
1 Announcements

– Paper presentation sign up sheet is up. Please sign up for papers by next class.
– Lecture summaries and notes now up on course webpage

2 Recap and Overview

Previous lecture:

– Symmetric key encryption: various security defintions and constructions.

This lecture:

– Review definition of PRF, construction (and proof) of symmetric key encryption from PRF
– Block ciphers, modes of operation
– Public Key Encryption
– Digital Signature Schemes
– Additional background for readings

3 Review: Definition of PRF

Definition 1. Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length-preserving, keyed function. We say that F is
a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there exists a negligible function
neg such that: ∣∣∣Pr[DFSK(·)(1n) = 1]− Pr[Df(·)(1n) = 1]

∣∣∣ ≤ neg(n),

where SK ← {0, 1}n is chosen uniformly at random and f is chosen uniformly at random from the set of functions
mapping n-bit strings to n-bit strings.

4 Review: Security Against Chosen-Plaintext Attacks (CPA)

The experiment is defined for any private-key encryption scheme E = (Gen,Enc,Dec), any adversary A, and any
value n for the security parameter:

The CPA indistinguishability experiment PrivKcpa
A,E(n):

1. A key SK is generated by running Gen(1n).
2. The adversary A is given input 1n and oracle access to EncSK(·) and outputs a pair of messages m0,m1 of the

same length.
3. A random bit b← {0, 1} is chosen and then a ciphertext C ← EncSK(mb) is computed and given to A. We call C

the challenge ciphertext.
4. The adversary A continues to have oracle access to EncSK(·), and outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise. if PrivKeav

A,E(n) = 1, we say that A
succeeded.

Definition 2. A private-key encryption scheme E = (Gen,Enc,Dec) has indistinguishable encryptions under a chosen-
plaintext attack if for all probabilistic polynomial-time adversaries A there exists a negligible function neg such that

Pr[PrivKcpa
A,E(n) = 1] ≤ 1

2
+ neg(n),

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment.

1

5 CPA-Secure Encryption Schemes from Pseudorandom Functions

Picture:

Construction:
Let F be a pseudorandom function. Define a private-key encryption scheme for messages of length n as follows:

– Gen : on input 1n, choose SK ← {0, 1}n uniformly at random and output as the key.
– Enc : on input a key SK ∈ {0, 1}n and a message m ∈ {0, 1}n, choose r ← {0, 1}n uniformly at random and

output the ciphertext
C := 〈r, FSK(r)⊕m〉.

– Dec : on input a key k ∈ {0, 1}n and a ciphertext c = 〈r, s〉, output the plaintext message

m := FSK(r)⊕ s.

Theorem 1. If F is a pseudorandom function, then Construction is a fixed-length private-key encryption scheme for
messages of length n that has indistinguishable encryptions under a chosen-plaintext attack.

Proof. Let Ẽ be an encryption scheme that is exactly the same as E in Construction, except that a truly fandom function
f is used in place of FSK.

We claim that for every (even inefficient) adversary A that makes at most q(n) queries to its encryption oracle, we
have

Pr[PrivKcpa

A,Ẽ(n) = 1] ≤ 1

2
+
q(n)

2n
.

Let rC denote the random string used when generating the challenge ciphertext C = 〈rc, f(rc) ⊕m〉. There are
two subcases:

1. The value rC is used by the encryption oracle to answer at least one of A’s queries: In this case, A may easily
determine which of its messages was encrypted.
Since A makes at most q(n) queries to its oracle and each oracle query is answered using a value r chosen
uniformly at random, the probability of this event is at most q(n)/2n.

2. The value rC is never used by the encryption oracle to answer any of A’s queries: In this case, A learns nothing
about the value of f(rC)from its interaction with the encryption oracle (since f is a truly random function). That
means that the probability A outputs b′ = b is exactly 1/2.

Let Repeat denote the event that rC is used by the encryption oracle previously. Thus, we have

Pr[PrivKcpa

A,Ẽ(n) = 1] = Pr[PrivKcpa

A,Ẽ(n) = 1 ∧ Repeat] + Pr[PrivKcpa

A,Ẽ(n) = 1 ∧ Repeat]

≤ Pr[Repeat] + Pr[PrivKcpa

A,Ẽ(n) = 1 | Repeat]

≤ q(n)

2n
+

1

2
.

