Cryptography—ENEE/CMSC/MATH 456 Class Exercise 2/4/19

1. Prove or refute: An encryption scheme with message space M is perfectly secret if and only if for every probability distribution over M and every $c_0, c_1 \in C$ we have $Pr[C = c_0] = Pr[C = c_1]$. For $F(C = c_1) = C$

Given encryption scheme (Gen, Enc, Dec), construct scheme
(Gen, Enc', Dec'). This is exactly the same except Enc appends
a O to its output with prob. 1/4 and a 1 with prob 3/4.
Dec' ignores the final bit.
Note that if (Gen, Enc, Dec) is perfectly secret, so is (Gen, Enc', Dec').
But now choose any
$$C \in C'$$
 (when C is ciphentext space of (Gen, Enc, Dec)).
Then we have $\Pr[C = c||0] < \Pr[C = c||1]$.

2. Prove or refute: An encryption scheme with message space M is perfectly secret if and only if for every probability distribution over M, every $m, m' \in M$ and every $c \in C$ we have $Pr[M = m | C = c] = Pr[M = m' | C = c] \cdot \prod_{\alpha \in S} f_{\alpha}$

Given any puterly secret encryption scheme, we
will choose a distribution over
$$\mathcal{M}_{\mathcal{M}}$$
 exceeds and m, m', c s.t.
 $\operatorname{Pr}_{\mathcal{M}=m}[C=c] \neq \operatorname{Pr}_{\mathcal{M}=m'}[C=c]$. This relates the above.
Let's choose a distribution over $\mathcal{M}_{\mathcal{M}}$ that sets
 $\operatorname{Pr}_{\mathcal{M}=m}] > \operatorname{Pr}_{\mathcal{M}=m'}]$. for some m, m' .
Now by Det 1 of puterl secrecy, $\operatorname{Ve}_{\mathcal{M}=m'}[C=c] = \operatorname{Pr}_{\mathcal{M}=m'}]$
 $\operatorname{Pr}_{\mathcal{M}=m}[C=c] = \operatorname{Pr}_{\mathcal{M}=m}]$ and $\operatorname{Pr}_{\mathcal{M}=m'}[C=c] = \operatorname{Pr}_{\mathcal{M}=m'}]$.
So $\operatorname{Pr}_{\mathcal{M}=m}[C=c] = \operatorname{Pr}_{\mathcal{M}=m}] > \operatorname{Pr}_{\mathcal{M}=m'}[C=c].$