
1 Announcements

– Course webpage is now up: www.ece.umd.edu/~danadach/Crypto Physical2013/coursepage.html

– Sign up sheet for paper presentations will be up on Canvas in the next couple of days.

2 Recap and Overview

Previous lecture:

– Discussed Pseudorandomness
– Gave definition for pseudorandom generators (PRG).

This lecture: Private Key Encryption Schemes.

– Definition of private key encryption schemes
– Security against eavesdroppers for private key encryption schemes
– Constructing private key encryption secure against eavesdroppers from PRG.
– Stream Ciphers
– CPA security for private key encryption schemes.

3 Review: Definition of PRG

A pseudorandom generator is a deterministic algorithm that receives a short truly random seed and stretches it into a
long string that is pseudorandom. n is the length of the seed that is input and `(n) is the output length.

Definition 1. Let `(·) be a polynomial and let G be a deterministic polynomial-time algorithm such that for any input
s ∈ {0, 1}n, algorithm G outputs a string of length `(n). We say that G is a pseudorandom generator if the following
two conditions hold:

1. (Expansion:) For every n it holds that `(n) > n.
2. (Pseudorandomness:) For all ppt distinguishers D, there exists a negligible function neg such that

|Pr[D(r) = 1]− Pr[D(G(s)) = 1]| ≤ neg(n)

where r is chosen uniformly at random from {0, 1}`(n), the seed s is chosen uniformly at random from {0, 1}n,
and the probabilities are taken over the random coins used by D and the choice of r and s.

The function `(·) is called the expansion factor of G.

4 Tangent: The One-Time Pad

1. Fix an integer ` > 0. Then the message spaceM, key space K, and ciphertext space C are all equal to {0, 1}`.
2. The key-generation algorithm Gen works by choosing a string from K = {0, 1}` according to the uniform distri-

bution.
3. Encryption Enc works as follows: given a key SK ∈ {0, 1}` and a message m ∈ {0, 1}`, output C := SK ⊕m.
4. Decryption Dec works as follows: given a key SK ∈ {0, 1}` and a ciphertext C ∈ {0, 1}`, output m := SK ⊕ C.

See Introduction to Modern Cryptography (page 35) for proof of perfect secrecy.

1

5 Defining Computationally-Secure Encryption

Definition 2. A private-key encryption scheme is a tuple of probabilistic polynomial-time algorithms (Gen,Enc,Dec)
such that:

1. The key-generation algorithm Gen takes as input the security paratmeter 1n and outputs a key SK; we write this as
SK ← Gen(1n). We will assume without loss of generality that any key SK output by Gen(1n) satisfies |SK| ≥ n.

2. The encryption algorithm Enc takes as input a key SK and a plaintext message m ∈ {0, 1}∗, and outputs a
ciphertext C. Since Enc may be randomized, we write this as c← EncSK(m).

3. The decryption algorithm Dec takes as input a key SK and a ciphertext C and outputs a message m. We assume
that Dec is deterministic and so write this as m = DecSK(C).

It is required that for every n, every key SK output by Gen(1n), and every m ∈ {0, 1}∗, it holds that DecSK(EncSK(m)) =
m.

If (Gen,Enc,Dec) is such that for SK output by Gen(1n), algorithm EncSK is only defined for messages m ∈
{0, 1}`(n), then we say that (Gen,Enc,Dec) is a fixed-length private-key encryption scheme for messages of length
`(n).

5.1 The Basic Definition of Security

Motivating the definition: Any definition of security consists of two distinct components: a specification of the assumed
power of the adversary, and a description of what constitutes a “break” of the scheme. We consider the case of an
eavesdropping adversary who observes the encryption of a single message. Adversary is computationally bounded
and limited to running in polynomial time.

Note: No assumptions made about the adversary’s strategy. This is crucial for obtaining meaningful notions of
security because it is impossible to predict all possible strategies.

Idea behind the definition: An adversary should be unable to learn any partial information about the plaintext from
the ciphertext. The definition of semantic security directly formalizes exactly this notion. Definition of semantic secu-
rity is complex and difficult to work with. Fortunately, there is an equivalent definition in terms of indistinguishability
which is much simpler.

