Dynamic Response of Pedestrian Bridges/Floor Vibration and Various Methods of Vibration Remediation

Chung C. Fu, Ph.D., P.E.

Presentation

- Brief overview of structural vibration
- Understanding how people perceive and react to unwanted vibration
- General response of pedestrian bridges to vibration
- Various design guidelines
- Damping
- Bridge case study

Structural Vibration

- Stiffness Force: \(F_S = -kx \)
- Damping Force: \(F_D = -cx' \)
- External Force: \(F_E(t) \)
- Inertial Force

\[
mx''(t) + cx'(t) + kx(t) = F_e(t)
\]
Structural Vibration

Free Vibration

\[mx''(t) + cx'(t) + kx(t) = 0 \quad x(0) = 0 \quad x'(0) = 0 \]

Solution

\[x(t) = e^{-\zeta \omega_n t} \left\{ x_o \cos(\omega_d t) + \frac{\zeta \omega_n x_o + x'(0)}{\omega_n \sqrt{1 - \zeta^2}} \sin(\omega_d t) \right\} \]

\[x'(t) = e^{-\zeta \omega_n t} \left\{ x'_o \cos(\omega_d t) - \frac{\omega_n x_o + \zeta x'_o}{\sqrt{1 - \zeta^2}} \sin(\omega_d t) \right\} \]

\[\omega_n^2 = \frac{k}{m} \quad 2\zeta \omega_n = \frac{c}{m} \quad \omega_d = \omega_n \sqrt{1 - \zeta^2} \]

Structural Vibration

Forced Vibration

\[mx''(t) + cx'(t) + kx(t) = F_e(t) \]

Solution

\[x(t) = x_o e^{-\zeta \omega_n t} \left\{ x'_o \cos(\omega_d t) - \frac{\omega_n x_o + \zeta x'_o}{\omega_n \sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t) \right\} + \]

\[x'(t) = x'_o e^{-\zeta \omega_n t} \left\{ x'o \cos(\omega_d t) - \frac{\omega_n x_o + \zeta x'_o}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t) \right\} + \]

\[x''(t) = x''_o e^{-\zeta \omega_n t} \left\{ x''_o \cos(\omega_d t) + \frac{\omega_n x_o + \zeta x'_o}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t) \right\} \]

Human Perception

Steady State Forcing Function

\[F_e(t) = F_o \sin(\omega_o t) \]

Solution

\[x_{ss}(t) = \frac{F_o}{\sqrt{k(1 - r^2)^2 + (2\zeta r)^2}} \left\{ -2\zeta r \cos(\omega_o t) + (1 - r^2) \sin(\omega_o t) \right\} \]

\[x'_{ss}(t) = \frac{F_o \omega_o}{\sqrt{k(1 - r^2)^2 + (2\zeta r)^2}} \left\{ (1 - r^2) \cos(\omega_o t) + 2\zeta r \sin(\omega_o t) \right\} \]

Human Response

- Present: Not perceived
- Perceived: Does not annoy
- Perceived: Annoys and disturbs
- Perceived: Severe enough to cause illness

Peak acceleration limits

<table>
<thead>
<tr>
<th>Situation</th>
<th>Building in Strong Wind</th>
<th>Public Transportation</th>
<th>Building in Earthquake</th>
<th>Amusement Park Ride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Acceleration (% g)</td>
<td>0.5 – 10</td>
<td>51 – 102</td>
<td>204 – 458</td>
<td>≤458</td>
</tr>
</tbody>
</table>
Peak Acceleration for Human Comfort for Vibrations

Design Guide 11 Fig. 2.1 Recommended peak acceleration for human comfort for vibrations due to human activities

Pedestrian Bridge Response

- Vertical Vibration
- Lateral Vibration

Pedestrian Bridge Response

- Vertical Vibration (also apply to floor vibration)

\[\sum F(t) = P[1 + \sum \alpha_i \cos(2\pi f_{\text{step}} t + \phi_i)] \]

