Cryptography

Lecture 15

Announcements

* HWS5 posted on course webpage, due
Wednesday 4/3

e Office Move:
— Moving to Iribe 5238

Agenda

e |Last time

— Domain Extension for CRHF:
* Merkle-Damgard (5.2)
* Sponge Construction

— Practical constructions of Stream Ciphers (K/L 6.1)
* This time

— Practical constructions of Stream Ciphers (K/L 6.1)
e LFSR, RC4 (Class Ex handed out, go over next time)

— Practical constructions of Block Ciphers (K/L 6.2)

FIGURE 6.1: A linear feedback shift register.

If state in registers at time t is:

) = S?Et), Szct), Sl(t)’ s®

Then state in registers at time t + 1 is:
53(t+1) = (¢, 3()
52(t+1) e 53(t)
Sl(t+1) — Sz(t)
So(t+1) = Sl(t)

0

Example

7
— S | S| S | S [

FIGURE 6.1: A linear feedback shift register.

Initial state:

LFSR can cycle through at most 2™ states before repeating

A maximume-length LFSR cycles through all 2"~ ! non-zero states before repeating
Depends only on feedback coefficients, not on initial state

Maximum-length LFSR’s can be constructed efficiently

Reconstruction Attacks

* LFSR are always insecure. We have the following generic
attack:

e |f state has n bits, then
— First n output bits y,, ..., y,,—1 reveal initial state
S0y ++» Sn—1
— Can use next n output bits y,,, ..., ¥>,—1 to determine

Co, -+, Cn—1 by setting up a system of n linear equations in
n unknowns:

Yo Y1 Y2 V3 YVa
Y1YV2 V3 Vi S —
Y2 Y3 Va Vs Ve
Y3 Y4 Vs Ve Y7

Adding Non-Linearity

* Non-linear feedback

— New value in leftmost register is a non-linear
function of the current registers

* Non-linear combination generators

— Output is non-linear function of current registers

Hardware vs. Software

LFSR are very efficient when implemented in
hardware but have poor performance in
software.

Alternate designs of stream cipher for software.

Well-known example is RC4
— Designed by Ron Rivest in 1987 (proprietary)
— Code was first publicized in 1994

Attacks on RC4
— Various attacks are known for several years
— Extreme care must be taken when using RC4
— Or avoid RC4 altogether.

=

Block Ciphers

Recall: A block cipher is an efficient, keyed
permutation F:{0,1}" - {0,1}¢. This means
the function Fj, (x) := F(k, x) is a bijection, and
moreover Fj and its inverse F, "1 are efficiently
computable given k.

* nis the key length

» £ is the block length

Block Cipher Security

Call for proposals for AES competition: 1497 ~2000

“The security provided by an algorithm is
the most important factor. . . Algorithms will be
judged on the following factors. .. The extent to
which the algorithm output is indistinguishable
from a random permutation. . .”

gt gy F, R/ tong
e PfQUAOY’m-dow.

My ¢

"\

4/9/2015

First Idea

* Random permutations over small domains are
“efficient.”

— What does this mean?
* First attempt to define Fj:

— The key k for F will specify 16 permutations f;, ..., fi¢ that
each have an 8-bit block length.

— Given an input x € {0,1}128, parse it as 16 bytes X1, s X1g
and then set

Fe(x) = f1(e)I| - |l f16(x16)

* Is this a permutation?
* Is this indistinguishable from a random permutation?

Shannon’s Confusion-Diffusion
Paradigm

Above step is called the “confusion” step. Is
combined with a “diffusion” step: the bits of the
output are permuted or “mixed,” using a mixing
permutation.

* Confusion/Diffusion steps taken together are
called a round.

* Multiple rounds required for a secure block
cipher.

Example: First compute intermediate value
Y = fiCe)Ill - llfie(*16). Then permute the bits
of y.

Substitution-Permutation Network
(SPN)

In practice, round-functions are not random
permutations, since it would be difficult to implement
this in practice.

* Why?

Instead, round functions have a specific form:

« Rather than having a portion of the key k specify an
arbitrary permutation f, we instead fix a public
“substitution function” (i.e. permutation) S, called an
S-box.

« Let k define the function f given by f(x) = S(k & x).

Informal Description of SPN

1. Key mixing: Set x := x @ k, where k is the current-round
sub-key.
2. Substitution: Set x :== S;(x;)|| - ||Sg(xg), where x; is the
i-th byte of x.
3. Permutation: Permute the bits of x to obtain the output
of the round.
4. Final mixing step: After the last round there is a final key-
mixing step. The result is the output of the cipher.
— Why is this needed?
Different sub-keys (round keys) are used in each round.

— Master key is used to derive round sub-keys according to a key
schedule.

4/9/2015

Formal description of SPN

input
Xy Xio
I T N O T
sub-Ley b mavng

S Sa Sy S,

wb—lqa\mn
| S L B “IVIITVTY‘J—i

FIGURE 6.2 A subsuiution-perimt ation petwork.

SPN is a permutation

Proposition: Let F be a keyed function defined
by an SPN in which the S-boxes are all
permutations. Then regardless of the key
schedule and the number of rounds, Fj, is a
permutation for any k.

How many rounds needed for
security?

The avalanche effect.

Random permutation: When a single input bit is
changed to go from x to x', each bit of f(x) should
be flipped with probability 2 .

» S-boxes are designed so that changing a single bit
of the input to an S-box changes at least two bits
in the output of the S-box.

* The mixing permutations are designed so that the
output bits of any given S-box are used as input
to multiple S-boxes in the next round.

The Avalanche Effect

f(x) vs. f(x") where x, x" differ in one bit:

1. After the first round the intermediate values differ in
exactly two bit-positions. Why?

2. The mixing permutation spreads these two bit
positions into two different S-boxes in the second
round.

— At the end of the second round, intermediate values
differ in 4 bits.

3. Continuing the same argument, we expect 8 bits of
the intermediate value to be affected after the 3™
round, 16 after the 4t round, and all 128 bits of the
output to be affected at the end of the 7t" round.

4/9/2015

Practical SPN

* Usually use many more than 7 rounds.
* S-boxes are NOT random permutations.

Attacking Reduced-Round SPN

Trivial case: Attacking one round SPN with no
final key-mixing step.