Indistinguishability in the presence of an eavesdropper. We now give the formal definition. The experiment is
defined for any private-key encryption scheme E = (Gen,Enc,Dec), any adversaryA, and any value n for the security
parameter:

The eavesdropping indistinguishability experiment PrivKeav
A,E(n):

1. The adversary A is given input 1n, and outputs a pair of messages m0,m1 of the same length.
2. A key SK is generated by running Gen(1n), and a random bit b← {0, 1} is chosen. A ciphertext C ← EncSK(mb)

is computed and given to A. We call C the challenge ciphertext.
3. A outputs a bit b′.
4. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise. if PrivKeav

A,E(n) = 1, we say that A
succeeded.

Note that in the definition, there is no limitation on the length of the messages m0,m1 as long as they are the
same. If E is a fixed-length scheme for messages of length `(n), the above experiment is modified by requiring
m0,m1 ∈ {0, 1}`(n).

Definition 3. A private-key encryption scheme E = (Gen,Enc,Dec) has indistinguishable encryptions in the presence
of an eavesdropper if for all probabilistic polynomial-time adversaries A there exists a negligible function neg such
that

Pr[PrivKeav
A,E(n) = 1] ≤ 1

2
+ neg(n),

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment.

2

5.2 The Power of the Indistinguishability Definition

We begin by showing that indistinguishability implies that no single bit of a randomly chosen plaintext can be guessed
with probability significantly better than 1/2.

Claim. Let E = (Gen,Enc,Dec) be a private-key encryption scheme that has indistinguishable encryptions in the
presence of an eavesdropper. Then for all ppt adversaries A and all i, there exists a negligible function neg such that:

Pr[A(1n,EncSK(m)) = mi] ≤ 1

2
+ neg(n).

Sketched the proof in class, for full proof, see Introduction to Modern Cryptography, pages 64-67.
In fact, loosely speaking, no ppt adversary can learn any function of the plaintext message given the ciphertext,

and furthermore this holds regardless of the a priori distribution over the message being sent. This is the definition of
Semantic Security.

See Introduction to Modern Cryptography, page 68.

Definition 4. A private-key encryption scheme E = (Gen,Enc,Dec) is semantically secure in the presence of an
eavesdropper if for every probabilistic polynomial-time algorithm A there exists a probabilistic polynomial-time al-
gorithm A′ such that for all efficiently-sampleable distributions X = (X1, . . .) and all polynomial-time computable
functions f and h, there exists a negligible function neg such that

|Pr[A(1n,EncSK(m), h(m)) = f(m)]− Pr[A′(1n, h(m)) = f(m)]| ≤ neg(n),

where m is chosen according to distribution Xn and the probabilities are taken over the choice of m and the key k,
and any random coins used by A, A′, and the encryption process.

6 Constructing Secure Encryption Schemes

Picture:

Construction:

Let G be a pseudorandom generator with expansion factor `. Define a private-key encryption scheme for messages
of length ` as follows:

– Gen : on input 1n, choose SK ← {0, 1}n uniformly at random and output it as the key.
– Enc : on input a key k ∈ {0, 1}n and a message m ∈ {0, 1}`(n), output the ciphertext

C := G(SK)⊕m.

– Dec : on input a key SK ∈ {0, 1}n and a ciphertext C ∈ {0, 1}`(n), output the plaintext message

m := G(SK)⊕ C.

3

We now prove that the given encryption scheme has indistinguishable encryptions in the presence of an eavesdrop-
per, under the assumption that G is a pseudorandom generator.

Theorem 1. If G is a pseudorandom generator, then the construction above is a fixed-length private-key encryption
scheme that has indistinguishable encryptions in the presence of an eavesdropper.

Proof. Let A be a ppt adversary “breaking” E . I.e.:

ε(n) = Pr[PrivKeav
A,E(n) = 1]− 1

2
,

and ε(·) is a non-negligible function. We use A to construct a distinguisher D for the pseudorandom generator G,
which succeeds with probability ε(n) (thus contradicting the security of G).

The distinguisher is given a string w as input, and its goal is to determine whether w was chosen uniformly
at random or whether w was generated by choosing a random SK and computing w := G(SK). D emulates the
eavesdropping experiment for A in the manner described below.

Distinguisher D: D is given as input a string w ∈ {0, 1}`(n).

