THE AASHTO LRFD SPECIFICATIONS
1.0 INTRODUCTION
1.1 Limit State
1.2. Load Combinations
1.3. Design Vehicle Live Load
1.4. Fatigue Load
1.5. \quad Impact (Dynamic Load Allowance $=\mathbf{I M}$)
1.6. Wind
1.7. Distribution Factor
2.0 STEEL STRUCTURES
2.1 Steel Material
2.2 Fatigue and Fracture Limit State
2.3 Resistance Factor
2.4 Tension Members
2.5 Compression Members
2.6 I-Section Flexural Members
2.7 Cross-Section Proportion Limits
2.8 Constructibility
2.9 Service Limit State (Permanent Deformations)
210 Fatigue and Fracture Limit State
2.11 Strength Limit State
2.12 Flexural Resistance-Composite Sections in Positive Flexure
2.13 Composite Sections in Negative Flexure and Noncomposite Sections
2.14 Shear Resistance
2.15 Shear Connectors
2.16 Transverse Stiffeners
2.17 Bearing Stiffeners
2.18 Longitudinal Stiffeners

PART 2

THE AASHTO LRFD SPECIFICATIONS

1.0 INTRODUCTION

The AASHTO LRFD Specifications are written based on probabilistic limit state theory with several load combinations listed. These load combinations correspond to four limit states, Service, Fatigue, Fracture, Strength and Extreme-Event.

Service limit states are restrictions on stress, deformation and crack width under regular service conditions. They are intended to allow the bridge to perform acceptably for its service life.

Fatigue and fracture limit states are restrictions on stress range under regular service conditions reflecting the number of expected stress range excursions. They are intended to limit crack growth under repetitive loads to prevent fracture during the design life of the bridge.

Strength limit states are intended to ensure that strength and stability, both local and global, are provided to resist the statistically significant load combinations that a bridge will experience in its design life. Extensive distress and structural damage may occur under strength limit states, but overall structural integrity is expected to be maintained.

Extreme event limit states are intended to ensure the structural survival of a bridge during a major earthquake, or when collided by a vessel, vehicle or ice flow, or where the foundation is subject to the scour which would accompany a flood of extreme recurrence, usually considered to be 500 years. They are considered to be unique occurrences whose return period is significantly greater than the design life of the bridge.

1.1 Limit State

Definition: A condition beyond which the bridge or component ceases to satisfy the provisions for which it was designed.

Requirement - $\eta_{i} \gamma_{i} Q_{i} \leq \phi R_{n}=R_{r}$
(LRFD Eq. 1.3.2.1-1)
(a) For loads for which a maximum value of γ_{i} is appropriate:

$$
\begin{equation*}
\eta_{i}=\eta_{D} \eta_{R} \eta_{I} \geq 0.95 \tag{LRFDEq.1.3.2.1-2}
\end{equation*}
$$

(b) For loads for which a minimum value of γ_{i} is appropriate:

$$
\begin{equation*}
\eta_{i}=1 / \eta_{D} \eta_{R} \eta_{I} \leq 1.0 \tag{LRFDEq.1.3.2.1-3}
\end{equation*}
$$

$$
\text { (1) } \begin{aligned}
& \eta_{D}=\quad \text { Ductility factor } \\
& \geq 1.05 \text { Strength Limit State; non-ductile components and } \\
& \quad \text { connections } \\
&=1.00 \text { Strength Limit State; conventional designs and details } \\
& \quad \text { complying with these specifications } \\
& \quad \text { And all other Limit States } \\
& \geq 0.95 \text { Strength Limit State; additional ductility - enhancing } \\
& \quad \text { measures } \\
& \quad \text { Redundancy factor } \\
& \text { (2) } \eta_{R} \geq 1.05 \text { Strength Limit State; non-redundant members } \\
&=1.00 \text { Strength Limit State; conventional levels of redundancy } \\
& \quad \text { And all other Limit States } \\
& \geq 0.95 \text { Strength Limit State; exceptional levels of redundancy }
\end{aligned}
$$

(3) $\eta_{I}=\quad$ Operational Importance
\geq 1.05 Strength Limit State; important bridges ("critical" or "essential" bridges with earthquakes 475-year and 2500year return periods, respectively)
= 1.00 Strength Limit State; typical bridges
And all other Limit States
≥ 0.95 Strength Limit State; relatively less important bridges

Example: Major Bridge. Multi-girder Steel. (redundant member)

Fatigue	η	$=(1.0)(1.0)(1.0)$	$=1.0$
Strength	η	$=(1.0)(1.0)(1.05)$	$=1.05$
Others	η	$=(1.0)(1.0)(1.0)$	$=1.00$

Minor Bridge.

Fatigue	η	$=(1.0)(1.0)(1.0)$	$=1.00$
Strength	η	$=(1.0)(1.0)(0.95)$	$=0.95$
Others	η	$=(1.0)(1.0)(1.0)$	$=1.0$

1.2. Load Combinations

The permanent and transient loads and forces listed in Section 1.6 shall be considered in the various load combinations. The complete list is in Tables 1-1 and 1-2 (LRFD Table 3.4.1-1 \& Table 3.4.1-2).

$$
\begin{equation*}
Q=\sum \eta_{i} \gamma_{i} q_{i} \tag{LRFDEq.3.4.1-1}
\end{equation*}
$$

(1) Strength I - Normal vehicle, no wind

$$
\begin{aligned}
& \gamma_{P} D+1.75 \mathrm{~L}+\ldots \gamma_{P}- \\
& \mathrm{DC}=1.25-0.9 \\
& \mathrm{DW}=1.5-0.85
\end{aligned}
$$

