ENEE/CMSC/MATH 456: Cryptography CRHF Class Exercise 3/25/19

Solutions

Let (Gen, H) be a collision-resistant hash function and let F be a PRF. For each of the following, state whether \hat{H} is necessarily collision resistant. Justify your answer.

1.
$$H^{s}(x_{1}||x_{2}) = H^{s}(x_{1} \oplus F_{s}(x_{2}))$$
 No.
Attack: Choose arbitrary X_{1}, X_{2}, X_{2}'
set $x_{1}' = x_{1} \oplus F_{s}(x_{2}) \oplus F_{s}(x_{2}')$ [note adv can find such]
actput $X_{1}||X_{2}, X_{1}'||X_{2}'$
 $\hat{A}^{s}(x_{1}||X_{2}) = H^{s}(x_{1} \oplus F_{s}(X_{2}))$
 $\hat{A}^{s}(x_{1}||X_{2}) = H^{s}(x_{1} \oplus F_{s}(X_{2}))$
 $H^{s}(x_{1}||X_{2}) = H^{s}(x_{1} \oplus F_{s}(X_{2}))$
 $H^{s}(x_{1}||X_{2}) = H^{s}(X_{1}' \oplus F_{s}(X_{2}))$
 $H^{s}(x_{1}||X_{2}) = H^{s}(X_{1})||X_{2})$ Ves.
Assume towards contradiction that an attacker finds
 $x_{1}||x_{2} = x_{1}'||X_{2}'$ such that $\hat{H}^{s}(x_{1}||X_{2}) = \hat{H}^{s}(X_{1}'||X_{2}')$.
Then $H^{s}(H^{s}(x_{1}))||X_{2}) = H^{s}(H^{s}(X_{1})||X_{2}') = y$
Let $y_{2} = H^{s}(x_{1})||X_{2}'$
 $Gase 1: Y_{2}' \neq Y_{2}$. Then we have found a coll. on the
outer instantiation of H^{s} since $H^{s}(y_{2}) = H^{s}(y_{2}') = y$
Case $Q: y_{2} = y_{2}'$. Then $x_{2} = x_{2}'$. Since $x_{1}||x_{2} \neq x_{1}'||X_{2}'$ if
means that $x_{1} \neq x_{1}'$ But this means we have found a coll
on the inner instantiation of H^{s} since
 $H^{s}(x_{1}) = H^{s}(x_{1}')$ inordur for $y_{2} = y_{2}'$.