2

Now fix some ppt adversary A which breaks the security of E and so

ε(n) = Pr[PrivKcpa
A,E(n) = 1]− 1

2

is non-negligible.
We use A to construct a distinguisher D for the pseudorandom function F . The distinguisher D is given oracle

access to some function, and its goal is to determine whether this function is “pseudorandom” or “random”.

Distinguisher D: D is given input 1n and access to an oracle O : {0, 1}n → {0, 1}n.

1. Run A(1n). Whenever A queries its encryption oracle on a message m, answer this query in the following way:
(a) Choose r ← {0, 1}n uniformly at random.
(b) Query O(r) and obtain response s′.
(c) Return the ciphertext 〈r, s′ ⊕m〉 to A.

2. When A outputs messages m0,m1 ∈ {0, 1}n choose a random bit b← {0, 1} and then
(a) Choose r ← {0, 1}n uniformly at random.
(b) Query O(r) and obtain response s′.
(c) Return the challenge ciphertext 〈r, s′ ⊕mb〉 to A.

3. Continue answering any encryption oracle queries of A as before. Eventually, A′ outputs a bit b′. Output 1 if
b′ = b, and output 0 otherwise.

Key points:

1. If D’s oracle is a pseudorandom function, then the view of A is distributed identically to the view of A in
PrivKcpa

A,E(n). Thus,
Pr[DFSK(·)(1n) = 1] = Pr[PrivKcpa

A,E(n)].

2. If D’s oracle is a random function, then the view of A is distributed identically to the view of A in PrivKcpa

A,Ẽ(n).
Thus,

Pr[Df(·)(1n) = 1] = Pr[PrivKcpa

A,Ẽ(n)].

Thus, we have that

Pr[DFSK(·)(1n) = 1]− Pr[Df(·)(1n) = 1] ≥ ε(n)− q(n)

2n
.

Since we assumed ε(·) is non-negligible, this leads to a contradiction to the security of FSK.

6 Pseudorandom Permutations and Block Ciphers

Let F : {0, 1}∗ → {0, 1}∗ be an efficient, length-preserving, keyed function. We call F a keyed permutation if for
every SK, FSK(·) is one-to-one. We say that a keyed permutation is efficient if there is a polynomial-time algorithm
computing FSK(x) given SK, x as well as a polynomial-time algorithm computing F−1SK (x), given SK, x.

Definition, same as before, only indistinguishable from random permutation.

Proposition 1. If F is a pseudorandom permutation then it is also a pseudorandom function.

6.1 Modes of Operation

Introduction to Modern Cryptography, pages 96-102.
A mode of operation is a way of encrypting arbitrary-length messages using a block cipher (i.e. a pseudorandom

permutation).
Note that arbitrary-length messages can be unambiguously padded to a total length that is a multiple of any desired

block size by appending a 1 followed by sufficiently many 0’s.

3

Mode 1—Electronic Code Book (ECB) mode. This is the most naive mode of operation.

Not CPA secure, does not have indistinguishable encryptions in the presence of an eavesdropper.

Mode 2—Cipher Block Chaining (CBC) mode. In this mode, a random initial vector (IV) of length n is first chosen.
Then, each of the remaining ciphertext blocks is generated by applying the pseudorandom permutation to the XOR of
the current plaintext block and the previous ciphertext block.

If F is a pseudorandom permutation then CBC-mode encryption is CPA-secure.
Drawback–encryption must be carried out sequentially, decryption can be done in parallel.

Mode 3—Output Feedback (OFB) mode. This mode is a way of using a block-cipher to generate a pseudorandom
stream that is then XORed with the message.

Is CPA-secure if F is a pseudorandom function. Drawback–both encryption and decryption can be done in paral-
lel. On the other hand–bulk of the computation can be done independently of the actual message in a preprocessing
stage.

Mode 4—Counter (CTR) mode. randomized counter mode.

Randomized counter mode is CPA-secure. Encryption and decryption can be fully parallelized, it is possible to gen-
erate the psuedorandom stream ahead of time, independently of the message. “Random access” can decrypt the i-th
block without decrypting anything else.

7 Public Key Encryption

Picture and intuition.

Definition 3. A public key encryption scheme is a tuple of probabilistic polynomial-time algorithms (Gen,Enc,Dec)
such that:

4

1. The key generation algorithm Gen takes as input the security parameter 1n and outputs a pair of keys (PK, SK).
We refer to the first of these as the public key and the second as the private key. We assume for convenience that
PK and SK each have length at least n, and that n can be determined from PK, SK.