(2) Strength II - Permit vehicle, no wind

$$
\gamma_{P} D+1.35 \mathrm{~L}+\ldots
$$

(3) Strength III - No live load, max. wind

$$
\gamma_{P} D+1.4 \mathrm{WS}+\ldots
$$

(4) Strength IV - Dead load only (for large bridge)
$\gamma_{P} \mathrm{D}+\ldots \quad \gamma_{P}-\mathrm{DC}=1.5-0.9$
(5) Strength V - Normal vehicle with 55mph Wind

$$
\gamma_{P} D+1.35 \mathrm{~L}+0.4 \mathrm{WS}+1.0 \mathrm{WL}+\ldots
$$

(6) Extreme I - Earthquake
$\gamma_{P} D+\gamma_{E Q} L+E Q$
(7) Extreme II - Ice load, collision and certain hydraulic events $\gamma_{P} D+0.5 \mathrm{~L}+\operatorname{Max} .(\mathrm{IC}, \mathrm{CT}, \mathrm{CV})+\ldots$
(8) Service I - Normal operation with 55 mph Wind $\mathrm{D}+\mathrm{L}+0.3 \mathrm{WS}+1.0 \mathrm{WL}+\ldots$
(9) Service II - Overload event, intended to control yielding of steel structures and slip of slip-critical connections due to vehicular live load.
$\mathrm{D}+1.3 \mathrm{~L}+\ldots$
(10) Service III - Tension in prestressed concrete superstructure

$$
\mathrm{D}+0.8 \mathrm{~L}+\ldots
$$

(11) Service IV - Tension is prestressed concrete substructure D + 0.7 WS + ...
(12) Fatigue - Fatigue event, stress range of a single design truck 0.75 L

So:
Superstructure - Check Strength I, II, Service I, II, (III,) Fatigue.
For large bridges, also check Strength III, IV, V, Extreme

Substructure - Check Strength I, II, III, IV, V, Extreme, Service I, II (,III). (Add WA + FR to all the conditions.)

TABLE 1-1 AASHTO LOAD COMBINATION TABLE \&
TABLE 1-2 AASHTO LOAD FACTORS FOR PERMANENT LOADS TABLE

Load Combination Limit State	$\begin{gathered} \hline \mathrm{DC} / \mathrm{DD} \\ \mathrm{DW} / \mathrm{EH} \\ \mathrm{EV} / \mathrm{ES} \\ \mathrm{EL} \\ \hline \end{gathered}$	LL/IM CE/BR PL/LS	WA	WS	WL	FR	$\begin{aligned} & \hline \hline \mathrm{TU} \\ & \mathrm{CR} \\ & \mathrm{SH} \end{aligned}$	TG	SE	Use One of These at a Time			
										EQ	IC	CT	CV
STRENGTH-I (unless noted)	γ_{P}	1.75	1.00	-	-	1.00	0.50/1.20	$\gamma_{\text {TG }}$	$\gamma_{\text {SE }}$	-	-	-	-
STRENGTH-II	γ_{P}	1.35	1.00	-	-	1.00	0.50/1.20	$\gamma_{\text {TG }}$	$\gamma_{\text {SE }}$	-	-	-	-
STRENGTH-III	γ_{P}	-	1.00	1.40	-	1.00	0.50/1.20	$\gamma_{\text {TG }}$	$\gamma_{\text {SE }}$	-	-	-	-
STRENGTH-IV	γ_{P}	-	1.00	-	1.0	1.00	0.50/1.20	$\gamma_{\text {TG }}$	$\gamma_{\text {SE }}$	-	-	-	-
STRENGTH-V	γ_{P}	1.35	1.00	0.40	1.0	1.00	0.50/1.20	$\gamma_{\text {TG }}$	$\gamma_{\text {SE }}$	-	-	-	-
EXTREME EVENT-I	γ_{P}	$\gamma_{\text {EQ }}$	1.00	-	-	1.00	-	-	-	1.00	-	-	-
EXTREME EVENT-II	γ_{P}	0.50	1.00	-	-	1.00	-	-	-	-	1.00	1.00	1.00
SERVICE-I	1.00	1.00	1.00	0.30	1.0	1.00	1.00/1.20	$\gamma_{\text {TG }}$	$\gamma_{\text {SE }}$	-	-	-	-
SERVICE-II	1.00	1.30	1.00	-	-	1.00	1.00/1.20	-	-	-	-	-	-
SERVICE-III	1.00	0.80	1.00	-	-	1.00	1.00/1.20	$\gamma_{\text {TG }}$	$\gamma_{\text {SE }}$	-	-	-	-
SERVICE-IV	1.00	-	1.00	0.70	-	1.00	1.00/1.20	-	1.0	-	-	-	-
FATIGUE-LL, IM \& CE ONLY	-	0.75	-	-	-	-	-	-	-	-	-	-	-

(AASHTO LRFD TABLE 3.4.1-2 - Load Factors for Permanent Loads, γ_{P})

Type of Load	Load Factor	
	Maximum	Minimum
DC: Component and Attachments	1.25	0.90
DC: Strength IV only	1.5	0.9
DD: Downdrag	Piles, α Tomlinson Method	1.4
	0.25	
	Piles, β Tomlinson Method	1.05
Drilled Shafts, O'Neill and Reese(1999) Method	1.25	0.30
DW: Wearing Surfaces and Utilities	1.50	0.65
EH: Horizontal Earth Pressure		
- Active	1.50	0.90
- At-Rest	1.35	0.90
- AEP for anchored walls	1.35	$\mathrm{~N} / \mathrm{A}$
EL: Locked-in Erection Stresses	1.00	1.00
EV: Vertical Earth Pressure		
- Overall Stability	1.00	$\mathrm{~N} / \mathrm{A}$
- Retaining Structure(Walls and Abutments)	1.35	1.00
- Rigid Buried Structure	1.30	0.90
- Rigid Frames	1.35	0.90
- Flexible Buried Structures other than Metal Box Culverts	1.95	0.90
- Flexible Metal Box Culverts	1.50	0.90
ES: Earth Surcharge	1.50	0.75