- P = Person’s weight
- \(\alpha_i \) = Dynamic coefficient for the harmonic force
- i = Harmonic multiple (1, 2, 3…)
- \(f_{\text{step}} \) = Step frequency of activity
- t = time
- \(\phi_i \) = Phase angle for the harmonic

Pedestrian Bridge Response

- Lateral Vibration

Synchronous Lateral Excitation
Design Guidelines

- Serviceability (i.e. functional, usable)
 - Stiffness
 - Resonance

- Resonance
 - Frequency matching
 - Uncomfortable/damaging vibration
 - Unfavorable perception

AVOID RESONANCE!

Design Guidelines

- Natural Frequency
 \[f = \frac{\pi}{2} \sqrt{\frac{\text{stiffness}}{\text{mass}}} = \frac{\pi}{2} \sqrt{\frac{g}{\Delta}} \]
 Ex.) Uniformly loaded simple beam:
 \[f_n = 0.18 \sqrt{\frac{g}{\Delta}} \]
 \[\Delta = \frac{5wL^4}{384EI} \]

Bridge Design Guidelines

- Natural Frequency (Vertical Vibration)
 - Limiting values (Bridge)
 - AASHTO
 - \(f \geq 3.0 \text{ Hz} \)
 - \(f \geq 2.85\ln(180/W) \)
 - \(W \geq 180e^{0.35f} \)
 - Special cases: \(f \geq 5.0 \text{ Hz} \)
 - \(f_o \geq 5.0 \text{ Hz} \)
 - \(a_{\text{max}} \leq 0.5(f_o)^{1/2} \text{ m/s}^2 \)
 - \(a_{\text{max}} = 4\pi^2 f_o^2 y_s K\psi \)
 - \(F = 180\sin(2\pi f_o T) \text{ N} \)
 - \(v_t = 0.9 f_o \text{ m/s (} \geq 2.5 \text{ m/s per Ontario Code)} \)

<table>
<thead>
<tr>
<th>Ratio (h/l)</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.6 or less</td>
<td>0.9</td>
</tr>
</tbody>
</table>
British Design Guidelines

\[a_{\text{max}} = 4\pi^2 f_0^2 y_s K\Psi \]

Design Guidelines

- Natural Frequency (Vertical Vibration)
 - Limiting values
 - AASHTO
 - British Code (1978 BS 5400)
 - AISC/CISC Steel Design Guide Series 11

\[
\frac{a_p}{g} = \frac{P_o e^{-0.35 f_n}}{\beta W} \leq 1.5\% \text{ (Indoor walkways)}
\]

\[
\leq 5.0\% \text{ (Outdoor bridges)}
\]

Table 19. Logarithmic decrement of decay of vibration \(\delta \)

<table>
<thead>
<tr>
<th>Bridge superstructure</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel with asphalt or epoxy surfacing</td>
<td>0.03</td>
</tr>
<tr>
<td>Composite steel/concrete</td>
<td>0.04</td>
</tr>
<tr>
<td>Prestressed and reinforced concrete</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Response to Sinusoidal Force

Resonance response function

\[
a/g = \frac{R_\text{f} P}{\beta W} \cdot \cos(2\pi f_{\text{on}} t)
\]

Simplified design criterion

\[
\frac{a_p}{g} = \frac{P_0}{\beta W} e^{-0.35 f_n} \leq \frac{a_0}{g}
\]

\(a/g\), \(a_0/g \) = ratio of the floor acceleration to the acceleration of gravity; acceleration limit \(f_n \) = natural frequency of floor structure

\(P_0 \) = constant force equal to 0.29 kN (65 lb.) for floors and 0.41 kN (92 lb.) for footbridges

Steel Framed Floor System

- The combined Beam or joist and girder panel system
- Spring in parallel (a & b) or in series (c & d)

System frequency

\[
\frac{1}{f_n^2} = \frac{1}{f_j^3} + \frac{1}{f_g^3}
\]

