ENEE/CMSC/MATH 456 RSA Signatures Class Exercise

Another approach (besides hashing) that has been tried to construct secure RSA-based signatures is to encode the message before applying the RSA permutation. Here the signer fixes a public encoding function $E:\{0,1\}^\ell\to Z_N^*$ as part of its public key, and the signature on a message m is

$$\sigma \coloneqq \left[E(m)^d \bmod N \right]$$

1. Show that encoded RSA is insecure if we define $E(m) = 0 \times 00 ||m|| |0^{\kappa/10}|$ (where $\kappa = ||N||, \ell = |m| = 4\kappa/5$, and m is not the all-0 message). Assume e = 3.

Solution. The attacker will query $m_1 = 0^{\ell-1}||1$ to obtain signature σ_1 . Note that the encoding of m_1 is $\mathrm{E}(m_1) = 0x00||0^{\ell-1}||1||0^{\kappa/10}$.

Now, consider $E(m_1) \cdot E(m_1)$. Note that this is a valid encoding of a message $m_2 = 0^{\ell - 1 - \kappa/10} ||1|| 0^{\kappa/10}$. Thus, we have that $\sigma_1 \cdot \sigma_1 = E(m_1)^d \cdot E(m_1)^d = (E(m_1) \cdot E(m_1))^d = E(m_2)^d$.

Thus, the attacker can output the forgery $(m_2, \sigma_1 \cdot \sigma_1)$.

ENEE/CMSC/MATH 456 RSA Signatures Class Exercise

2. Show that encoded RSA is insecure if we define E(m) = 0 ||m|| |0|| m (where $\ell = |m| = (|N| - 1)/2$ and m is not the all-0 message). Assume e = 3.

Solution. The attacker will query $m_1 = 0^{\ell-1}||1$ to obtain signature σ_1 . Note that the encoding of m_1 is $\mathrm{E}(m_1) = 0||0^{\ell-1}||1||0||0^{\ell-1}||1$.

Now, consider $E(m_1) \cdot 8$. Note that this is a valid encoding of a message $m_2 = 0^{\ell-4}||1||000$. Moreover, note that since $2^3 = 8$, we have that $8^d = 2$.

Thus, we have that $\sigma_1 \cdot 2 = \mathrm{E}(m_1)^d \cdot 8^d = (\mathrm{E}(m_1) \cdot 8)^d = \mathrm{E}(m_2)^d$.

Thus, the attacker can output the forgery $(m_2, \sigma_1 \cdot 2)$.