FIGURE 1-1 LRFD DESIGN VEHICULAR LIVE LOAD, HL-93

1.3. Design Vehicle Live Load

(LRFD Art. 3.6.1.2)
The vehicular live loading for LRFD is designated HL-93 (Figure 2-1), which consists of a combination of the:
(1) Design Truck + Design Lane
(2) Design Tandem + Design Lane
! For M^{-}or Reactions at interior piers, two 90% Design Trucks spaced at least 50 ft $+90 \%$ Design Lane

Multiple presence factors are not to be applied to the fatigue limit state for which one design truck is used, regardless of the number of design lanes. Thus, the factor 1.20 must be removed from the single lane distribution factors when they are used to investigate fatigue.

Number of Loaded Lanes	Multiple Presence Factors, m
1	1.20
2	1.00
3	0.85
>3	0.65

FIGURE 1-2 AASHTO LRFD MULTIPLE PRESENCE FACTORS

No. of Lanes
Loaded

1.4. Fatigue Load

Design truck only with constant 30^{\prime} between 32-kip axles.
(LRFD Art. 3.6.1.4)

$$
\begin{aligned}
\mathrm{ADTT}_{\text {single-lane }} & =\mathrm{p} \mathrm{x} \mathrm{ADTT} \\
\text { where } \mathrm{p} & =1.0 \quad \text { for one-lane bridge } \\
& =0.85 \quad \text { for two-lane bridge } \\
& =0.80 \quad \text { for three-lane or more bridge }
\end{aligned}
$$

Class of Highway ADTT/ADT

Rural Interstate	0.2
Urban Interstate	0.15

Other Rural 0.15
Other Urban 0.10

Example: Rural Interstate 4-lane bridge (Major)
$\mathrm{ADTT}_{\text {single-lane }}=(0.8)(0.2) \mathrm{ADT}=0.16 \mathrm{ADT}$
Rural 2-lane bridge (Minor)

$\mathrm{ADTT}_{\text {single-lane }}$	$=(0.85)(0.15) \mathrm{ADT} \quad=\quad 0.1275 \mathrm{ADT}$
$($ Max ADT $=20,000$ vehicles/lane/day $)$	

1.5. \quad Impact (Dynamic Load Allowance $=\mathbf{I M}$)
(LRFD Art. 3.6.2)

Deck Joints $-\quad$ All Limit States	$\mathrm{IM}=75 \%$
All other components, Fatigue and Fracture Limit State	$\mathrm{IM}=15 \%$
All other components, All other Limit States	$\mathrm{IM}=33 \%$

Applied to design truck or tandem only; not to be applied to pedestrian loads or to the design lane load.

1.6. Wind

(1) On structure: WS

> Windward Leeward
$\begin{array}{llll}\text { (a) Trusses, Columns } & 0.05 \mathrm{ksf} & 0.025 \mathrm{ksf} \quad * \mathrm{H} & \\ \text { and Arches } & (0.30 \mathrm{klf} \min .) & (0.15 \mathrm{klf} \min .) & \mathrm{V}_{\mathrm{D}}{ }^{2} / 10,000\end{array}$
(b) Beams
0.05 ksf
(0.30 klf min.)
(c) Large Flat Surfaces 0.04 ksf NA

A multi-girder bridge. 55 mph design Wind. $\mathrm{d}=5^{\prime}$

$$
\begin{aligned}
\mathrm{p} & =0.05 \times 5 \times 55^{2} / 10,000 \\
& =0.30 \times 55^{2} / 10,000
\end{aligned}=0.075625 \mathrm{klf} \quad=0.09075 \mathrm{klf} \leftarrow \text { govern }
$$

(2) On Vehicles $=\mathrm{WL} \quad(100 \mathrm{lb} / \mathrm{ft}$ acting 6 ft above the roadway, based on 55 mph$)$

1.7. Distribution Factor

(LRFD Art. 4.6.2.2)
(Steel I-Beams, Prestress Concrete, Concrete T-Beam on Concrete deck)

Definition: The AASHTO Specs permit a simplified method by modeling a longitudinal girder or a strip of unit width for obtaining longitudinal moments and shears due to live load. This beam is isolated from the rest of the structure and treated as a one-dimensional beam. This isolated beam is subjected to loads comprising one axle of the design vehicle multiplied by a load fraction " g." This " g " is defined as Axle Load Distribution Factor in LRFD Specs., which is different from the Wheel Load Distribution Factor defined in the AASHTO Specs.
A. Moment -
(1) Interior -
(Table 1-3 \& AASHTO LRFD Table 4.6.2.2.2b-1)
(a) One lane

$$
g_{\text {interior }}=0.06+\left(\frac{S}{14}\right)^{0.4}\left(\frac{S}{L}\right)^{0.3}\left(\frac{k_{g}}{12 L t_{s}^{3}}\right)^{0.1}
$$

(b) Two or more lanes

$$
\begin{aligned}
& g_{\text {interior }}=0.75+\left(\frac{S}{9.5}\right)^{0.6}\left(\frac{S}{L}\right)^{0.2}\left(\frac{k_{g}}{12 L t_{s}^{3}}\right)^{0.1} \\
& 3^{\prime}-6^{\prime \prime} \leq S \leq 16^{\prime}, \quad 4.5^{\prime \prime} \leq t_{s} \leq 12^{\prime \prime}, \quad 20^{\prime} \leq L \leq 240^{\prime}, \quad N_{b} \geq 4
\end{aligned}
$$