1. Run A(1n) to obtain a pair of messages m0,m1 ∈ {0, 1}`(n).
2. Choose a random bit b← {0, 1}. Set C := w ⊕mb.
3. Give C to A and obtain output b′. Output 1 if b′ = b, and output 0 otherwise.

Now, if w is chosen uniformly at random from {0, 1}`(n), the view of A consists of C := w ⊕mb, which is also
just a uniformly random string when w is uniformly random. Therefore, when w is chosen uniformly at random, A
succeeds with probability exactly 1

2 . Thus, Pr[D(w) = 1] = 1
2 .

On the other hand, if w = G(SK), then the view of A generated by D is distributed identically to the view of A in
experiment PrivKeav

A,E(n). Thus, Pr[D(w) = 1] = Pr[D(G(SK) = 1] = Pr[PrivKeav
A,E(n) = 1] = 1

2 + ε(n).
Therefore,

|Pr[D(w) = 1]− Pr[D(G(SK) = 1]| = ε(n).

If ε(n) is non-negligible, then this contradicts the security of the prg G.

How is this an improvement over one-time pad?

7 Stream Ciphers and Multiple Encryption

In the cryptographic literature, an encryption scheme of the type presented in the previous two sections is often called
a stream cipher. This is due to the fact that encryption is carried out by first generating a stream of pseudorandom bits,
and then XORing this stream with the plaintext. By stream cipher, we refer to the algorithm that generates the stream
(i.e. the pseudorandom generator G). Secure stream cipher should satisfy the definition of a variable output-length
pseudorandom generator.

7.1 Stream Ciphers in Practice

(See Introduction to Modern Cryptography, pages 77-78). There are a number of practical constructions of stream
ciphers available, and these are typically extraordinarily fast. A popular example is the stream cipher RC4 which is
widely considered to be secure when used appropriately.

Linear feedback shift registers (LFSRs) have, historically, also been popular as stream ciphers. Have been shown
to be insecure.

May have heard of stream cipher vs. block cipher. Block cipher is “more secure”, but stream ciphers are faster,
more efficient.

4

7.2 Security for Multiple Encryptions

The experiment is defined for any private-key encryption scheme E = (Gen,Enc,Dec), any adversary A, and any
value n for the security parameter:

The multiple-message eavesdropping experiment PrivKmult
A,E (n):

1. The adversary A is given input 1n, and outputs a pair of vectors of messages M0 = (m1
0, . . . ,m

t
0) and M1 =

(m1
1, . . . ,m

t
1) with |mi

0| = |mi
1| for all i.

2. A key SK is generated by running Gen(1n), and a random bit b ← {0, 1} is chosen. For all i, the ciphertext
Ci = EncSK(m

i
b) is computed and the vector of ciphertexts C = (c1, . . . , ct) is given to A.

3. A outputs a bit b′.
4. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 5. A private-key encryption scheme E = (Gen,Enc,Dec) has indistinguishable multiple encryptions in the
presence of an eavesdropper if for all probabilistic polynomial-time adversaries A there exists a negligible function
neg such that

Pr[PrivKmult
A,E (n) = 1] ≤ 1

2
+ neg(n),

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment.

Crucial observation: Security for a single encryption does not imply security under multiple encryptions.

EXAMPLE: Consider the following adversary A attacking E . A outputs the vectors M0 =, M1 =. Let C = (c1, c2)
be the vector of ciphertexts that A receives. If c1 = c2, A outputs 0; otherwise, A outputs 1.

Main point: Construction E is deterministic, so if the same message is encrypted multiple times then the same
ciphertext results each time.

The mere knowledge that the same message has been re-sent can provide significant information and has histori-
cally been very useful to cryptanalysts.

7.3 Secure Multiple Encryptions Using a Stream Cipher

There are typically two ways in which a stream cipher/pseudorandom generator is used in practice to securely encrypt
multiple plaintexts:

1. Synchronized mode: In this mode, the communicating parties use a different part of the stream output by the
stream cipher in order to encrypt each messsage. This mode is “synchronized” because both parties need to know
which parts of the stream have already been used in order to prevent re-use.

2. Unsynchronized mode: In this mode, encryptions are carried out independently of one another and the parties do
not need to maintain state.

Require stronger property of the pseudorandom generator.

