Announcements

• Midterm
 – Hand back at the end of class.
 – Median was 72/100
 – Solutions are up on canvas

• Extra Credit—up to 15 points added to midterm score
 – 5 min current events presentation. Email me topic + at least one reference before class to get approved. (Up to 5 points added to midterm grade)
 – Summary of a scholarly paper. Sign up sheet will be up by next week. (Up to 10 points added to midterm grade)
Agenda

• This time:
 – Collision-Resistant Hash Functions (K/L 5.1)
 – Hash-and-Mac
 – Class Exercise
Collision Resistant Hashing
Collision Resistant Hashing

Definition: A hash function (with output length ℓ) is a pair of ppt algorithms (Gen, H) satisfying the following:

- Gen takes as input a security parameter 1^n and outputs a key s. We assume that 1^n is implicit in s.
- H takes as input a key s and a string $x \in \{0,1\}^*$ and outputs a string $H^s(x) \in \{0,1\}^{\ell(n)}$.

If H^s is defined only for inputs $x \in \{0,1\}^{\ell'(n)}$ and $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a fixed-length hash function for inputs of length ℓ'. In this case, we also call H a compression function.
The collision-finding experiment

\[\text{Hashcoll}_{A, \Pi}(n): \]

1. A key \(s \) is generated by running \(\text{Gen}(1^n) \).
2. The adversary \(A \) is given \(s \) and outputs \(x, x' \). (If \(\Pi \) is a fixed-length hash function for inputs of length \(\ell'(n) \), then we require \(x, x' \in \{0,1\}^{\ell'(n)} \).)
3. The output of the experiment is defined to be 1 if and only if \(x \neq x' \) and \(H^s(x) = H^s(x') \). In such a case we say that \(A \) has found a collision.
Security Definition

Definition: A hash function $\Pi = (Gen, H)$ is collision resistant if for all ppt adversaries A there is a negligible function neg such that
\[
\Pr[\text{Hashcoll}_{A,\Pi}(n) = 1] \leq \text{neg}(n).
\]
Weaker Notions of Security

- Second preimage or target collision resistance: Given s and a uniform x it is infeasible for a ppt adversary to find $x' \neq x$ such that $H^s(x') = H^s(x)$.

- Preimage resistance: Given s and uniform y it is infeasible for a ppt adversary to find a value x such that $H^s(x) = y$.
Message Authentication Using Hash Functions
Hash-and-Mac Construction

Let $\Pi = (\text{Mac}, Vrfy)$ be a MAC for messages of length $\ell(n)$, and let $\Pi_H = (\text{Gen}_H, H)$ be a hash function with output length $\ell(n)$. Construct a MAC $\Pi' = (\text{Gen}', \text{Mac}', Vrfy')$ for arbitrary-length messages as follows:

- $\text{Gen}':$ on input 1^n, choose uniform $k \in \{0,1\}^n$ and run $\text{Gen}_H(1^n)$ to obtain s. The key is $k' := \langle k, s \rangle$.
- $\text{Mac}':$ on input a key $\langle k, s \rangle$ and a message $m \in \{0,1\}^*$, output $t \leftarrow \text{Mac}_k(H^s(m))$.
- $\text{Vrfy}':$ on input a key $\langle k, s \rangle$, a message $m \in \{0,1\}^*$, and a MAC tag t, output 1 if and only if $Vrfy_k(H^s(m), t) = 1$.
Security of Hash-and-MAC

Theorem: If Π is a secure MAC for messages of length ℓ and Π_H is collision resistant, then the construction above is a secure MAC for arbitrary-length messages.
Proof Intuition

Let Q be the set of messages m queried by adversary A.

Assume A manages to forge a tag for a message $m^* \notin Q$.

There are two cases to consider:

1. $H^S(m^*) = H^S(m)$ for some message $m \in Q$.
 Then A breaks collision resistance of H^S.

2. $H^S(m^*) \neq H^S(m)$ for all messages $m \in Q$.
 Then A forges a valid tag with respect to MAC Π.