(2) Exterior -
(a) One lane Use level rule.
(b) Two or more lanes,

$$
\begin{aligned}
& g_{\text {exterior }}=e \times g_{\text {interior }} \\
& e=0.77+d_{e} / 9.1 \quad-1^{\prime}-0^{\prime \prime} \leq d_{e} \leq 5^{\prime}-6^{\prime \prime}
\end{aligned}
$$

FIGURE 1-3 ILLUSTRATION OF THE G-VALUE METHOD

TABLE 1-3 AASHTO TABLE FOR THE MOMENT DISTRIBUTION FACTOR OF THE INTERIOR BEAMS
(AASHTO LRFD Table 4.6.2.2.2b-1 - Distribution of Live loads Per Lane for Moment in interior Beams)

Type of Beams	Applicable Cross-Section from Table -4.6.2.2.1-1	Distribution Factors	Range of Applicability
Wood Deck on Wood or Steel Beams	a, 1	See Table 4.6.2.2.2a-1	
Concrete Deck on Wood Beams	1	Once Design Land Loaded: S/12.0 Two or More Design Lanes Loaded: S/10.0	$\mathrm{S} \leq 6.0$
Concrete Deck, Filled Grid, Partially Filled Grid or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete Beams; Concrete T-Beams, T- and Double T-Sections	a, e, k and also i, j if sufficiently connected to act as a unit	One Design Lane Loaded: $0.06+\left(\frac{S}{14}\right)^{0.4}\left(\frac{S}{L}\right)^{0.3}\left(\frac{K_{g}}{12.0 L t_{s}^{3}}\right)^{0.1}$ Two or More Design Lanes Loaded: $0.075+\left(\frac{S}{9.5}\right)^{0.6}\left(\frac{S}{L}\right)^{0.2}\left(\frac{K_{g}}{12.0 L t_{s}^{3}}\right)^{0.1}$	$\begin{aligned} & 3.5 \leq S \leq 16.0 \\ & 4.5 \leq t_{s} \leq 12.0 \\ & 20 \leq L \leq 240 \\ & N_{b} \geq 4 \\ & 10,000 \leq \mathrm{K}_{\mathrm{g}} \leq \\ & 7,000,000 \end{aligned}$
		Use lesser of the values obtained from the equation above with $N_{b}=3$ or the lever rule.	$N_{b}=3$
Cast-in-Place Concrete Multicell Box	d	One Design Lane Loaded: $\left(1.75+\frac{S}{3.6}\right)\left(\frac{1}{L}\right)^{0.35}\left(\frac{1}{N_{c}}\right)^{0.45}$	$\begin{aligned} & 7.0 \leq S \leq 13.0 \\ & 60 \leq L \leq 240 \\ & N_{c} \geq 3 \\ & \text { If } N_{c}>8 \text { use } \end{aligned}$
		Two or More Design Lanes Loaded: $\left(\frac{13}{N_{c}}\right)^{0.3}\left(\frac{S}{5.8}\right)\left(\frac{1}{L}\right)^{0.25}$	$N_{c}=8$
Concrete Deck on Concrete Spread Box Beams	b, c	One Design Lane Loaded: $\left(\frac{S}{3.0}\right)^{0.35}\left(\frac{S d}{12.0 L^{2}}\right)^{0.25}$ Two ore More Design Lanes Loaded: $\left(\frac{S}{6.3}\right)^{0.6}\left(\frac{S d}{12.0 L^{2}}\right)^{0.125}$	$\begin{aligned} & 6.0 \leq S \leq 18.0 \\ & 20 \leq L \leq 140 \\ & 18 \leq d \leq 65 \\ & N_{b} \geq 3 \end{aligned}$
		Use Lever Rule	$S>18.0$

TABLE 1-3 AASHTO TABLE FOR THE MOMENT DISTRIBUTION FACTOR OF THE INTERIOR BEAMS
(Continued)

Type of Beams	Applicable Cross-Section from Table -4.6.2.2.1-1	Distribution Factors	Range of Applicability
Concrete Beams Used in MultiBeam Decks	g if sufficiently connected to act as a unit	One Design Lane Loaded: $k\left(\frac{b}{33.3 L}\right)^{0.5}\left(\frac{I}{J}\right)^{0.25}$ where: $k=2.5\left(N_{b}\right)^{-0.2} \geq 1.5$ Two or More Design Lanes Loaded: $k\left(\frac{b}{305}\right)^{0.6}\left(\frac{b}{12.0 L}\right)^{0.2}\left(\frac{I}{J}\right)^{0.06}$	$\begin{aligned} & 35 \leq b \leq 60 \\ & 20 \leq L \leq 120 \\ & 5 \leq N_{b} \leq 20 \end{aligned}$
		Regardless of Number of Loaded Lanes: S/D where: $\begin{aligned} & C=K(W / L) \\ & D=11.5-N_{L}+1.4 N_{L}(1-0.2 C)^{2} \\ & \quad \text { when } C \leq 5 \\ & D= 11.5-N_{L} \text { when } C>5 \\ & K= \sqrt{\frac{(1+\mu) I}{J}} \end{aligned}$ for preliminary design, the following value of K may be used:	$\begin{aligned} & \text { Skew } \leq 45^{\circ} \\ & N_{L} \leq 6 \end{aligned}$
Open Steel Gird Deck on Steel Beams	a 	One Design Lane Loaded: $\begin{array}{\|l} S / 7.5 \text { if } t_{g}<4.0 \mathrm{IN} \\ S / 10.0 \text { if } t_{g} \geq 4.0 \mathrm{IN} \end{array}$ Two or More Design Lanes Loaded: $\begin{array}{\|l} S / 8.0 \text { if } t_{g}<4.0 \mathrm{IN} \\ S / 10.0 \text { if } t_{g} \geq 4.0 \mathrm{IN} \\ \hline \end{array}$	$S \leq 6.0 \mathrm{FT}$ $S \leq 10.5 \mathrm{FT}$
Concrete deck on Multiple Steel Box Girders	b, c	Regardless of Number of Loaded Lanes: $0.05+0.85 \frac{N_{L}}{N_{b}}+\frac{0.425}{N_{L}}$	$0.5 \leq \frac{N_{L}}{N_{b}} \leq 1.5$

