
Today:

– Introduction to the class.
– Examples of concrete physical attacks on RSA
– A computational approach to cryptography
– Pseudorandomness

1 What are Physical Attacks

– Tampering/Leakage attacks
– Issue of how we model adversaries in cryptography

2 Physical Attacks on RSA

This section is based on the survey of Boneh [1].
We begin by describing a simplified version of RSA encryption. Let N = pq be the product of two large primes

of the same size (n/2 bits each). A typical size for N is n = 1024 bits, i.e. 309 decimal digits. Each of the factors
is 512 bits. Let e, d be two integers satisfying ed = 1modφ(N), where φ(N) = (p − 1)(q − 1) is the order of the
multiplicitave group Z∗N . We call N the RSA modulus, e the encryption exponent, and d the decryption exponent. The
pair 〈N, e〉 is the public key. As its name suggests, it is public and is used to encrypt messages. The pair 〈N, d〉 is
called the secret key or private key and is known only to the recipient of encrypted messages. The secret key enables
decryption of ciphertexts.

A message is an integer M ∈ Z∗N . To encrypt M , one computes C =Me mod N . To decrypt the ciphertext, the
legitimate receiver computes Cd mod N . Indeed Cd = Med = M(mod N), where the last equality follows by
Euler’s theorem.

–RSA function vs. cryptosystem –”Break RSA” means doing better than brute-force search.

2.1 Timing Attack on RSA

Attack of Kocher [3].

– Smartcard that stores a private RSA key. Since the card is tamper resistant, an attacker may not be able to examine
its contents and expose the kye. However, a clever attack shows that by precisely measuring the time it takes the
smartcard to perform an RSA decryption (or signature), can quickly discover the private decryption exponent d.

– Assume we have an RSA implementation based on the “repeated squaring algorithm.” Let d = dndn−1 . . . d0 be
the binary representation of d:

d =

n∑
i=0

2idi with di ∈ {0, 1}.

The repeated squaring algorithm computes C = Md mod N , using at most 2n modular multiplications. Based
on observation that C = Πn

i=0M
2idi mod N . The algorithm works as follows:

1. Set z =M,C = 1. For i = 0, . . . , n, do the following:
2. If di = 1 set C = C · z mod N

3. Set z = z2modN .
4. At the end, C has the value Md mod N .

1

The Attack:

1. As the smartcard to generate signatures on a large number of random messages M1, . . . ,Mk ∈ Z∗N and measure
the time Ti it takes to generate each signature.

2. Recover the bits of d one at a time beginning with the least significant bit:
– d is odd, so d0 = 1.
– Finding d1: Initially, z = M2modN and C = M . If d1 = 1, the smartcard computes the product C · z =
M ·M2

i mod N . Otherwise it does not.
– Let ti be the time it takes the smartcard to compute Mi ·M2

i mod N . The ti’s differ from each other since
the time to computeMi ·M2

i mod N depends on the value ofMi. Measure the ti’s offline (prior to mounting
attack) once he obtains the physical specifications of the card.

– When d1 = 1, the two ensembles {ti} and {Ti} are correlated. For instance, if for some i, ti is much larger
than its expectation, then Ti is also likely to be larger than its expectation.

– On the other hand, if d1 = 0, the two ensembles {ti} and {Ti} behave as independent random variables.
– By measuring the correlation, Marvin can determine whether d1 is 0 or 1. Continuing in this way, can recover
d2, d3,

2.2 Defense to Timing Attack

Approach due to Rivest, based on blinding.

– Prior to decryption of M the smartcard picks a random r ∈ Z∗N
– Computes M ′ =M · re mod N .
– Apply d to M ′ and obtain C ′ = (M ′)d mod N .
– Set C = C ′/r mod N .

With this approach, the smartcard is applying d to a random message M ′ unknown to attacker. As a result, cannot
mount the attack.

2.3 Tampering Attack on RSA

Attack of Boneh, Demillo, Lipton [2].

– Implementations of RSA decryption and signatures frequently use the Chinese Remainder Theorem to speed up
the computation of Md mod N .

– Instead of working modulo N , the signer first computes the signature modulo p and q and then combines the
results using the Chinese Remainder Theorem.

