Cryptography

Lecture 23

Announcements

- HW8 due today
- HW9 now up on course webpage. Due 5/6.
- One additional "optional" homework due on 5/13.

Agenda

- Last time:
- Elliptic Curve Groups
- Key Exchange Definitions and Diffie-Hellman Key Exchange (10.3)
- Public Key Encryption Definitions (11.2)
- This time:
- El Gamal Encryption (11.4)
- RSA Encryption and Weaknesses (11.5)
- Class Exercise

Public Key Encryption

Definition: A public key encryption scheme is a triple of ppt algorithms (Gen, Enc, Dec) such that:

1. The key generation algorithm Gen takes as input the security parameter 1^{n} and outputs a pair of keys $(p k, s k)$. We refer to the first of these as the public key and the second as the private key. We assume for convenience that $p k$ and $s k$ each has length at least n, and that n can be determined from $p k, s k$.
2. The encryption algorithm Enc takes as input a public key $p k$ and a message m from some message space. It outputs a ciphertext c, and we write this as $c \leftarrow E n c_{p k}(m)$.
3. The deterministic decryption algorithm Dec takes as input a private key $s k$ and a ciphertext c, and outputs a message m or a special symbol \perp denoting failure. We write this as $m:=D e c_{s k}(c)$.

Correctness: It is required that, except possibly with negligible probability over $(p k, s k)$ output by $\operatorname{Gen}\left(1^{n}\right)$, we have $\operatorname{Dec}_{s k}\left(E n c_{p k}(m)\right)=m$ for any legal message m.

CPA-Security

The CPA experiment $P u b K^{c p a}{ }_{A, \Pi}(n)$:

1. $\operatorname{Gen}\left(1^{n}\right)$ is run to obtain keys $(p k, s k)$.
2. Adversary A is given $p k$, and outputs a pair of equal-length messages m_{0}, m_{1} in the message space.
3. A uniform bit $b \in\{0,1\}$ is chosen, and then a challenge ciphertext $c \leftarrow E n c_{p k}\left(m_{b}\right)$ is computed and given to A.
4. A outputs a bit b^{\prime}. The output of the experiment is 1 if $b^{\prime}=b$, and 0 otherwise.

Definition: A public-key encryption scheme $\Pi=$ (Gen, Enc, Dec) is CPA-secure if for all ppt adversaries A there is a negligible function neg such that

$$
\operatorname{Pr}\left[\operatorname{PubK}_{A, \Pi}^{c p a}(n)=1\right] \leq \frac{1}{2}+\operatorname{neg}(n)
$$

El Gamal Encryption

--Show how we can derive El Gamal PKE from Diffie-Hellman Key Exchange

Important Property

Lemma: Let G be a finite group, and let $m \in G$ be arbirary. Then choosing uniform $k \in G$ and setting $k^{\prime}:=k \cdot m$ gives the same distribution for k^{\prime} as choosing uniform $k^{\prime} \in G$. Put differently, for any $\hat{g} \in G$ we have

$$
\operatorname{Pr}[k \cdot m=\hat{g}]=1 /|G| .
$$

El Gamal Encryption Scheme

CONSTRUCTION 11.16

Let \mathcal{G} be as in the text. Define a public-key encryption scheme as follows:

- Gen: on input 1^{n} run $\mathcal{G}\left(1^{n}\right)$ to obtain (\mathbb{G}, q, g). Then choose a uniform $x \leftarrow \mathbb{Z}_{q}$ and compute $h:=g^{x}$. The public key is $\langle\mathbb{G}, q, g, h\rangle$ and the private key is $\langle\mathbb{G}, q, g, x\rangle$. The message space is \mathbb{G}.
- Enc: on input a public key $p k=\langle\mathbb{G}, q, g, h\rangle$ and a message $m \in \mathbb{G}$, choose a uniform $y \leftarrow \mathbb{Z}_{q}$ and output the ciphertext

$$
\left\langle g^{y}, h^{y} \cdot m\right\rangle .
$$

- Dec: on input a private key $s k=\langle\mathbb{G}, q, g, x\rangle$ and a ciphertext $\left\langle c_{1}, c_{2}\right\rangle$, output

$$
\hat{m}:=c_{2} / c_{1}^{x} .
$$

The El Gamal encryption scheme.

El Gamal Example

Security Analysis

Theorem: If the DDH problem is hard relative to G, then the El Gamal encryption scheme is CPAsecure.

