Cryptography

Lecture 7

Announcements

- HW3 up on course webpage, due Monday,
 2/25
- Regrade on Question 5 of Algorithms quiz

Agenda

Last time:

- Indistinguishability in the presence of an eavesdropper (K/L 3.2)
- Defining PRG (K/L 3.3)
- Constructing computationally secure SKE from PRG (K/L 3.3)

• This time:

- Review:
 - Defining PRG (K/L 3.3)
 - Indistinguishability in the presence of an eavesdropper (K/L 3.2)
- Constructing computationally secure SKE from PRG (K/L 3.3)
- Security Proof (K/L 3.3)

Defining Computationally Secure Encryption

A private-key encryption scheme is a tuple of probabilistic polynomial-time algorithms (Gen, Enc, Dec) such that:

- 1. The key-generation algorithm Gen takes as input security parameter 1^n and outputs a key k denoted $k \leftarrow Gen(1^n)$. We assume WLOG that $|k| \ge n$.
- 2. The encryption algorithm Enc takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a ciphertext c denoted $c \leftarrow Enc_k(m)$.
- 3. The decryption algorithm Dec takes as input a key k and ciphertext c and outputs a message m denoted by $m \coloneqq Dec_k(c)$.

Correctness: For every n, every key $k \leftarrow Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Dec_k(Enc_k(m)) = m$.

Indistinguishability in the presence of an eavesdropper

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

The eavesdropping indistinguishability experiment $PrivK^{eav}_{A,\Pi}(n)$:

- 1. The adversary A is given input 1^n , and outputs a pair of messages m_0 , m_1 of the same length.
- 2. A key k is generated by running $Gen(1^n)$, and a random bit $b \leftarrow \{0,1\}$ is chosen. A challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A.
- 3. Adversary A outputs a bit b'.
- 4. The output of the experiment is defined to be 1 if b'=b, and 0 otherwise. If $PrivK^{eav}_{A,\Pi}(n)=1$, we say that A succeeded.

Indistinguishability in the presence of an eavesdropper

Definition: A private key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries A there exists a negligible function negl such that

$$\Pr\left[PrivK^{eav}_{A,\Pi}(n) = 1\right] \le \frac{1}{2} + negl(n),$$

Where the prob. Is taken over the random coins used by A, as well as the random coins used in the experiment.

Semantic Security

- The full definition of semantic security is even more general.
- Consider arbitrary distributions over plaintext messages and arbitrary external information about the plaintext.

Semantic Security

Definition: A private key encryption scheme $\Pi = (Gen, Enc, Dec)$ is semantically secure in the presence of an eavesdropper if for every ppt adversary A there exists a ppt algorithm A' such that for all efficiently sampleable distributions $X = (X_1, ...,)$ and all poly time computable functions f, h, there exists a negligible function negl such that

$$|\Pr[A(1^n, Enc_k(m), h(m)) = f(m)] - \Pr[A'(1^n, h(m)) = f(m)]| \le negl(n),$$

where m is chosen according to distribution X_n , and the probabilities are taken over choice of m and the key k, and any random coins used by A, A', and the encryption process.

Equivalence of Definitions

Theorem: A private-key encryption scheme has indistinguishable encryptions in the presence of an eavesdropper if and only if it is semantically secure in the presence of an eavesdropper.

Pseudorandom Generator

Functionality

- Deterministic algorithm G
- Takes as input a short random seed s
- Ouputs a long string G(s)

Security

- No efficient algorithm can "distinguish" G(s) from a truly random string r.
- i.e. passes all "statistical tests."

• Intuition:

- Stretches a small amount of true randomness to a larger amount of pseudorandomness.
- Why is this useful?
 - We will see that pseudorandom generators will allow us to beat the Shannon bound of $|K| \ge |M|$.
 - I.e. we will build a computationally secure encryption scheme with |K| < |M|

Pseudorandom Generators

Definition: Let $\ell(\cdot)$ be a polynomial and let G be a deterministic poly-time algorithm such that for any input $s \in \{0,1\}^n$, algorithm G outputs a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following two conditions hold:

- 1. (Expansion:) For every n it holds that $\ell(n) > n$.
- 2. (Pseudorandomness:) For all ppt distinguishers D, there exists a negligible function negl such that:

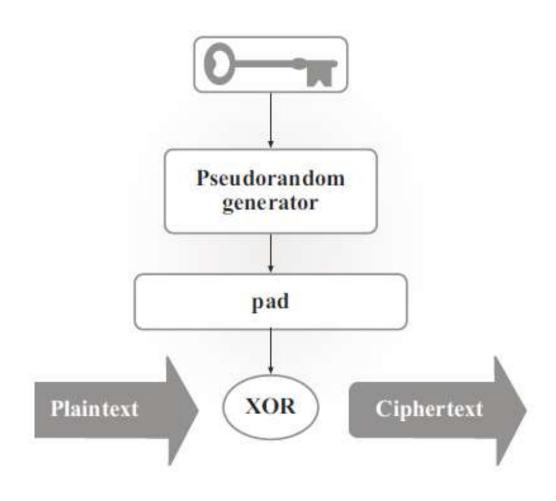
$$\left|\Pr[D(r)=1] - \Pr[D(G(s))=1]\right| \le negl(n),$$

where r is chosen uniformly at random from $\{0,1\}^{\ell(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

The function $\ell(\cdot)$ is called the expansion factor of G.

Constructing Secure Encryption Schemes

A Secure Fixed-Length Encryption Scheme



The Encryption Scheme

Let G be a pseudorandom generator with expansion factor ℓ . Define a private-key encryption scheme for messages of length ℓ as follows:

- Gen: on input 1^n , choose $k \leftarrow \{0,1\}^n$ uniformly at random and output it as the key.
- Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^{\ell(n)}$, output the ciphertext

$$c \coloneqq G(k) \oplus m$$
.

• Dec: on input a key $k \in \{0,1\}^n$ and a ciphertext $c \in \{0,1\}^{\ell(n)}$, output the plaintext message

$$m \coloneqq G(k) \oplus c$$
.

Theorem: If G is a pseudorandom generator, then the Construction above is a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.

Proof by reduction method.

Proof: Let A be a ppt adversary trying to break the security of the construction. We construct a distinguisher D that uses A as a subroutine to break the security of the PRG.

Distinguisher *D*:

- D is given as input a string $w \in \{0,1\}^{\ell(n)}$.
- 1. Run $A(1^n)$ to obtain messages m_0 , $m_1 \in \{0,1\}^{\ell(n)}$.
- 2. Choose a uniform bit $b \in \{0,1\}$. Set $c := w \oplus m_b$.
- 3. Give c to A and obtain output b'. Output 1 if b' = b, and output 0 otherwise.

Consider the probability D outputs 1 in the case that w is random string r vs. w is a pseudorandom string G(s).

- When w is random, D outputs 1 with probability exactly $\frac{1}{2}$. Why?
- When w is pseudorandom, D outputs 1 with probability $\Pr\left[PrivK^{eav}_{A,\Pi}(n)=1\right]=\frac{1}{2}+\rho(n)$, where ρ is non-negligible.

D's distinguishing probability is:

$$\left|\frac{1}{2} - \left(\frac{1}{2} + \rho(n)\right)\right| = \rho(n).$$

This is a contradiction to the security of the PRG, since ρ is non-negligible.