Cryptography

Lecture 19

Announcements

- HW7 due $4 / 22 / 19$
- Sign up for Scholarly Paper EC

Agenda

- More Number Theory!

Extended Euclidean Algorithm Example \#1

Find: X, Y such that $9 X+23 Y=\operatorname{gcd}(9,23)=1$. $23=2 \cdot 9+5$
$9=1 \cdot 5+4$
$5=1 \cdot 4+1$
$4=4 \cdot 1+0$

$$
\begin{gathered}
1=5-1 \cdot 4 \\
1=5-1 \cdot(9-1 \cdot 5) \\
1=(23-2 \cdot 9)-(9-(23-2 \cdot 9)) \\
1=2 \cdot 23-5 \cdot 9
\end{gathered}
$$

$-5=18 \bmod 23$ is the multiplicative inverse of $9 \bmod 23$.

Extended Euclidean Algorithm Example \#2

Find: X, Y such that $5 X+33 Y=\operatorname{gcd}(5,33)=1$.

$$
\begin{gathered}
33=6 \cdot 5+3 \\
5=1 \cdot 3+2 \\
3=1 \cdot 2+1 \\
2=2 \cdot 1+0
\end{gathered}
$$

$$
\begin{gathered}
1=3-1 \cdot 2 \\
1=3-(5-3) \\
1=(33-6 \cdot 5)-(5-(33-6 \cdot 5)) \\
1=2 \cdot 33-13 \cdot 5
\end{gathered}
$$

$-13=20 \bmod 33$ is the multiplicative inverse of $5 \bmod 33$.

Chinese Remainder Theorem

Going from $(a, b) \in Z_{p} \times Z_{q}$
 $$
\text { to } x \in Z_{N}
$$

Find the unique $x \bmod N$ such that

$$
\begin{aligned}
& x \equiv a \bmod p \\
& x \equiv b \bmod q
\end{aligned}
$$

Recall since $\operatorname{gcd}(p, q)=1$ we can write

$$
X p+Y q=1
$$

Note that

$$
\begin{aligned}
& X p \equiv 0 \bmod p \\
& X p \equiv 1 \bmod q
\end{aligned}
$$

Whereas

$$
\begin{aligned}
& Y q \equiv 1 \bmod p \\
& Y q \equiv 0 \bmod p
\end{aligned}
$$

Going from $(a, b) \in Z_{p} \times Z_{q}$

$$
\text { to } x \in Z_{N}
$$

Find the unique $x \bmod N$ such that

$$
\begin{aligned}
& x \equiv a \bmod p \\
& x \equiv b \bmod q
\end{aligned}
$$

Claim:

$$
\begin{aligned}
& b \cdot X p+a \cdot Y q \equiv a \bmod p \\
& b \cdot X p+a \cdot Y q \equiv b \bmod q
\end{aligned}
$$

Therefore, $x \equiv b \cdot X p+a \cdot Y q \bmod N$

Modular Exponentiation

Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?
$\operatorname{ModExp}(a, m, N) / /$ computes $a^{m} \bmod N$
Set temp $:=1$
For $i=1$ to m

$$
\text { Set temp }:=(\text { temp } \cdot a) \bmod N
$$

return temp;
No-the run time is $O(m) . m$ can be on the order of N. This means that the runtime is on the order of $O(N)$, while to be efficient it must be on the order of $O(\log N)$.

Modular Exponentiation

We can obtain an efficient algorithm via "repeated squaring."
$\operatorname{ModExp}(a, m, N) / /$ computes $a^{m} \bmod N$, where $m=$ $m_{n-1} m_{n-2} \cdots m_{1} m_{0}$ are the bits of m.

Set $s:=a$
Set temp $:=1$
For $i=0$ to $n-1$
If $m_{i}=1$ Set temp $:=(t e m p \cdot s) \bmod N$
Set $s:=s^{2} \bmod N$
return temp;
This is clearly efficient since the loop runs for n iterations, where $n=$ $\log _{2} m$.

Modular Exponentiation

Why does it work?

$$
m=\sum_{i=0}^{n-1} m_{i} \cdot 2^{i}
$$

Consider $a^{m}=a^{\sum_{i=0}^{n-1} m_{i} \cdot 2^{i}}=\prod_{i=0}^{n-1} a^{m_{i} \cdot 2^{i}}$.
In the efficient algorithm:
s values are precomputations of $a^{2^{i}}$, for $i=0$ to $n-1$ (this is the "repeated squaring" part since $\left.a^{2^{i}}=\left(a^{2^{i-1}}\right)^{2}\right)$.
If $m_{i}=1$, we multiply in the corresponding s-value.
If $m_{i}=0$, then $a^{m_{i} \cdot 2^{i}}=a^{0}=1$ and so we skip the multiplication step.

