
Cryptography

Lecture 19

Announcements

• HW7 due 4/22/19

• Sign up for Scholarly Paper EC

Agenda

• More Number Theory!

Extended Euclidean Algorithm
Example #1

Find: 𝑋, 𝑌 such that 9𝑋 + 23𝑌 = gcd(9,23) = 1.
23 = 2 ⋅ 9 + 5
9 = 1 ⋅ 5 + 4
5 = 1 ⋅ 4 + 1
4 = 4 ⋅ 1 + 0

1 = 5 − 1 ⋅ 4
1 = 5 − 1 ⋅ 9 − 1 ⋅ 5

1 = 23 − 2 ⋅ 9 − 9 − 23 − 2 ⋅ 9

1 = 2 ⋅ 23 − 5 ⋅ 9
−5 = 18 𝑚𝑜𝑑 23 is the multiplicative inverse of 9 𝑚𝑜𝑑 23.

Extended Euclidean Algorithm
Example #2

Find: 𝑋, 𝑌 such that 5𝑋 + 33𝑌 = gcd(5,33) = 1.
33 = 6 ⋅ 5 + 3
5 = 1 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1
2 = 2 ⋅ 1 + 0

1 = 3 − 1 ⋅ 2
1 = 3 − 5 − 3

1 = 33 − 6 ⋅ 5 − 5 − 33 − 6 ⋅ 5

1 = 2 ⋅ 33 − 13 ⋅ 5
−13 = 20 𝑚𝑜𝑑 33 is the multiplicative inverse of 5 𝑚𝑜𝑑 33.

Chinese Remainder Theorem

Going from 𝑎, 𝑏 ∈ 𝑍𝑝 × 𝑍𝑞
to 𝑥 ∈ 𝑍𝑁

Find the unique 𝑥 𝑚𝑜𝑑 𝑁 such that
𝑥 ≡ 𝑎 𝑚𝑜𝑑 𝑝
𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑞

Recall since gcd 𝑝, 𝑞 = 1 we can write
𝑋𝑝 + 𝑌𝑞 = 1

Note that
𝑋𝑝 ≡ 0 𝑚𝑜𝑑 𝑝
𝑋𝑝 ≡ 1 𝑚𝑜𝑑 𝑞

Whereas
𝑌𝑞 ≡ 1 𝑚𝑜𝑑 𝑝
𝑌𝑞 ≡ 0 𝑚𝑜𝑑 𝑝

Going from 𝑎, 𝑏 ∈ 𝑍𝑝 × 𝑍𝑞
to 𝑥 ∈ 𝑍𝑁

Find the unique 𝑥 𝑚𝑜𝑑 𝑁 such that
𝑥 ≡ 𝑎 𝑚𝑜𝑑 𝑝
𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑞

Claim:
𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 ≡ 𝑎 𝑚𝑜𝑑 𝑝
𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 ≡ 𝑏 𝑚𝑜𝑑 𝑞

Therefore, 𝑥 ≡ 𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 𝑚𝑜𝑑 𝑁

Modular Exponentiation

Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 1 to 𝑚

Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

No—the run time is 𝑂(𝑚). 𝑚 can be on the order of 𝑁.
This means that the runtime is on the order of 𝑂(𝑁),
while to be efficient it must be on the order of 𝑂(log𝑁) .

Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁, where 𝑚 =
𝑚𝑛−1𝑚𝑛−2⋯𝑚1𝑚0 are the bits of 𝑚.

Set 𝑠 ≔ 𝑎
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 0 to 𝑛 − 1

If 𝑚𝑖 = 1
Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑠 𝑚𝑜𝑑 𝑁

Set 𝑠 ≔ 𝑠2 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

This is clearly efficient since the loop runs for 𝑛 iterations, where 𝑛 =
log2𝑚.

Modular Exponentiation

Why does it work?

𝑚 = ෍

𝑖=0

𝑛−1

𝑚𝑖 ⋅ 2
𝑖

Consider 𝑎𝑚 = 𝑎σ𝑖=0
𝑛−1𝑚𝑖⋅2

𝑖
= ς𝑖=0

𝑛−1𝑎𝑚𝑖⋅2
𝑖
.

In the efficient algorithm:

𝑠 values are precomputations of 𝑎2
𝑖
, for 𝑖 = 0 𝑡𝑜 𝑛 − 1 (this is the

“repeated squaring” part since 𝑎2
𝑖
= (𝑎2

𝑖−1
)2).

If 𝑚𝑖 = 1, we multiply in the corresponding 𝑠-value.

If 𝑚𝑖 = 0, then 𝑎𝑚𝑖⋅2
𝑖
= 𝑎0 = 1 and so we skip the multiplication step.

