Announcements

• HW4 due today
• Midterm Upcoming on Wednesday 3/13
 – Review sheet posted on course webpage
 – On Canvas
 • Cheat Sheet
 • Extra practice folder with last year’s HW5 and solutions as well as an additional class exercise
Agenda

• Last time:
 – MACs (K/L 4.1, 4.2, 4.3)

• This time:
 – Domain Extension for MACs (K/L 4.4) and Class Exercise solutions
 – CCA security (K/L 3.7)
 – Authenticated Encryption (K/L 4.5)
Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms $(Gen, Mac, Vrfy)$ such that:

1. The key-generation algorithm Gen takes as input the security parameter 1^n and outputs a key k with $|k| \geq n$.

2. The tag-generation algorithm Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t.
 \[t \leftarrow Mac_k(m). \]

3. The deterministic verification algorithm $Vrfy$ takes as input a key k, a message m, and a tag t. It outputs a bit b with $b = 1$ meaning valid and $b = 0$ meaning invalid.
 \[b := Vrfy_k(m, t). \]

It is required that for every n, every key k output by $Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Vrfy_k(m, Mac_k(m)) = 1$.
Security of MACs

The message authentication experiment $MAC_{\text{forge}}_{A,\Pi}(n)$:

1. A key k is generated by running $\text{Gen}(1^n)$.
2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.

3. A succeeds if and only if (1) $Vrfy_k(m, t) = 1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1.
Security of MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

$$\Pr[\text{MAC}_{A,\Pi}(n) = 1] \leq neg(n).$$
Strong MACs

The strong message authentication experiment $MAC_{\text{forge}}_{A, \Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.
2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all pairs (m, t) that A asked its oracle.
3. A succeeds if and only if (1) $Vrfy_k(m, t) = 1$ and (2) $(m, t) \notin Q$. In that case, the output of the experiment is defined to be 1.
Strong MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is a strong MAC if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

$$\Pr[\text{MACsforge}_{A,\Pi}(n) = 1] \leq neg(n).$$
Domain Extension for MACs
CBC-MAC

Let F be a pseudorandom function, and fix a length function ℓ. The basic CBC-MAC construction is as follows:

- **Mac**: on input a key $k \in \{0,1\}^n$ and a message m of length $\ell(n) \cdot n$, do the following:
 1. Parse m as $m = m_1, \ldots, m_\ell$ where each m_i is of length n.
 2. Set $t_0 := 0^n$. Then, for $i = 1$ to ℓ:
 - Set $t_i := F_k(t_{i-1} \oplus m_i)$.
 Output t_ℓ as the tag.

- **Vrfy**: on input a key $k \in \{0,1\}^n$, a message m, and a tag t, do: If m is not of length $\ell(n) \cdot n$ then output 0. Otherwise, output 1 if and only if $t = Mac_k(m)$.
CBC-MAC

FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).
Chosen Ciphertext Security
CCA Security

The CCA Indistinguishability Experiment $PrivK^{cca}_{A,\Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.
2. The adversary A is given input 1^n and oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, and outputs a pair of messages m_0, m_1 of the same length.
3. A random bit $b \leftarrow \{0,1\}$ is chosen, and then a challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A.
4. The adversary A continues to have oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, but is not allowed to query the latter on the challenge ciphertext itself. Eventually, A outputs a bit b'.
5. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise.
CCA Security

A private-key encryption scheme \(\Pi = (Gen, Enc, Dec) \) has indistinguishable encryptions under a chosen-ciphertext attack if for all ppt adversaries \(A \) there exists a negligible function \(\text{negl} \) such that

\[
\Pr \left[\text{PrivK}_{A, \Pi}^{\text{cca}}(n) = 1 \right] \leq \frac{1}{2} + \text{negl}(n),
\]

where the probability is taken over the random coins used by \(A \), as well as the random coins used in the experiment.
Authenticated Encryption

The unforgeable encryption experiment $\text{EncForge}_{A,\Pi}(n)$:

1. Run $\text{Gen}(1^n)$ to obtain key k.

2. The adversary A is given input 1^n and access to an encryption oracle $\text{Enc}_k(\cdot)$. The adversary outputs a ciphertext c.

3. Let $m := \text{Dec}_k(c)$, and let Q denote the set of all queries that A asked its encryption oracle. The output of the experiment is 1 if and only if (1) $m \neq \bot$ and (2) $m \notin Q$.
Authenticated Encryption

Definition: A private-key encryption scheme Π is unforgeable if for all ppt adversaries A, there is a negligible function neg such that:

$$\Pr[\text{EncForge}_{A,\Pi}(n) = 1] \leq \text{neg}(n).$$

Definition: A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.