1. Prove or refute: An encryption scheme with message space M is perfectly secret if and only if for every probability distribution over M and every $c_0, c_1 \in C$ we have $Pr[C = c_0] = Pr[C = c_1]$. False.

Given encryption scheme (Gen, Enc, Dec), construct scheme (Gen, Enc', Dec'). This is exactly the same except Enc appends a 0 to its output with prob. $\frac{1}{4}$ and a 1 with prob $\frac{3}{4}$. Dec' ignores the final bit.

Note that if (Gen, Enc, Dec) is perfectly secure, so is (Gen, Enc', Dec'). But now choose any $c \in C$ where C is ciphertext space of (Gen, Enc, Dec).

Then we have $Pr[C = c \mid 0] < Pr[C = c \mid 1]$.

2. Prove or refute: An encryption scheme with message space M is perfectly secret if and only if for every probability distribution over M, every $m, m' \in M$ and every $c \in C$ we have $Pr[M = m \mid C = c] = Pr[M = m' \mid C = c]$. False.

Given any perfectly secret encryption scheme, we will choose a distribution over M and m, m', c s.t. $Pr[M = m \mid C = c] \neq Pr[M = m' \mid C = c]$. This refutes the above.

Let's choose a distribution over M that sets $Pr[M = m] > Pr[M = m']$ for some m, m'.

Now by Def. 1 of perfect secrecy, we have

$Pr[M = m \mid C = c] = Pr[M = m]$ and $Pr[M = m' \mid C = c] = Pr[M = m']$

So $Pr[M = m \mid C = c] > Pr[M = m'] = Pr[M = m' \mid C = c]$.

So $Pr[M = m \mid C = c] \neq Pr[M = m' \mid C = c]$.