2. The encryption algorithm Enc takes as input a public key PK and a message m from some underlying plaintext
space (that may depend on PK). It ouputs a ciphertext C, and we write this as C ← EncPK(m).

3. The decryption algorithm Dec takes as input a private kye SK and a ciphertext C, and outputs a message m or a
special symbol ⊥, denoting failure. We assume without loss of generality that Dec is deterministic and write this
as m := DecSK(C).

It is required that there exists a negligible function neg such that for every n, every (PK, SK) output by Gen(1n), and
every message m in the appropriate underlying plaintext space, it holds that

Pr[DecSK(EncPK(m)) 6= m] ≤ neg(n).

Note: Equivalence between eavesdropping indistinguishability experiment and cpa indistinguishability experiment.

7.1 Security against Chosen-Plaintext Attacks

The experiment is defined for any public-key encryption scheme E = (Gen,Enc,Dec), any adversaryA, and any value
n for the security parameter:

The CPA indistinguishability experiment PubKcpa
A,E(n):

1. Gen(1n) is run to obtain keys (PK, SK).
2. The adversary A is given PK and outputs a pair of messages m0,m1 of the same length.
3. A random bit b← {0, 1} is chosen and then a ciphertext C ← EncPK(mb) is computed and given to A. We call C

the challenge ciphertext.
4. A outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 4. A public-key encryption scheme E = (Gen,Enc,Dec) has indistinguishable encryptions under a chosen-
plaintext attack if for all probabilistic polynomial-time adversaries A there exists a negligible function neg such that

Pr[PubKcpa
A,E(n) = 1] ≤ 1

2
+ neg(n),

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment.

– Impossibility of perfectly-secret public key encryption.
– Insecurity of deterministic public-key encryption.
– Equivalence of single message and multiple message eavesdropping experiment.

Public key encryption schemes can be constructed from various computational assumptions such as:

– RSA assumption
– Factoring based assumptions
– Discrete-log based assumptions
– Lattice based assumptions

An interesting open problem is to construct public key encryption schemes from new assumptions, that seem to
withstand quantum attacks.

5

7.2 Hybrid Encryption

Use the public key encryption scheme to encrypt a secret key, encrypt message using this secret key.

This is what is done in practice (e.g. SSL). The reason it is done this way is that symmetric key encryption is far
more efficient than public key encryption. Thus, reduce the use of public key encryption to only a single encryption
per session.

8 Digital Signatures

Picture and intuition.

Definition 5. A signature scheme is a tuple of three probabilistic polynomial-time algorithms (SigGen,Sign,Verify)
satisfying the following:

1. The key generation algorithm Gen takes as input a security parameter 1n and outputs a pair of keys (PK, SK).
These are called the public key and the private key, respectively. We assume for convenience that PK and SK each
have length at least n, and that n can be determined from PK, SK.

2. The signing algorithm Sign takes as input a private key SK and a message m ∈ {0, 1}∗. It outputs a signature σ,
denoted as σ ← SignSK(m).

3. The deterministic verification algorithm Verify takes as input a public key PK, a message m, and a signature σ. it
ouputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We write this as b := VerifyPK(m,σ).

It is required that for every n, every (PK, SK) output by Gen(1n), and every m ∈ {0, 1}∗, it holds that

VerifyPK(m,SignSK(m)) = 1.

8.1 Security of signature schemes

Let Π = (SigGen,Sign,Verify) be a signature scheme, and consider the following experiment for an adversary A and
parameter n:

The signature experiment SigforgeA,Π(n):

1. Gen(1n) is run to obtain keys (PK, SK).
2. Adversary A is given PK and oracle access to SignSK(·). The adversary then outputs (m,σ). Let Q denote the set

of messages whose signatures were requrested by A during its execution.
3. The output of the experiment is defined to be 1 if and only if:

– VerifyPK(m,σ) = 1.
– m /∈ Q.

Definition 6. A signature scheme Π = (SigGen,Sign,Verify) is existentially unforgeable under an adaptive chosen-
message attack if for all probabilistic polynomial-time adversaries A, there exists a negligible function neg such that:

Pr[SigforgeA,Π(n) = 1] ≤ neg(n).