\(f_s \) = 0.18 \sqrt{\frac{8}{(\Delta + \Delta_\delta)}}

Equivalent panel weight

\[
W = \frac{\Delta_j}{\Delta_j + \Delta_\delta} W_j + \frac{\Delta g}{\Delta_j + \Delta_\delta} W_g
\]
Design Guidelines

• Natural Frequency (Lateral Vibration)
 – Step frequency ½ vertical
 – 1996 British Standard BS 6399
 • 10% vertical load
 – Per ARUP research
 • \(f \geq 1.3 \) Hz
 – Rule of thumb
 • Lateral limits ½ vertical limits

Design Guidelines

• Stiffening
 – Uneconomical
 – Unsightly

• Damping
 – Inherent damping \(\leq 1\% \)
 – Mechanical damping devices

Damping

• Coulomb Damping

\[
F_d = mx'' + kx
\]

\[
x = \left(x_o - \frac{F_d}{k}\right) \cos \omega t + \frac{F_d}{k}
\]

\[
x_{t=\pi/\omega} = -x_o + \frac{2F_d}{k}
\]

Damping

• Viscous Damping

\[
x(t) = x_{max} e^{-\zeta\omega t} \sin(\omega_d t + \phi)
\]

\[
\zeta = \frac{1}{2n\pi} \ln \left(\frac{1}{\delta}\right)
\]

Welded steel, prestressed concrete, well detailed reinforced concrete. \(0.02 \leq \zeta \leq 0.03 \)

Reinforced concrete with considerable cracking. \(0.03 \leq \zeta \leq 0.05 \)
Damping

- Mechanical dampers
 - Active dampers (not discussed here)
 - Expensive
 - Complicated
 - No proven examples for bridges (prototypes currently being tested for seismic damping)

Damping

- Mechanical dampers
 - Passive dampers
 - Viscous Dampers
 - Tuned Mass Dampers (TMDs)
 - Viscoelastic Dampers
 - Tuned Liquid Dampers (TLDs)

Viscous Dampers

\[F_D = c(x')^\eta \]
Dampers

Tuned mass damper

\[\beta_s = \frac{1}{2} \sqrt{\frac{m}{M}} \]

Ex) Consider mass ratio = 0.01
\[\beta_s = 0.05 \] (5% damping)

Dampers

Viscoelastic Dampers

Comparison of Damper Devices

(1) Tuned mass dampers
(2) Liquid column vibration absorbers
(3) Tuned liquid column dampers

TMD/TLD: additional mass generating counteracting inertia forces
Tuned Mass Damper of Taipei 101

Application of Tuned Mass Damper

The TMD under testing of walking & jumping in the airport

The TMD used in the passenger foot-bridge

Based Isolation System

Case Study: Millennium Bridge

- Crosses River Thames, London, England
- 474’ main span, 266’ north span, 350’ south span

- Superstructure supported by lateral supporting cables (7’ sag)
- Bridge opened June 2000, closed 2 days later, nicknamed “Wobbly Bridge”
Millennium Bridge
• Severe lateral resonance was noted (0.25g)
• Predominantly noted during 1st mode of south span (0.8 Hz) and 1st and 2nd modes of main span (0.5 Hz and 0.9 Hz)
• Occurred only when heavily congested
• Phenomenon called “Synchronous Lateral Excitation”

Millennium Bridge
• Possible solutions
 – Stiffen the bridge
 • Too costly
 • Affected aesthetic vision of the bridge
 – Limit pedestrian traffic
 • Not feasible
 – Active damping
 • Complicated
 • Costly
 • Unproven
 – Passive damping

Millennium Bridge
• Passive Dampers
 – 37 viscous dampers installed
 – 19 TMDs installed

Millennium Bridge
• Results
 – Provided 20% critical damping.
 – Bridge was reopened February, 2002.
 – Extensive research leads to eventual updating of design code.