Textbook RSA Encryption

CONSTRUCTION 11.25

Let GenRSA be as in the text. Define a public-key encryption scheme as follows:

- Gen: on input 1^{n} run $\operatorname{GenRSA}\left(1^{n}\right)$ to obtain N, e, and d. The public key is $\langle N, e\rangle$ and the private key is $\langle N, d\rangle$.
- Enc: on input a public key $p k=\langle N, e\rangle$ and a message $m \in \mathbb{Z}_{N}^{*}$, compute the ciphertext

$$
c:=\left[m^{e} \bmod N\right] .
$$

- Dec: on input a private key $s k=\langle N, d\rangle$ and a ciphertext $c \in \mathbb{Z}_{N}^{*}$, compute the message

$$
m:=\left[c^{d} \bmod N\right] .
$$

The plain RSA encryption scheme.

RSA Example

$$
\begin{gathered}
p=3, q=7, N=21 \\
\phi(N)=12 \\
e=5 \\
d=5
\end{gathered}
$$

$E n c_{(21,5)}(4)=4^{5} \bmod 21=16 \bmod 21$ $\operatorname{Dec}_{21,5}(16)=16^{5} \bmod 21=4^{5} \cdot 4^{5} \bmod 21$
$=16 \cdot 16 \bmod 21=4$

Is Plain-RSA Secure?

- It is deterministic so cannot be secure!

Additional Attacks

Additional Attacks

Encrypting short messages using small e :

- When $m<N^{1 / e}$, raising m to the e-th power modulo N involves no modular reduction.
- Can compute $m=c^{1 / e}$ over the integers.

Additional Attacks

Encrypting a partially known message:
Coppersmith's Theorem: Let $p(x)$ be a polynomial of degree e. Then in time poly $(\log (N), e)$ one can find all m such that $p(m)=0 \bmod N$ and $m \leq N^{1 / e}$.

In the following, we assume $e=3$.
Assume message is $m=m_{1} \| m_{2}$, where m_{1} is known, but not m_{2}.
So $m=2^{k} \cdot m_{1}+m_{2}$.
Define $p(x):=\left(2^{k} \cdot m_{1}+x\right)^{3}-c$.
This polynomial has m_{2} as a root and $m \leq 2^{k} \leq N^{1 / 3}$.

Additional Attacks

Encrypting related messages:
Assume the sender encrypts both m and $m+\delta$, giving two ciphertexts c_{1} and c_{2}.
Define $f_{1}(x):=x^{e}-c_{1}$ and $f_{2}(x):=$ $(x+\delta)^{e}-c_{2}$.
$x=m$ is a root of both polynomials.
$(x-m)$ is a factor of both.
Use algorithm for finding gcd of polynomials.

Additional Attacks

Sending the same message to multiple receivers:
$p k_{1}=\left\langle N_{1}, 3\right\rangle, p k_{2}=\left\langle N_{2}, 3\right\rangle, p k_{3}=\left\langle N_{3}, 3\right\rangle$.
Eavesdropper sees:
$c_{1}=m^{3} \bmod N_{1}, c_{2}=m^{3} \bmod N_{2}, c_{3}=m^{3} \bmod N_{3}$
Let $N^{*}=N_{1} \cdot N_{2} \cdot N_{3}$.
Using Chinese remainder theorem to find $\hat{c}<N^{*}$ such that:

$$
\begin{aligned}
& \hat{c}=c_{1} \bmod N_{1} \\
& \hat{c}=c_{2} \bmod N_{2} \\
& \hat{c}=c_{3} \bmod N_{3} .
\end{aligned}
$$

Note that m^{3} satisfies all three equations. Moreover, $m^{3}<$ N^{*}. Thus, we can solve for $m^{3}=\hat{c}$ over the integers.

Padded RSA

CONSTRUCTION 11.29

Let GenRSA be as before, and let ℓ be a function with $\ell(n) \leq 2 n-4$ for all n. Define a public-key encryption scheme as follows:

- Gen: on input 1^{n}, run $\operatorname{GenRS}\left(1^{n}\right)$ to obtain (N, e, d). Output the public key $p k=\langle N, e\rangle$, and the private key $s k=\langle N, d\rangle$.
- Enc: on input a public key $p k=\langle N, e\rangle$ and a message $m \in\{0,1\}^{\|N\|-\ell(n)-2}$, choose a random string $r \leftarrow\{0,1\}^{\ell(n)}$ and interpret $\hat{m}:=1\|r\| m$ as an element of \mathbb{Z}_{N}^{*}. Output the ciphertext

$$
c:=\left[\hat{m}^{e} \bmod N\right] .
$$

- Dec: on input a private key $s k=\langle N, d\rangle$ and a ciphertext $c \in \mathbb{Z}_{N}^{*}$, compute

$$
\hat{m}:=\left[c^{d} \bmod N\right],
$$

and output the $\|N\|-\ell(n)-2$ least-significant bits of \hat{m}.
The padded RSA encryption scheme.