TABLE 1-4 AASHTO TABLE FOR THE MOMENT DISTRIBUTION FACTOR OF THE
EXTERIOR BEAMS (AASHTO LRFD Table 4.6.2.2.2d-1)

Type of Superstructure	Applicable CrossSection from Table 4.6.2.2.1-1	One Design Lane Loaded	Two or More Design Lanes Loaded	Range of Applicability
Wood Deck on Wood or Steel Beams	a, 1	Lever Rule	Lever Rule	N/A
Concrete Deck on Wood	1	Lever Rule	Lever Rule	N/A
Concrete Deck, Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete Beams; Concrete T-Beams, T and Double T sections	$\mathrm{a}, \mathrm{e}, \mathrm{k}$ and alsoi, jif sufficientlyconnected to act as aunit	Lever Rule	$\begin{gathered} g=e g_{\text {interior }} \\ e=0.77+\frac{d_{e}}{9.1} \end{gathered}$	$-1.0 \leq d_{e} \leq 5.5$
			Use lesser of the values obtained from the equation above with $N_{b}=3$ or the lever rule.	$N_{b}=3$
Cast-in-PlaceConcrete Multi CellBox	d	$g=\frac{W_{e}}{14}$	$g=\frac{W_{e}}{14}$	$W_{e} \leq S$
		Or the provisions for a wholewidth design specified in Article 4.6.2.2.1		
Concrete Deck on Concrete Spread Box Beams	b, c	Lever Rule	$\begin{gathered} g=e g_{\text {interior }} \\ e=0.97+\frac{d_{e}}{28.5} \end{gathered}$	$\begin{gathered} 0 \leq d_{e} \leq 4.5 \\ 6.0<S \leq 18.0 \end{gathered}$
			Use Lever Rule	$S>18.0$
Concrete Box Beams Used in Multi-Beam Decks	f, g	Lever Rule	$\begin{gathered} g=e g_{\text {interior }} \\ e=1.04+\frac{d_{e}}{25} \end{gathered}$	$-1.0 \leq d_{e} \leq 2.0$
Concrete Beams other than Box Beams Used in Multi-Beam Decks	h	Lever Rule	Lever Rule	N/A
	i, j if connected only enough to prevent relative vertical displacement at the interface			
Open Steel Gird Deck on Steel Beams	a	Lever Rule	Lever Rule	N/A
Concrete Deck on Multiple Steel Box Girders	b, c	As	cified in Table 4.6.2.	2.2b-1

(3) Reduction on skew supports. (Table 1-5 \& AASHTO LRFD Table 4.6.2.2.2e-1)

$$
R=1-c_{l}(\tan 2)^{1.5}
$$

$$
c_{1}=0.25\left(\frac{k_{g}}{12 L t_{s}^{3}}\right)^{0.25}\left(\frac{S}{L}\right)^{0.5}
$$

if

$$
\begin{aligned}
& 2<30^{\circ} \text { then } \mathrm{c}_{1}=0.0 \\
& 2>60^{\circ} \text { use } 2=60^{\circ}
\end{aligned}
$$

$$
30^{\circ} \leq \theta \leq 60^{\circ}, 3.5^{\prime} \leq S \leq 16.0^{\prime}, 20^{\prime} \leq L \leq 240^{\prime}, N_{b} \geq 4
$$

TABLE 1-5 AASHTO TABLE FOR THE MOMENT DISTRIBUTION FACTOR ON SKEWED SUPPORTS
(AASHTO LRFD Table 4.6.2.2.2e-1 - Reduction of Load Distribution Factors for Moment in Longitudinal Beams on Skewed Supports)

Type of Superstructure	Applicable CrossSection from Table 4.6.2.2.1-1	Any Number of Design Lanes Loaded	Range of Applicability
Concrete Deck, Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete Beams; Concrete T-Beams, T or Double T Section	$\mathrm{a}, \mathrm{e}, \mathrm{k}$ i, j if sufficiently connected to act as a unit	$1-c_{1}(\tan \theta)^{1.5}$ $c_{1}=0.25\left(\frac{K_{g}}{12.0 L t_{s}^{3}}\right)^{0.25}\left(\frac{S}{L}\right)^{0.5}$ If $\theta<30^{\circ}$ then $c_{1}=0.0$ If $\theta>60^{\circ}$ use $\theta=60^{\circ}$	$\begin{gathered} 30^{\circ} \leq \theta \leq 60^{\circ} \\ 3.5 \leq S \leq 16.0 \\ 20 \leq L \leq 240 \\ N_{b} \geq 4 \end{gathered}$
Concrete Deck on concrete Spread Box Beams, Cast-in-Place Multicell Box Concrete Beams, and Double T Sections used in Multi-Beam Decks	b, c, d,f, g	$1.05-0.25 \tan \theta \leq 1.0$ if $\theta>60^{\circ}$ use $\theta=60^{\circ}$	$0 \leq \theta \leq 60^{\circ}$

$d_{s}=\frac{-92.8}{38.75}-2.39 \mathrm{in}$.

