Cryptography

Lecture 13

Announcements

- Midterm
- Hand back at the end of class.
- Median was 72/100
- Solutions are up on canvas
- Extra Credit—up to 15 points added to midterm score
- 5 min current events presentation. Email me topic + at least one reference before class to get approved. (Up to 5 points added to midterm grade)
- Summary of a scholarly paper. Sign up sheet will be up by next week. (Up to 10 points added to midterm grade)

Agenda

- This time:
- Collision-Resistant Hash Functions (K/L 5.1)
- Hash-and-Mac
- Class Exercise

Collision Resistant Hashing

Collision Resistant Hashing

Definition: A hash function (with output length ℓ) is a pair of ppt algorithms (Gen, H) satisfying the following:

- Gen takes as input a security parameter 1^{n} and outputs a key s. We assume that 1^{n} is implicit in s.
- H takes as input a key s and a string $x \in\{0,1\}^{*}$ and outputs a string $H^{S}(x) \in\{0,1\}^{\ell(n)}$.

If H^{s} is defined only for inputs $x \in\{0,1\}^{\ell^{\prime}(n)}$ and $\ell^{\prime}(n)>\ell(n)$, then we say that $(G e n, H)$ is a fixed-length hash function for inputs of length ℓ^{\prime}. In this case, we also call H a compression function.

The collision-finding experiment

$$
\operatorname{Hashcoll}_{A, \Pi}(n):
$$

1. A key s is generated by running $\operatorname{Gen}\left(1^{n}\right)$.
2. The adversary A is given s and outputs x, x^{\prime}. (If Π is a fixed-length hash function for inputs of length $\ell^{\prime}(n)$, then we require $x, x^{\prime} \in\{0,1\}^{\ell^{\prime}(n)}$.)
3. The output of the experiment is defined to be 1 if and only if $x \neq x^{\prime}$ and $H^{s}(x)=H^{s}\left(x^{\prime}\right)$. In such a case we say that A has found a collision.

Security Definition

Definition: A hash function $\Pi=($ Gen, $H)$ is collision resistant if for all ppt adversaries A there is a negligible function neg such that
$\operatorname{Pr}\left[\operatorname{Hashcoll}_{A, \Pi}(n)=1\right] \leq \operatorname{neg}(n)$.

Weaker Notions of Security

- Second preimage or target collision resistance: Given s and a uniform x it is infeasible for a ppt adversary to find $x^{\prime} \neq x$ such that $H^{s}\left(x^{\prime}\right)=H^{s}(x)$.
- Preimage resistance: Given s and uniform y it is infeasible for a ppt adversary to find a value x such that $H^{s}(x)=y$.

Message Authentication Using Hash Functions

Hash-and-Mac Construction

Let $\Pi=($ Mac, Vrfy $)$ be a MAC for messages of length $\ell(n)$, and let $\Pi_{H}=\left(\operatorname{Gen}_{H}, H\right)$ be a hash function with output length $\ell(n)$. Construct a MAC $\Pi^{\prime}=\left(G e n^{\prime}, M a c^{\prime}, V r f y^{\prime}\right)$ for arbitrary-length messages as follows:

- Gen': on input 1^{n}, choose uniform $k \in\{0,1\}^{n}$ and run $\operatorname{Gen}_{H}\left(1^{n}\right)$ to obtain s. The key is $k^{\prime}:=\langle k, s\rangle$.
- Mac': on input a key $\langle k, s\rangle$ and a message $m \in\{0,1\}^{*}$, output $t \leftarrow \operatorname{Mac}_{k}\left(H^{s}(m)\right)$.
- Vrfy': on input a key $\langle k, s\rangle$, a message $m \in\{0,1\}^{*}$, and a MAC tag t, output 1 if and only if $\operatorname{Vrf} y_{k}\left(H^{s}(m), t\right)=1$.

Security of Hash-and-MAC

Theorem: If Π is a secure MAC for messages of length ℓ and Π_{H} is collision resistant, then the construction above is a secure MAC for arbitrary-length messages.

Proof Intuition

Let Q be the set of messages m queried by adversary A.
Assume A manages to forge a tag for a message $m^{*} \notin Q$.
There are two cases to consider:

1. $H^{S}\left(m^{*}\right)=H^{s}(m)$ for some message $m \in Q$. Then A breaks collision resistance of H^{s}.
2. $H^{s}\left(m^{*}\right) \neq H^{s}(m)$ for all messages $m \in Q$. Then A forges a valid tag with respect to MAC П.