5

8 Security Against Chosen-Plaintext Attacks (CPA)

Until now we have considered a relatively weak adversary who only passively eavesdrops on the communication
between two honest parties. Now consider a more powerful type of adversarial attack, alled a chosen-plaintext attack
(CPA).

The experiment is defined for any private-key encryption scheme E = (Gen,Enc,Dec), any adversary A, and any
value n for the security parameter:

The CPA indistinguishability experiment PrivKcpa
A,E(n):

1. A key SK is generated by running Gen(1n).
2. The adversary A is given input 1n and oracle access to EncSK(·) and outputs a pair of messages m0,m1 of the

same length.
3. A random bit b← {0, 1} is chosen and then a ciphertext C ← EncSK(mb) is computed and given to A. We call C

the challenge ciphertext.
4. The adversary A continues to have oracle access to EncSK(·), and outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise. if PrivKeav

A,E(n) = 1, we say that A
succeeded.

Definition 6. A private-key encryption scheme E = (Gen,Enc,Dec) has indistinguishable encryptions under a chosen-
plaintext attack if for all probabilistic polynomial-time adversaries A there exists a negligible function neg such that

Pr[PrivKcpa
A,E(n) = 1] ≤ 1

2
+ neg(n),

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment.

Proposition 1. Any private-key encryption scheme that has indistinguishable encryptions under a chosen-plaintext
attack also has indistinguishable multiple encryptions under a chosen-plaintext attack.

9 Pseudorandom Functions

As we have seen, pseudorandom generators can be used to obtain security in the presence of eavesdropping adver-
saries. The notion of peudorandomness is also instrumental in obtaining security against chosen-plaintext attacks.
Now, however, instead of considering pseudorandom strings, we consider pseudorandom functions.

Specifically interested in: Pseudorandom functions mapping n-bit strings to n-bit strings. Does not make sense to
say that any fixed function is pseudrandom. Thus, we must technically refer to the pseudorandomness of a distribution
on functions. An easy way to do this is to consider keyed functions, defined next.

Keyed Functions: A keyed function F is a two-input function F : {0, 1}∗ → {0, 1}∗, where the first input is called
the key and denoted SK, and the second input is just called the input. In general, the key SK will be chosen and then fixed,
and we will then be interested in the single-input function FSK : {0, 1}∗ → {0, 1}∗ defined by FSK(x) = F (SK, x).
We say that F is efficient if there is a deterministic polynomial-time algorithm that computes F (SK, x) given SK, x as
input. We will only be interested in functions F that are efficient.

Keyed function induces a natrual distribution on functions.
Intuitively, we call F pseudorandom if the function FSK is indistinguishable from a function chosen uniformly at

random from the set of all functions having the same domain and range.
Definition of Funcn. How large is Funcn? (2n)2

n

= 2n·2
n

. Pseuorandom functions are chosen from a distribu-
tion over 2n functions. Despite this, the “behavior” of these functions must look the same to any polynomial-time
distinguisher.

Cannot give distinguisher D access to the “code” of the function FSK vs f . Actual definition gives D oracle access
to the function in question FSK or f .

Oracle will always return the same response when queried twice on the same input.

6

Definition 7. Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length-preserving, keyed function. We say that F is
a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there exists a negligible function
neg such that: ∣∣∣Pr[DFSK(·)(1n) = 1]− Pr[Df(·)(1n) = 1]

∣∣∣ ≤ neg(n),

where SK ← {0, 1}n is chosen uniformly at random and f is chosen uniformly at random from the set of functions
mapping n-bit strings to n-bit strings.

Note: The key SK is not given to D
Note: Pseudorandom functions exist iff pseudorandom generators exist.

10 CPA-Secure Encryption Schemes from Pseudorandom Functions

Picture:

Construction:
Let F be a pseudorandom function. Define a private-key encryption scheme for messages of length n as follows:

– Gen : on input 1n, choose SK ← {0, 1}n uniformly at random and output as the key.
– Enc : on input a key SK ∈ {0, 1}n and a message m ∈ {0, 1}n, choose r ← {0, 1}n uniformly at random and

output the ciphertext
C := 〈r, FSK(r)⊕m〉.

– Dec : on input a key k ∈ {0, 1}n and a ciphertext c = 〈r, s〉, output the plaintext message

m := FSK(r)⊕ s.

7