$$
\begin{array}{ll}
d_{\text {TOP OF STEEL }}=18.75-23.9=21.14 \mathrm{in.} & d_{\text {BOT OF STEEL }}=18.88-2.39=16.49 \mathrm{in.} \\
S_{\text {TOP OF STEEL }}=\frac{9,280}{21.14}=439.0 \mathrm{in.}^{3} & S_{\text {BOT OF STEEL }}=\frac{9,280}{16.49}=562.8 \mathrm{in.}^{3}
\end{array}
$$

$$
e_{g}=\frac{8.0}{2}+2.0+21.14-0.75=26.39 \text { in. } \quad n=8
$$

$$
K_{g}=n\left(I+A e_{g}^{2}\right)=8\left(9,280+38.75(26.39)^{2}\right)=290,134 \mathrm{in}^{4}
$$

$$
g_{\text {interior }}=0.06+\left(\frac{S}{14}\right)^{0.4}\left(\frac{S}{L}\right)^{0.3}\left(\frac{k_{g}}{12 L t_{s}^{3}}\right)^{0.1}=0.484 \text { lanes }
$$

(for this case two lane loaded govens where g interior $=0.698$ lanes
Exterior Girder - Strength Limit State
$D F=\frac{7.0}{10.0}=0.700 \quad$ (use the level rule for one lane loaded)
Multiple presence factor $m=1.2$ (Table 3.6.1.1.2-1)
$1.2(0.700)=0.840$ lanes
B. Shear -
(1) Interior -
(a) One lane $\quad g_{\text {interior }}=0.36+S / 25$
(b) Two or more lanes, $\quad g_{\text {interior }}=0.2+S / 12-(S / 35)^{2.0}$

$$
3^{\prime}-5^{\prime \prime} \leq S \leq 16^{\prime}-0^{\prime \prime}, 20^{\prime} \leq L \leq 240^{\prime}, 4.5^{\prime \prime} \leq t_{s} \leq 12.0^{\prime \prime}, N_{b} \geq 4
$$

(2) Exterior -
(Table 1-7 \& AASHTO LRFD Table 4.6.2.2.3b-1)
(a) One lane. Use level rule.
(b) Two or more lanes $\quad g_{\text {exterior }}=e \mathrm{H} g_{\text {interior }}$

$$
e=0.6+d_{e} / 10 \quad-1.0^{\prime} \leq d_{e} \leq 5^{\prime}-6^{\prime \prime}
$$

(3) Correction on the obtuse corner -
(Table 1-8 \& AASHTO LRFD Table 4.6.2.2.3c-1)

$$
\begin{aligned}
& g=1+0.2\left(\frac{12 L t_{s}^{3}}{k_{g}}\right)^{0.3} \tan \theta \\
& \\
& \quad 0^{\circ} \leq \theta \leq 60^{\circ}, 3^{\prime}-5^{\prime \prime} \leq S \leq 16^{\prime}-0^{\prime \prime}, 20^{\prime} \leq L \leq 240^{\prime}, N_{b} \geq 4
\end{aligned}
$$

TABLE 1-6 AASHTO TABLE FOR THE SHEAR DISTRIBUTION FACTOR OF THE INTERIOR BEAMS

(AASHTO LRFD Table 4.6.2.2.3a-1 - Distribution of Live Load Per Lane for Shear in Interior Beams)

Type of Superstructure	Applicable CrossSection from Table 4.6.2.2.1-1	One Design lane Loaded	Two or More Design Lanes Loaded	Range of Applicability
Wood Deck on Wood or Steel Beams	a, 1	See Table 4.6.2.2.2a-1		
Concrete Deck on Wood Beams	1	Lever Rule	Lever Rule	N/A
Concrete Deck, filled Grid, Partially Filled Grid, or Unfilled Grid Deck	a, e, k and also i, j if sufficiently connected to act as a unit	$0.35+\frac{S}{25.0}$	$0.2+\frac{S}{12}-\left(\frac{S}{3}\right)^{2.0}$	$\begin{aligned} & 3.5 \leq S \leq 16.0 \\ & 20 \leq L \leq 240 \\ & 4.5 \leq t_{s} \leq 12.0 \\ & 10,000 \leq K_{g} \leq 7,000,000 \\ & N_{b} \geq 4 \\ & \hline \end{aligned}$
Composite with Reinforced Concrete Slab on Steel or Concrete Beams; Concrete T-Beams, T- and Double T-Sections		Lever Rule	Lever Rule	$N_{b}=3$
Cast-in-Place Concrete Multicell Box	d	$\left(\frac{S}{9.5}\right)^{0.6}\left(\frac{d}{12.0 L}\right)^{0.1}$	$\left(\frac{S}{7.3}\right)^{0.6}\left(\frac{d}{12.0 L}\right)^{0.1}$	$\begin{aligned} & \hline 6.0 \leq S \leq 13.0 \\ & 20 \leq L \leq 240 \\ & 35 \leq t_{s} \leq 110 \\ & N_{c} \geq 3 \\ & \hline \end{aligned}$
Concrete Deck on Concrete Spread Box Beams	b, c	$\left(\frac{S}{10}\right)^{0.6}\left(\frac{d}{12.0 L}\right)^{0.1}$	$\left(\frac{S}{7.4}\right)^{0.8}\left(\frac{d}{12.0 L}\right)^{0.1}$	$\begin{aligned} & 6.0 \leq S \leq 18.0 \\ & 20 \leq L \leq 140 \\ & 18 \leq d \leq 65 \\ & N_{b} \geq 3 \end{aligned}$
		Lever Rule	Lever Rule	$S>18.0$
Concrete Box Beams Used in Multi-Beam Decks	f, g	$\left(\frac{b}{130 L}\right)^{0.15}\left(\frac{I}{J}\right)^{0.05}$	$\begin{gathered} \left(\frac{b}{156}\right)^{0.4}\left(\frac{b}{12.0 L}\right)^{0.1}\left(\frac{I}{J}\right)^{0.05}\left(\frac{b}{48}\right) \\ \frac{b}{48}>1.0 \end{gathered}$	$\begin{array}{\|l\|} \hline 35 \leq b \leq 60 \\ 20 \leq L \leq 120 \\ 5 \leq N_{b} \leq 20 \\ 25,000 \leq J \leq 610,000 \\ 40,000 \leq I \leq 610,000 \\ \hline \end{array}$
Concrete Beams Other Than Box Beams Used in Multi-Beam Decks	h	Lever Rule	Lever Rule	N/A
	i, j if connected only enough to prevent relative vertical displacement at the interface			
Open Steel Grid Deck on Steel Beams	a	Lever Rule	Lever Rule	N/A
Concrete Deck on Multiple Steel Box Beams	b, c	As specified in Table 4.6.2.2.2b-1		

