Today:

- Introduction to the class.
- Examples of concrete physical attacks on RSA
- A computational approach to cryptography
- Pseudorandomness

1 What are Physical Attacks

- Tampering/Leakage attacks
- Issue of how we model adversaries in cryptography

2 Physical Attacks on RSA

This section is based on the survey of Boneh [1].

We begin by describing a simplified version of RSA encryption. Let N=pq be the product of two large primes of the same size (n/2) bits each). A typical size for N is n=1024 bits, i.e. 309 decimal digits. Each of the factors is 512 bits. Let e,d be two integers satisfying $ed=1 mod \phi(N)$, where $\phi(N)=(p-1)(q-1)$ is the order of the multiplicitave group \mathbb{Z}_N^* . We call N the RSA modulus, e the encryption exponent, and d the decryption exponent. The pair $\langle N, e \rangle$ is the public key. As its name suggests, it is public and is used to encrypt messages. The pair $\langle N, d \rangle$ is called the secret key or private key and is known only to the recipient of encrypted messages. The secret key enables decryption of ciphertexts.

A message is an integer $M \in \mathbb{Z}_N^*$. To encrypt M, one computes $C = M^e \mod N$. To decrypt the ciphertext, the legitimate receiver computes $C^d \mod N$. Indeed $C^d = M^{ed} = M \pmod N$, where the last equality follows by Euler's theorem.

-RSA function vs. cryptosystem -"Break RSA" means doing better than brute-force search.

2.1 Timing Attack on RSA

Attack of Kocher [3].

- Smartcard that stores a private RSA key. Since the card is tamper resistant, an attacker may not be able to examine its contents and expose the kye. However, a clever attack shows that by precisely measuring the time it takes the smartcard to perform an RSA decryption (or signature), can quickly discover the private decryption exponent d.
- Assume we have an RSA implementation based on the "repeated squaring algorithm." Let $d = d_n d_{n-1} \dots d_0$ be the binary representation of d:

$$d = \sum_{i=0}^{n} 2^{i} d_{i}$$
 with $d_{i} \in \{0, 1\}$.

The repeated squaring algorithm computes $C=M^d \mod N$, using at most 2n modular multiplications. Based on observation that $C=\prod_{i=0}^n M^{2^i d_i} \mod N$. The algorithm works as follows:

- 1. Set z = M, C = 1. For $i = 0, \dots, n$, do the following:
- 2. If $d_i = 1$ set $C = C \cdot z \mod N$
- 3. Set $z = z^2 mod N$.
- 4. At the end, C has the value $M^d \mod N$.

The Attack:

- 1. As the smartcard to generate signatures on a large number of random messages $M_1, \ldots, M_k \in \mathbb{Z}_N^*$ and measure the time T_i it takes to generate each signature.
- 2. Recover the bits of d one at a time beginning with the least significant bit:
 - d is odd, so $d_0 = 1$.
 - Finding d_1 : Initially, $z = M^2 mod N$ and C = M. If $d_1 = 1$, the smartcard computes the product $C \cdot z = M \cdot M_i^2 \mod N$. Otherwise it does not.
 - Let t_i be the time it takes the smartcard to compute $M_i \cdot M_i^2 \mod N$. The t_i 's differ from each other since the time to compute $M_i \cdot M_i^2 \mod N$ depends on the value of M_i . Measure the t_i 's offline (prior to mounting attack) once he obtains the physical specifications of the card.
 - When $d_1 = 1$, the two ensembles $\{t_i\}$ and $\{T_i\}$ are correlated. For instance, if for some i, t_i is much larger than its expectation, then T_i is also likely to be larger than its expectation.
 - On the other hand, if $d_1 = 0$, the two ensembles $\{t_i\}$ and $\{T_i\}$ behave as independent random variables.
 - By measuring the correlation, Marvin can determine whether d_1 is 0 or 1. Continuing in this way, can recover d_2, d_3, \ldots

2.2 Defense to Timing Attack

Approach due to Rivest, based on blinding.

- Prior to decryption of M the smartcard picks a random $r \in \mathbb{Z}_N^*$
- Computes $M' = M \cdot r^e \mod N$.
- Apply d to M' and obtain $C' = (M')^d \mod N$.
- Set $C = C'/r \mod N$.

With this approach, the smartcard is applying d to a random message M' unknown to attacker. As a result, cannot mount the attack.

2.3 Tampering Attack on RSA

Attack of Boneh, Demillo, Lipton [2].

- Implementations of RSA decryption and signatures frequently use the Chinese Remainder Theorem to speed up the computation of $M^d \mod N$.
- Instead of working modulo N, the signer first computes the signature modulo p and q and then combines the results using the Chinese Remainder Theorem.