CRT

1. Compute:
Cp =Mdp mod p

and
Cq =Mdq mod q

where dp = d mod (p− 1) and dq = d mod (q − 1).
2. Obtain the signature C by setting

C = T1Cp + T2Cq(mod N),

where T1 = 1 mod p, 0 mod q and T2 = 0 mod p, 1 mod q.

4 times speedup

2

The Attack:

1. Suppose that while generating a signature, a glitch on Bob’s computer causes it to miscalculate in a single instruc-
tion.

2. Given an invalid signature, an adversary can easily factor Bob’s modulus N .
3. (Version of attack described by A.K. Lenstra) Suppose a single error occurs, exactly one of Cp or Cq will be

computed incorrectly. Say Cp is correct, but Ĉq is not.
4. The resulting signature is Ĉ = T1Cp + T2Ĉq .
5. Once the adversary receives Ĉ, he knows it is a false signature since Ĉe 6=M mod N . However, notice that

Ĉe =M mod p

while

Ĉe 6=M mod p

6. As a result, gcd(N, Ĉe −M) exposes a nontrivial factor or N .

2.4 Defense to Tampering Attack

– Random padding to signing defeats the attack.
– Simpler defense is for Bob to check the generated signature.
– Many systems, including a non-CRT implementation of RSA can be attacked using random faults. However, these

results are far more theoretical.

3 A Computational Approach to Cryptography

Not necessary to use a perfectly-secret encryption scheme, but it instead suffices to use a scheme that cannot be broken
in “reasonable time” with any “reasonable probability of success.”

A cryptographic scheme does not need to guarantee perfect security (info-theoretically) but just to be “practically”
unbreakable.

How to formalize the fact that a cryptographic scheme is “practically” unbreakable?

Two relaxations of Computational Approach over perfect security:

1. Security is only preserved against efficient adversaries that run in a feasible amount of time.
2. Adversaries can potentially succeed with some very small probability (that is small enough so that we are not

concerned that it will ever really happen).

Two approaches to defining the above: Concrete approach and Asymptotic approach.

The Concrete Approach: quantifies the security of a given cryptographic scheme by explicitly bounding the maximum
success probability of any adversary running for at most some specified amount of time. Let t, ε be positive
constants with ε ≤ 1. Then a concrete definition of security would take the following form:
“A scheme is (t, ε)-secure if every adversary running for time at most t succeeds in breaking the scheme with
probability at most ε.

3

EXAMPLE: Modern private-key encryption schemes are generally assumed to give almost optimal security in
the following sense: when the key has length n, an adversary running in time t (measured in, say, computer cycles)
can succeed in breaking the scheme with probability at most t/2n. Computation on the order of t = 260 is barely
within reach today. Running on a 1GHz computer (that executes 109 cycles per second), 260 CPU cycles require
260/109 seconds, or about 35 years. Using many supercomputers in parallel may bring this down to a few years.
A typical value for the key length, might be n = 128. The difference between 260 and 2128 is a multiplicative
factor of 268 which is a number containing about 21 decimal digits. To get a feeling for how big this is, note that
according to physicists’ estimates the number of seconds since the big bang is in the order of 258.

The Asymptotic Approach:
– rooted in complexity-theory, running time of the adversary as well as its success probability are functions of

some parameter, not concrete numbers.
– a crypto scheme will incorporate a security parameter which is an integer n. When honest parties initialize

the scheme, they choose n. The running times are viewed as functions of n.

feasible strategies/efficient algorithms are probabilistic algorithms running in time polynomial in n. Honest par-
ties run in polynomial time and achieve security against polynomial-time adversaries.

negligible success success probabilities smaller than any inverse polynomial in n.
“A scheme is secure if every ppt adversary succeeds in breaking the scheme with only negligible probability.”

EXAMPLE: Say we have a scheme that is secure. Then it may be the case that an adversary running for n3

minutes can succeed in “breaking the scheme” with probability 240 · 2−n (which is a negligible function of n).
When n ≤ 40 this means that an adversary running for 403 minutes (about 6 weeks) can break the scheme with
probability 1, so such values are not going to be very useful. Even for n = 50 an adversary running for 503

minutes (about 3 months) can break the scheme with probability roughly 1/1000, which may not be acceptable.
On the other hand, when n = 500 an adversary running for more than 200 years breaks the scheme only with
probability roughly 2−500.