TABLE 1-7 AASHTO TABLE FOR THE SHEAR DISTRIBUTION FACTOR OF THE

 EXTERIOR BEAMS(AASHTO LRFD Table 4.6.2.2.3b-1 - Distribution of Live Load Per Lane for Shear in Exterior Beams)

Type of Superstructure	Applicable CrossSection from Table 4.6.2.2.1-1	One Design Lane Loaded	Two or more Design Lanes Loaded	Range of Applicability
Wood Deck on Wood or Steel Beams	a, 1	Lever Rule	Lever Rule	N/A
Concrete Deck on Wood Beams	1	Lever Rule	Lever Rule	N/A
Concrete Deck, Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete Beams; Concrete T-Beams, T- and Double TBeams	a, e, k and also i, j if sufficiently connected to act as a unit	Lever Rule	$\begin{array}{r} g=e g_{\text {interior }} \\ e=0.6+\frac{d_{e}}{10} \\ \hline \end{array}$	$-1.0 \leq d_{e} \leq 5.5$
			Lever Rule	$N_{b}=3$
Case-in-Place Concrete Multicell Box	d	Lever Rule	$\begin{aligned} & g=e g_{\text {interior }} \\ & \quad e=0.64+\frac{d_{e}}{12.5} \end{aligned}$	$-2.0 \leq d_{e} \leq 5.0$
		Or the provisions for a whole-width design specified in Article 4.6.2.2.1		
Concrete Deck on Concrete Spread Box Beams	b, c	Lever Rule	$\begin{array}{r} g=e g_{\text {interior }} \\ e=0.8+\frac{d_{e}}{10} \end{array}$	$0 \leq d_{e} \leq 4.5$
			Lever Rule	$S>18.0$
Concrete Box Beams Used in Multi-Beam Decks	f, g	$\begin{aligned} & g=e g_{\text {interior }} \\ & \quad e=1.25+\frac{d_{e}}{20} \geq 1.0 \end{aligned}$	$\begin{aligned} & g=e g_{\text {interior }} \\ & 48 / b \leq 1.0 \\ & e=1+\left(\frac{d_{e}+\frac{b}{12}-2.0}{40}\right)^{0.5} \geq 1.0 \end{aligned}$	$\begin{aligned} & d_{e} \leq 2.0 \\ & 35<\mathrm{b}<60 \end{aligned}$
Concrete Beams Other Than Box Beams Used in MultiBeam Decks	h	Lever Rule	Lever Rule	N/A
	i, j if connected only enough to prevent relative vertical displacement at the interface			
Open Steel Grid Deck on Steel Beams	a	Lever Rule	Lever Rule	N/A
Concrete Deck on Multiple Steel Box Beams	b, c	As specified in Table 4.6.2.2.2b-1		

TABLE 1-8 AASHTO TABLE FOR THE DISTRIBUTION CORRECTION FACTOR FOR SUPPORT SHEAR OF THE OBTUSE CORNER
(AASHTO LRFD Table 4.6.2.2.3c-1 - Correction Factors for Load Distribution Factors for Support Shear of the Obtuse Corner)

Type of Superstructure	Applicable Cross-Section from Table 4.6.2.2.1-1	Correction Factor	Range of Applicability
Concrete Deck, Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete Beams; Concrete T-Beams, T- and Double T Section	$\mathrm{a}, \mathrm{e}, \mathrm{k}$ i, j if sufficiently connected to act as a unit	$1.0+0.20\left(\frac{12.0 L t_{s}^{3}}{K_{g}}\right)^{0.3} \tan \theta$	$\begin{aligned} & 0^{\circ} \leq \theta \leq 60^{\circ} \\ & 3.5 \leq S \leq 16.0 \\ & 20 \leq L \leq 240 \\ & N_{b} \geq 4 \end{aligned}$
Cast-in-Place Concrete Multicell Box	d	$1.0+\left[0.25+\frac{12.0 L}{70 d}\right] \tan \theta$	$\begin{array}{\|l\|} \hline 0^{\circ} \leq \theta \leq 60^{\circ} \\ 6.0 \leq S \leq 13.0 \\ 20 \leq L \leq 240 \\ 35 \leq d \leq 110 \\ N_{c} \geq 3 \\ \hline \end{array}$
Concrete Deck on Spread Concrete Box Beams	b, c	$1.0+\frac{\sqrt{\frac{L d}{12.0}}}{6 S} \tan \theta$	$\begin{array}{\|l\|} \hline 0^{\circ} \leq \theta \leq 60^{\circ} \\ 6.0 \leq S \leq 11.5 \\ 20 \leq L \leq 140 \\ 18 \leq d \leq 65 \\ N_{b} \geq 3 \\ \hline \end{array}$
Concrete Box Beams Used in Multi-Beam Decks	f, g	$1.0+\frac{12.0 L}{90 d} \sqrt{\tan \theta}$	$\begin{aligned} & 0^{\circ} \leq \theta \leq 60^{\circ} \\ & 20 \leq L \leq 120 \\ & 17 \leq d \leq 60 \\ & 35 \leq b \leq 60 \\ & 5 \leq N_{b} \leq 20 \end{aligned}$