CRT

1. Compute:

$$C_p = M^{d_p} \mod p$$

and

$$C_q = M^{d_q} \mod q$$

where $d_p = d \mod (p-1)$ and $d_q = d \mod (q-1)$.

2. Obtain the signature C by setting

$$C = T_1 C_p + T_2 C_q \pmod{N},$$

where $T_1 = 1 \mod p, 0 \mod q$ and $T_2 = 0 \mod p, 1 \mod q$.

4 times speedup

The Attack:

- 1. Suppose that while generating a signature, a glitch on Bob's computer causes it to miscalculate in a single instruction.
- 2. Given an invalid signature, an adversary can easily factor Bob's modulus N.
- 3. (Version of attack described by A.K. Lenstra) Suppose a single error occurs, exactly one of C_p or C_q will be computed incorrectly. Say C_p is correct, but \hat{C}_q is not.
- 4. The resulting signature is $\hat{C} = T_1 C_p + T_2 \hat{C}_q$.
- 5. Once the adversary receives \hat{C} , he knows it is a false signature since $\hat{C}^e \neq M \mod N$. However, notice that

$$\hat{C}^e = M \mod p$$

while

$$\hat{C}^e \neq M \mod p$$

6. As a result, $gcd(N, \hat{C}^e - M)$ exposes a nontrivial factor or N.

2.4 Defense to Tampering Attack

- Random padding to signing defeats the attack.
- Simpler defense is for Bob to check the generated signature.
- Many systems, including a non-CRT implementation of RSA can be attacked using random faults. However, these
 results are far more theoretical.

3 A Computational Approach to Cryptography

Not necessary to use a perfectly-secret encryption scheme, but it instead suffices to use a scheme that cannot be broken in "reasonable time" with any "reasonable probability of success."

A cryptographic scheme does not need to guarantee perfect security (info-theoretically) but just to be "practically" unbreakable.

How to formalize the fact that a cryptographic scheme is "practically" unbreakable?

Two relaxations of Computational Approach over perfect security:

- 1. Security is only preserved against *efficient* adversaries that run in a feasible amount of time.
- 2. Adversaries can potentially succeed with some *very small probability* (that is small enough so that we are not concerned that it will ever really happen).

Two approaches to defining the above: Concrete approach and Asymptotic approach.

The Concrete Approach: quantifies the security of a given cryptographic scheme by explicitly bounding the maximum success probability of any adversary running for at most some specified amount of time. Let t, ε be positive constants with $\varepsilon \leq 1$. Then a concrete definition of security would take the following form:

"A scheme is (t, ε) -secure if every adversary running for time at most t succeeds in breaking the scheme with probability at most ε .

EXAMPLE: Modern private-key encryption schemes are generally assumed to give almost optimal security in the following sense: when the key has length n, an adversary running in time t (measured in, say, computer cycles) can succeed in breaking the scheme with probability at most $t/2^n$. Computation on the order of $t=2^{60}$ is barely within reach today. Running on a 1GHz computer (that executes 10^9 cycles per second), 2^{60} CPU cycles require $2^{60}/10^9$ seconds, or about 35 years. Using many supercomputers in parallel may bring this down to a few years. A typical value for the key length, might be n=128. The difference between 2^{60} and 2^{128} is a multiplicative factor of 2^{68} which is a number containing about 21 decimal digits. To get a feeling for how big this is, note that according to physicists' estimates the number of seconds since the big bang is in the order of 2^{58} .

The Asymptotic Approach:

- rooted in complexity-theory, running time of the adversary as well as its success probability are *functions* of some parameter, not concrete numbers.
- a crypto scheme will incorporate a *security parameter* which is an integer n. When honest parties initialize the scheme, they choose n. The running times are viewed as functions of n.

feasible strategies/efficient algorithms are probabilistic algorithms running in time polynomial in n. Honest parties run in polynomial time and achieve security against polynomial-time adversaries.

negligible success success probabilities smaller than any inverse polynomial in n.

"A scheme is secure if every ppt adversary succeeds in breaking the scheme with only negligible probability."

EXAMPLE: Say we have a scheme that is secure. Then it may be the case that an adversary running for n^3 minutes can succeed in "breaking the scheme" with probability $2^{40} \cdot 2^{-n}$ (which is a negligible function of n). When $n \le 40$ this means that an adversary running for 40^3 minutes (about 6 weeks) can break the scheme with probability 1, so such values are not going to be very useful. Even for n = 50 an adversary running for 50^3 minutes (about 3 months) can break the scheme with probability roughly 1/1000, which may not be acceptable. On the other hand, when n = 500 an adversary running for more than 200 years breaks the scheme only with probability roughly 2^{-500} .