6

8.2 Lamport’s One-Time Signature Scheme

One Way Functions. A function f : {0, 1}∗ → {0, 1}∗ is one-way if the following two conditions hold:

1. (Easy to compute:) There exists a polynomial-time algorithm that on input x outputs f(x).
2. (Hard to invert:) For all probabilistic polynomial time algorithms A there exists a negligible function neg such

that:
Pr[A(y) ∈ f−1(y)] ≤ neg(n),

where x← {0, 1}n, y := f(x).

The construction. We illustrate the construction for the case of signing 3-bit messages. Let f be a one-way function.
The public key consists of 6 elements y1,0, y1,1, y2,0, y2,1, y3,0, y3,1 in the range of f . The priate key constains the
corresponding pre-images x1,0, x1,1, x2,0, x2,1, x3,0, x3,1.

To sign a message m = (m1,m2,m3), where each mi is a single bit, the signer releases the appropriate pre-image
xi,mi

for 1 ≤ i ≤ 3; the signature σ simply consists of the three values (x1,m1
, x2,m2

, x3,m3
). Verification is carried

out in the natural way: presented with the candidate signature (x1, x2, x3) on the message m = (m1,m2,m3), accept
if and only if f(xi) = yi,mi for 1 ≤ i ≤ 3.

8.3 Collision Resistant Hash Functions

A collision in a function H is a pair of distinct inputs x and x′ such that H(x) = H(x′); in this case we also say that
x and x′ collide under H . A function H is collision resistant if it is infeasible for any probabilistic polynomial time
algorithm to find a collision in H . We will deal with a family of hash functions indexed by a “key” s. This key s is not
kept secret. Rather, it is used merely to specify a particular function Hs from the family.

8.4 Many-time signature schemes

Can be constructed from collision-resistant hash functions See Introduction to Modern Cryptography pages 435-445 as
well as lecture notes from Rafael Pass’s Crypto class www.cs.cornell.edu/courses/cs6830/2009fa/scribes/lecture21.pdf.

Let Π = (SigGen,Sign,Verify) be a one-time secure digital signature scheme for messages {0, 1}n and h :
{0, 1}∗ → {0, 1}n be a CRHF.

Construct one-time digital signature scheme Π ′ = (SigGen′,Sign′,Verify′) as follows:

– SigGen′: Generate a public-private key pair (vksig, sksig) for Π and sample a CRHF h.
– Sign′sksig(m): Output Signsksig(h(m)).
– Verify′vksig(σ,m): Output Verifyvksig(h(m), σ).

We will show how to build a many-time signature scheme out of Π ′.

Approach 1: Generate a new key pair after each signing. Keep track of the sequence of keys generated. Start with
original key pair (vksig0, sksig0). To sign the first message:

– Generate (vksig1, sksig1)
– Compute σ1 ← SignSK0

(m1||vksig1)
– Output σ′1 = (1, σ1,m1, vksig1).

More generally, to sign the i-th message:

– Generate (vksigi, sksigi)
– Compute σi ← SignSKi−1

(mi||vksigi)
– Output σ′i = (i, σi,mi, vksigi, σ

′
i−1).

Note that we are signing messages longer than the secret key (mi||vksigi). This is why we could not use any Π
(such as Lamports), but first needed to transform to Π ′.

Disadvantages of this approach:

– Length of signature grows linearly with number of messages.
– Signer has to keep state and update state with every message.

7

Approach 2: Use each generated pair (vksigi, sksigi) to sign 2 new key pairs. This forms a complete binary tree
where each key signs all its children.

Picture:

Non-leaf key pairs only sign their children, leaf key-pairs only sign a message once. To sign a message m, use the
m-th leaf.

– Since all key pairs (the complete binary tree of depth n) can be pre-computed, we do not need to keep state.
– Since the (hashes of the messages) are in {0, 1}n, where n is the height of the tree, we can treet the message as a

number from 0 to 2n − 1. To sign hash value m, we use the key-pair sequence from the root to the leaf number n.
– Problem: Lots of space!!

Approach 3: Signer uses a PRF to make key generation and signing deterministic.
Signer stores 2 keys k, k′ for a PRF F . When needed the values vksigw, sksigw can be generated:

1. Compute rw = Fk(w).
2. Compute (vksigw, sksigw) = SigGen(1n; rw)

In addition, the key k′ is used similarly to generate the value r′w to compute the signature σw.

8

