1. The public exponent \(e \) in RSA can be chosen arbitrarily, subject to \(\gcd(e, \phi(N)) = 1 \). Popular choices of \(e \) include \(e = 3 \) and \(e = 2^{16} + 1 \). Explain why such \(e \) are preferable to a random value of the same length.

 Hint: Look at the algorithm for modular exponentiation given in the lecture notes.

2. Prove formally that the hardness of the CDH problem relative to \(G \) implies the hardness of the discrete logarithm problem relative to \(G \).

3. Determine the points on the elliptic curve \(E : y^2 = x^3 + 2x + 1 \) over \(\mathbb{Z}_{11} \). How many points are on this curve?

4. Can the following problem be solved in polynomial time? Given a prime \(p \), a value \(x \in \mathbb{Z}_{p-1}^* \) and \(y := g^x \mod p \) (where \(g \) is a uniform value in \(\mathbb{Z}_p^* \)), find \(g \), i.e., compute \(y^{1/x} \mod p \). If your answer is “yes,” give a polynomial-time algorithm. If your answer is “no,” show a reduction to one of the assumptions introduced in this chapter.