Efficient Algorithms and Negligible Success

Efficient Computation computation that can be carried out in probabilistic polynomial time (PPT). An algorithm A is said to run in *polynomial time* if there exists a polynomial $p(\cdot)$ such that, for every input $x \in \{0,1\}^*$, the computation of A(x) terminates within at most p(|x|) steps.

A probabilistic algorithm is one that has the capability of "tossing coins."

Advantage of working with polynomial time: Class of algorithms is closed under composition.

Why *probabilistic polynomial time*?

Generating Randomness

Negligible Success Probability

Proofs by Reduction.

Difficulty of proving unconditional security. A cryptographic scheme that is computationally secure can always be broken given enough time. Unconditional proof of security would require proving a lower bound on the time needed to break the scheme. Currently, unable to prove lower bounds of this type. Would be a breakthrough result in complexity theory.

Paradigm. Assume some *low-level* problem is hard to solve, and then *prove* that the construction in question is secure under this assumption.

Details on Paradigm: Present an explicit *reduction* showing how to convert any efficient adversary \mathcal{A} that succeeds in "breaking" the construction with non-negligible probability into an efficient algorithm \mathcal{A}' that succeeds in solving the problem that was assumed to be hard.

To prove some cyrptographic construction Π is secure:

1. Fix some efficient adversary \mathcal{A} attacking Π . Denote this adversary's success probability by $\varepsilon(n)$.

- 2. Construct an efficient algorithm \mathcal{A}' , called the "reductin" that attempts to solve problem X using adversary \mathcal{A} as a sub-routine. An important point here is that \mathcal{A}' knows nothing about "how" \mathcal{A} works; the only thing \mathcal{A}' knows is that \mathcal{A} is expecting to attack Π . So given some input instance x of problem X, our algorithm \mathcal{A}' will simulate for \mathcal{A} an instance of Π such that:
 - (a) As far as \mathcal{A} can tell, it is interacting with Π . More formally, the view of \mathcal{A} when it is run as a sub-routine by \mathcal{A}' should be distributed identically to (or at least close to) the view of \mathcal{A} when it interacts with Π itself.
 - (b) If \mathcal{A} succeeds in "breaking" the instance of Π that is being simulated by \mathcal{A}' , this should allow \mathcal{A}' to solve the instance x it was given, at least with inverse polynomial probability 1/p(n).
- 3. Taken together, 2(a), 2(b) imply that if $\varepsilon(n)$ is not negligible, then \mathcal{A}' solves problem X with non-negligible probability $\varepsilon(n)/p(n)$. Sinc \mathcal{A}' is efficient, and runs the ppt adversary \mathcal{A} as a sub-routine, this implies an efficient algorithm solving X with non-negligible probability, contradicting the initial assumption.
- 4. We conclude that, given the assumption regarding X, no efficient adversary A can succeed in breaking Π with probability that is not negligible. Stated differently, Π is computationally secure.

4 Pseudorandomness

This notion plays a fundamental role in cryptography. Loosely speaking, a pseudorandom string is a string that looks like a uniformly distributed string, as long as the entity that is "looking" runs in polynomial time. pseudorandomness is a computational relaxation of true randomness.

Important Point: no fixed string can be said to be "pseudorandom". Rather, pseudorandomness actually refers to a distribution on strings, and when we say that a distribution \mathcal{D} over strings of length ℓ is pseudorandom this means that \mathcal{D} is indistinguishable from the uniform distribution over strings of length ℓ .

4.1 Pseudorandom Generators

A pseudorandom generator is a deterministic algorithm that receives a short truly random seed and stretches it into a long string that is pseudorandom. n is the length of the seed that is input and $\ell(n)$ is the output length.

Definition 1. Let $\ell(\cdot)$ be a polynomial and let G be a deterministic polynomial-time algorithm such that for any input $s \in \{0,1\}^n$, algorithm G outputs a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following two conditions hold:

- 1. (Expansion:) For every n it holds that $\ell(n) > n$.
- 2. (Pseudorandomness:) For all ppt distinguishers D, there exists a negligible function neg such that

$$|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \le \operatorname{neg}(n)$$

where r is chosen uniformly at random from $\{0,1\}^{\ell(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

The function $\ell(\cdot)$ *is called the expansion factor of* G.

References

- 1. Dan Boneh. Twenty years of attacks on the rsa cryptosystem. NOTICES OF THE AMS, 46:203–213, 1999.
- 2. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating errors in cryptographic computations. *J. Cryptology*, 14(2):101–119, 2001.
- 3. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In *CRYPTO*, pages 104–113, 1996.