Cryptography

Lecture 13

Announcements

- Midterm
 - Hand back at the end of class.
 - Median was 72/100
 - Solutions are up on canvas
- Extra Credit—up to 15 points added to midterm score
 - 5 min current events presentation. Email me topic + at least one reference before class to get approved. (Up to 5 points added to midterm grade)
 - Summary of a scholarly paper. Sign up sheet will be up by next week. (Up to 10 points added to midterm grade)

Agenda

- This time:
 - Collision-Resistant Hash Functions (K/L 5.1)
 - Hash-and-Mac
 - Class Exercise

Collision Resistant Hashing

Collision Resistant Hashing

Definition: A hash function (with output length ℓ) is a pair of ppt algorithms (Gen, H) satisfying the following:

- Gen takes as input a security parameter 1^n and outputs a key s. We assume that 1^n is implicit in s.
- H takes as input a key s and a string $x \in \{0,1\}^*$ and outputs a string $H^s(x) \in \{0,1\}^{\ell(n)}$.

If H^s is defined only for inputs $x \in \{0,1\}^{\ell'(n)}$ and $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a fixed-length hash function for inputs of length ℓ' . In this case, we also call H a compression function.

The collision-finding experiment

$Hashcoll_{A,\Pi}(n)$:

- 1. A key s is generated by running $Gen(1^n)$.
- 2. The adversary A is given s and outputs x, x'. (If Π is a fixed-length hash function for inputs of length $\ell'(n)$, then we require $x, x' \in \{0,1\}^{\ell'(n)}$.)
- 3. The output of the experiment is defined to be 1 if and only if $x \neq x'$ and $H^s(x) = H^s(x')$. In such a case we say that A has found a collision.

Security Definition

Definition: A hash function $\Pi = (Gen, H)$ is collision resistant if for all ppt adversaries A there is a negligible function neg such that $\Pr[Hashcoll_{A,\Pi}(n) = 1] \leq neg(n)$.

Weaker Notions of Security

- Second preimage or target collision resistance: Given s and a uniform x it is infeasible for a ppt adversary to find $x' \neq x$ such that $H^s(x') = H^s(x)$.
- Preimage resistance: Given s and uniform y it is infeasible for a ppt adversary to find a value x such that $H^s(x) = y$.

Message Authentication Using Hash Functions

Hash-and-Mac Construction

Let $\Pi = (Mac, Vrfy)$ be a MAC for messages of length $\ell(n)$, and let $\Pi_H = (Gen_H, H)$ be a hash function with output length $\ell(n)$. Construct a MAC $\Pi' = (Gen', Mac', Vrfy')$ for arbitrary-length messages as follows:

- Gen': on input 1^n , choose uniform $k \in \{0,1\}^n$ and run $Gen_H(1^n)$ to obtain s. The key is $k' := \langle k, s \rangle$.
- Mac': on input a key $\langle k, s \rangle$ and a message $m \in \{0,1\}^*$, output $t \leftarrow Mac_k(H^s(m))$.
- Vrfy': on input a key $\langle k, s \rangle$, a message $m \in \{0,1\}^*$, and a MAC tag t, output 1 if and only if $Vrfy_k(H^s(m), t) = 1$.

Security of Hash-and-MAC

Theorem: If Π is a secure MAC for messages of length ℓ and Π_H is collision resistant, then the construction above is a secure MAC for arbitrary-length messages.

Proof Intuition

Let Q be the set of messages m queried by adversary A.

Assume A manages to forge a tag for a message $m^* \notin Q$.

There are two cases to consider:

- 1. $H^s(m^*) = H^s(m)$ for some message $m \in Q$. Then A breaks collision resistance of H^s .
- 2. $H^s(m^*) \neq H^s(m)$ for all messages $m \in Q$. Then A forges a valid tag with respect to MAC Π .