Pseudorandom Generator

• Functionality
 – Deterministic algorithm G
 – Takes as input a short random seed s
 – Outputs a long string $G(s)$

• Security
 – No efficient algorithm can “distinguish” $G(s)$ from a truly random string r.
 – i.e. passes all “statistical tests.”

• Intuition:
 – Stretches a small amount of true randomness to a larger amount of pseudorandomness.

• Why is this useful?
 – We will see that pseudorandom generators will allow us to beat the Shannon bound of $|K| \geq |M|$.
 – i.e. we will build a computationally secure encryption scheme with $|K| < |M|$
Pseudorandom Generators

Definition: Let $\ell(\cdot)$ be a polynomial and let G be a deterministic poly-time algorithm such that for any input $s \in \{0,1\}^n$, algorithm G outputs a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following two conditions hold:

1. (Expansion:) For every n it holds that $\ell(n) > n$.
2. (Pseudorandomness:) For all ppt distinguishers D, there exists a negligible function negl such that:
 \[|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \leq \text{negl}(n), \]
 where r is chosen uniformly at random from $\{0,1\}^{\ell(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

The function $\ell(\cdot)$ is called the expansion factor of G.