Efficient Algorithms and Negligible Success

Efficient Computation computation that can be carried out in probabilistic polynomial time (PPT). An algorithm A
is said to run in polynomial time if there exists a polynomial p(·) such that, for every input x ∈ {0, 1}∗, the
computation of A(x) terminates within at most p(|x|) steps.
A probabilistic algorithm is one that has the capability of “tossing coins.”
Advantage of working with polynomial time: Class of algorithms is closed under composition.
Why probabilistic polynomial time?

Generating Randomness
Negligible Success Probability

Proofs by Reduction.

Difficulty of proving unconditional security. A cryptographic scheme that is computationally secure can always be
broken given enough time. Unconditional proof of security would require proving a lower bound on the time
needed to break the scheme. Currently, unable to prove lower bounds of this type. Would be a breakthrough result
in complexity theory.

Paradigm. Assume some low-level problem is hard to solve, and then prove that the construction in question is secure
under this assumption.

Details on Paradigm: Present an explicit reduction showing how to convert any efficient adversaryA that succeeds in
“breaking” the construction with non-negligible probability into an efficient algorithmA′ that succeeds in solving
the problem that was assumed to be hard.

To prove some cyrptographic construction Π is secure:

1. Fix some efficient adversary A attacking Π . Denote this adversary’s success probability by ε(n).

4

2. Construct an efficient algorithm A′, called the “reductin” that attempts to solve problem X using adversary A as
a sub-routine. An importnat point here is that A′ knows nothing about “how” A works; the only thing A′ knows
is that A is expecting to attack Π . So given some input instance x of problem X , our algorithm A′ will simulate
for A an instance of Π such that:
(a) As far as A can tell, it is interacting with Π . More formally, the view of A when it is run as a sub-routine by
A′ should be distributed identically to (or at least close to) the view of A when it interacts with Π itself.

(b) If A succeeds in “breaking” the instance of Π that is being simulated by A′, this should allow A′ to solve the
instance x it was given, at least with inverse polynomial probability 1/p(n).

3. Taken together, 2(a), 2(b) imply that if ε(n) is not negligible, then A′ solves problem X with non-negligible
probability ε(n)/p(n). Sinc A′ is efficient, and runs the ppt adversary A as a sub-routine, this implies an efficient
algorithm solving X with non-negligible probability, contradicting the initial assumption.

4. We conclude that, given the assumption regarding X , no efficient adversary A can succeed in breaking Π with
probability that is not negligible. Stated differently, Π is computationally secure.

4 Pseudorandomness

This notion plays a fundamental role in cryptography. Loosely speaking, a pseudorandom string is a string that looks
like a uniformly distributed string, as long as the entity that is “looking” runs in polynomial time. pseudorandomness
is a computational relaxation of true randomness.

Important Point: no fixed string can be said to be “pseudorandom”. Rather, pseudorandomness actually refers to
a distribution on strings, and when we say that a distribution D over strings of length ` is pseudorandom this means
that D is indistinguishable from the uniform distribution over strings of length `.

4.1 Pseudorandom Generators

A pseudorandom generator is a deterministic algorithm that receives a short truly random seed and stretches it into a
long string that is pseudorandom. n is the length of the seed that is input and `(n) is the output length.

Definition 1. Let `(·) be a polynomial and let G be a deterministic polynomial-time algorithm such that for any input
s ∈ {0, 1}n, algorithm G outputs a string of length `(n). We say that G is a pseudorandom generator if the following
two conditions hold:

1. (Expansion:) For every n it holds that `(n) > n.
2. (Pseudorandomness:) For all ppt distinguishers D, there exists a negligible function neg such that

|Pr[D(r) = 1]− Pr[D(G(s)) = 1]| ≤ neg(n)

where r is chosen uniformly at random from {0, 1}`(n), the seed s is chosen uniformly at random from {0, 1}n,
and the probabilities are taken over the random coins used by D and the choice of r and s.

The function `(·) is called the expansion factor of G.

References

1. Dan Boneh. Twenty years of attacks on the rsa cryptosystem. NOTICES OF THE AMS, 46:203–213, 1999.
2. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating errors in cryptographic computations.

J. Cryptology, 14(2):101–119, 2001.
3. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In CRYPTO, pages 104–113,

1996.

5

