Cryptography

Lecture 19

Announcements

e HW7 due 4/22/19
* Sign up for Scholarly Paper EC

Agenda

* More Number Theory!

Extended Euclidean Algorithm

Example #1
Find: X,Y suchthat 9X + 23Y = gcd(9,23) = 1.
23=2-9+5
9=1-5+4
5=1-4+1
4=4-1+0
1=5-1-4

1=5—-1:-(9—-1:-5)
1=(23-2:-9)-(9-(23-2-9))
1=2-23 -5-9
—5 = 18 mod 23 is the multiplicative inverse of 9 mod 23.

Extended Euclidean Algorithm

Example #2
Find: X,Y such that 5X + 33Y = gcd(5,33) = 1.

33=6-54+3
5=1-3+2
3=1-2+1
2=2-14+0
1=3-1-2
1=3-(5-3)

1=33-6-5)—-(5-(33-6-5))
1=2-33 —-13-5
—13 = 20 mod 33 is the multiplicative inverse of 5 mod 33.

Chinese Remainder Theorem

Going from (a,b) € Z,, X Z,
tox € Zy

Find the unique x mod N such that
X =amodp

X = bmod q
Recall since gcd(p, g) = 1 we can write

Xp+Yqg=1
Note that

Xp=0modp

Xp = 1mod q
Whereas

Yg=1modp

Yg = 0mod p

Going from (a,b) € Z,, X Z,
tox € Zy
Find the unique x mod N such that
X =amodp
X = bmod q
Claim:

b-Xp+a-Yg=amodp
b-Xp+a-Yqg=bmodq

Therefore,x =b-Xp+a-Yqmod N

Modular Exponentiation

Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(a, m, N) //computes a™ mod N
Settemp =1
Fori=1tom
Set temp = (temp - a)mod N
return temp;

No—the run time is O(m). m can be on the order of N.
This means that the runtime is on the order of O(N),
while to be efficient it must be on the order of O(log N) .

Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(a, m, N) //computes a™ mod N, where m =
My _1My_o - MMy are the bits of m.

Sets:i=a

Settemp =1

Fori=0ton—1
If‘mi =1

Set temp = (temp - s)mod N
Set s := s? mod N
return temp;

This is clearly efficient since the loop runs for n iterations, where n =
log, m.

Modular Exponentiation

Why does it work?

m=Zmi-2i

=0

. n-1_,..-i — oY)
Consider a™ = qZi=o ™2 = [g™ 2,
In the efficient algorithm:

s values are precomputations of a,zl, for i_:1 0 ton — 1 (thisis the
. ” . l 1=

“repeated squaring” part since a? = (a?)?).

If m; = 1, we multiply in the corresponding s-value.

Ifm; = 0, then a™'2" = a® = 1 and so we skip the multiplication step.

