Cryptography

Lecture 4

Announcements

- HW1 due today.
- HW2 up on course webpage, due Wednesday
 2/13.
- Readings/quizzes on Canvas due Friday 2/15
 @11:59pm.

Agenda

- Last time:
 - Perfect Secrecy (K/L 2.1)
 - One time pad (OTP) (K/L 2.2)
- This time:
 - Class Exercise
 - Limitations of perfect secrecy (K/L 2.3)
 - Shannon's Theorem (K/L 2.4)
 - The Computational Approach (K/L 3.1)

Drawbacks of OTP

- Key length is the same as the message length.
 - For every bit communicated over a public channel,
 a bit must be shared privately.
 - We will see this is not just a problem with the OTP scheme, but an inherent problem in perfectly secret encryption schemes.
- Key can only be used once.
 - You will see in the homework that this is also an inherent problem.

Limitations of Perfect Secrecy

Theorem: Let (Gen, Enc, Dec) be a perfectly-secret encryption scheme over a message space M, and let K be the key space as determined by Gen. Then $|K| \ge |M|$.

Proof

Proof (by contradiction): We show that if |K| < |M| then the scheme cannot be perfectly secret.

- Assume |K| < |M|. Consider the uniform distribution over M and let $c \in C$.
- Let M(c) be the set of all possible messages which are possible decryptions of c.

$$M(c) := \{\widehat{m} \mid \widehat{m} = Dec_k(c) \text{ for some } \widehat{k} \in K\}$$

Proof

$$M(c) := \{ \widehat{m} \mid \widehat{m} = Dec_k(c) \text{ for some } \widehat{k} \in K \}$$

- $|M(c)| \le |K|$. Why?
- Since we assumed |K| < |M|, this means that there is some $m' \in M$ such that $m' \notin M(c)$.
- But then

$$\Pr[M = m' | C = c] = 0 \neq \Pr[M = m']$$

And so the scheme is not perfectly secret.

Shannon's Theorem

Let (Gen, Enc, Dec) be an encryption scheme with message space M, for which |M| = |K| = |C|. The scheme is perfectly secret if and only if:

- 1. Every key $k \in K$ is chosen with equal probability 1/|K| by algorithm Gen.
- 2. For every $m \in M$ and every $c \in C$, there exists a unique key $k \in K$ such that $Enc_k(m)$ outputs c.
- **Theorem only applies when |M| = |K| = |C|.

Some Examples

- Is the following scheme perfectly secret?
- Message space $M = \{0,1,...,n-1\}$. Key space $K = \{0,1,...,n-1\}$.
- Gen() chooses a key k at random from K.
- $\operatorname{Enc}_k(m)$ returns m + k.
- $Dec_k(c)$ returns c k.

Some Examples

- Is the following scheme perfectly secret?
- Message space $M = \{0,1,...,n-1\}$. Key space $K = \{0,1,...,n-1\}$.
- Gen() chooses a key k at random from K.
- $\operatorname{Enc}_k(m)$ returns $m + k \mod n$.
- $Dec_k(c)$ returns $c k \mod n$.

The Computational Approach

Two main relaxations:

- Security is only guaranteed against efficient adversaries that run for some feasible amount of time.
- 2. Adversaries can potentially succeed with some very small probability.