Cryptography

Lecture 12
Announcements

• Midterm Next Class on Wednesday 3/13
• Study Materials
 – Review sheet posted on course webpage, solutions posted on Canvas
 – Cheat Sheet posted on Canvas
 – Extra practice folder on Canvas with last year’s HW5 and solutions as well as an additional class exercise and solutions
Agenda

• Last time:
 – Domain Extension for MACs (K/L 4.4) and Class Exercise solutions
 – CCA security (K/L 3.7)
 – Unforgeability for Encryption (K/L 4.5)

• This time:
 – Authenticated Encryption (K/L 4.5)
 – Review for Midterm
Chosen Ciphertext Security
CCA Security

The CCA Indistinguishability Experiment $PrivK^{cca}_{\mathcal{A},\Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.
2. The adversary \mathcal{A} is given input 1^n and oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, and outputs a pair of messages m_0, m_1 of the same length.
3. A random bit $b \leftarrow \{0,1\}$ is chosen, and then a challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to \mathcal{A}.
4. The adversary \mathcal{A} continues to have oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, but is not allowed to query the latter on the challenge ciphertext itself. Eventually, \mathcal{A} outputs a bit b'.
5. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise.
CCA Security

A private-key encryption scheme \(\Pi = (Gen, Enc, Dec) \) has indistinguishable encryptions under a chosen-ciphertext attack if for all ppt adversaries \(A \) there exists a negligible function \(negl \) such that

\[
\Pr \left[\text{PrivK}^{\text{cca}}_{A, \Pi}(n) = 1 \right] \leq \frac{1}{2} + negl(n),
\]

where the probability is taken over the random coins used by \(A \), as well as the random coins used in the experiment.
Authenticated Encryption

The unforgeable encryption experiment $EncForge_{A,\Pi}(n)$:

1. Run $Gen(1^n)$ to obtain key k.

2. The adversary A is given input 1^n and access to an encryption oracle $Enc_k(\cdot)$. The adversary outputs a ciphertext c.

3. Let $m \leftarrow Dec_k(c)$, and let Q denote the set of all queries that A asked its encryption oracle. The output of the experiment is 1 if and only if (1) $m \neq \bot$ and (2) $m \notin Q$.
Authenticated Encryption

Definition: A private-key encryption scheme \(\Pi \) is unforgeable if for all ppt adversaries \(A \), there is a negligible function \(neg \) such that:
\[
\Pr[EncForge_{A,\Pi}(n) = 1] \leq neg(n).
\]

Definition: A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.
Generic Constructions
Encrypt-and-authenticate

Encryption and message authentication are computed independently in parallel.

\[c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(m) \]

\[\langle c, t \rangle \]

Is this secure? NO!
Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the message and tag are encrypted together.

\[t \leftarrow \text{Mac}_{k_M}(m) \quad c \leftarrow \text{Enc}_{k_E}(m || t) \]

c is sent

Is this secure? NO! Encryption scheme may not be CCA-secure.
Encrypt-then-authenticate

The message m is first encrypted and then a MAC tag is computed over the result:

$$c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(c)$$

$$\langle c, t \rangle$$

Is this secure? YES! As long as the MAC is strongly secure.