K \mod q]$. Output the signature (r, s).
- Vrfy: on input a public key (G, q, g, y), a message m, and a signature (r, s), compute I := g^s ⋅ y^{-r} and output 1 if H(I, m) [?] = r.

The Schnorr signature scheme.