2.0 STEEL STRUCTURES

2.1 Steel Material

. 2 Fatigue and Fracture Limit State

The fatigue provisions of the Steel Structures Section of the AASHTO LRFD Specification for Highway Bridge Design combine aspects of both the AASHTO Standard Specification for Highway Bridges (AASHTO 1996) and the Guide Specification for Fatigue Design of Steel Bridges (AASHTO 1989). These provisions are based upon two principles of fatigue of welded steel details:

- If all of the stress ranges that a welded steel detail experiences in its lifetime are less than the constant-amplitude fatigue threshold (i.e., the maximum stress range is less than the threshold), the detail will not experience fatigue crack growth; otherwise
- the fatigue life of the detail can be estimated considering an effective (weighted average of sorts) stress range, which represents all of the varying magnitudes of stress range experienced by the detail during its lifetime.

These two principles result in two branches in the flow of fatigue design, infinite life design and finite life design.

Fatigue details for bridges with higher truck traffic volumes are designed for infinite life. This practice is carried over from both the Standard Specifications and the Guide Specifications. Bridges with lower truck traffic volumes are designed for the fatigue life required by the estimated site-specific traffic volumes projected for their lifetimes.

$$
\begin{equation*}
\gamma(\Delta f) \leq(\Delta F)_{n} \tag{LRFDEq.6.6.1.2.2-1}
\end{equation*}
$$

(1) Infinite Fatigue Life (When the design stress range is less than one-half of the constantamplitude fatigue threshold, the detail will theoretically provide infinite life.)
Detail Category $\quad 75$-year (ADTT) sL equivalent to Infinite Life
A
535
B
865
B^{\prime}
1035
C
1290
C^{\prime}
745
D
1875
E
3545
E^{\prime}
6525
(2) Finite Fatigue Life

$$
F n=\Delta F=\left(\frac{A}{N}\right)^{\frac{1}{3}} \geq \frac{1}{2}(\Delta F)_{T H} ; \quad N=(365)(75)(n)(\mathrm{ADTT})_{\text {single-lane }}
$$

Category	A	$(\Delta \mathrm{F})_{\mathrm{TH}}(\mathrm{ksi})$	n		
A	2.5×10^{10}	24		$\mathrm{P}>40^{\prime}$	$\mathrm{P}<40^{\prime}$
B	1.2×10^{10}	16	Simple-span	1.0	2.0
$\mathrm{~B}^{\prime}$	6.1×10^{9}	12			
C	4.4×10^{9}	10	Continuous		
C^{\prime}	4.4×10^{9}	12	(1) Near Interior	1.5	2.0
D	2.2×10^{9}	7	Support		
E	1.1×10^{9}	4.5	(2) Elsewhere	1.0	2.0
E^{\prime}	3.9×10^{8}	2.6			

Example: $(\mathrm{ADTT})_{\text {single-lane }}=1500,80^{\prime}-80^{\prime}$ Continuous bridge.

Category C.

$\mathrm{N}=$	$=(365)(75)(1.5)(1500)$	$=6.159 \mathrm{H} \mathrm{10} 0^{7}$ -	Interior support
	(1.0)		elsewhere
$\mathrm{F} \quad=$	$=\left(4.4 \times 10^{9} / 6.159 \times 10^{7}\right)^{1 / 3}$	$=4.15 \mathrm{ksi}$	Interior support
	/4.106	$=4.75 \mathrm{ksi}$	elsewhere
$1 / 2(\Delta \mathrm{~F})_{\text {TH }}$	$\mathrm{TH}=1 / 2(10)=$	5 ksi	governs
Use F	$=5 \mathrm{ksi}$		

FIGURE 2-1 AASHTO STRESS RANGE VS NUMBER OF CYCLES

FIGURE 2-2 AASHTO ILLUSTRATIVE EXAMPLES FOR FATIGUE DETAILS

2.3 Resistance Factor

(LRFD Art. 6.5.4.2)

For	flexure	ϕ_{f}	=	1.0
	shear	ϕ	$=$	1.0
	axial compression steel only	ϕ_{c}	$=$	0.9
	axial compression, composite	ϕ_{c}	$=$	0.9
	tension, fracture in net section	ϕ_{u}	$=$	0.80
	tension, yielding in gross section	ϕ_{y}	$=$	0.95

2.4 Tension Members

(1) Axial Tension $\quad P_{r}>\phi P_{n}$
where

$$
\left.\begin{array}{c}
P_{r}=\phi_{y} F_{y} A_{g} \\
P_{r}=\phi_{u} F_{u} A_{n} U
\end{array}\right\} \quad \text { lesser }
$$

(LRFD Eq. 6.8.2.1-1 \& -2)
where the reduction factor, U , may be taken as:

- for sections subjected to a tension load transmitted directly to each of the cross sectional elements by bolts or welds

$$
\mathrm{U}=1.0
$$

- for bolted connections
- for rolled I-shapes with flange widths not less than $2 / 3$ * depth, and structural tees cut from these shapes, connection is to the flanges and ≥ 3 fasteners $\mathrm{U}=0.90$
- for all other members and ≥ 3 fasteners
$\mathrm{U}=0.85$
- for all members with 2 fasteners
$\mathrm{U}=0.75$
- When a tension load is transmitted by fillet welds to some, but not all, elements of a cross-section, the weld strength shall control.
(2) Combined Axial Tension and Bending

$$
\begin{equation*}
-\quad \text { If } \mathrm{P}_{\mathrm{u}} / \mathrm{P}_{\mathrm{r}}<0.2 \tag{LRFDEq.6.8.2.3-1}
\end{equation*}
$$

$$
\frac{P_{u}}{2 P_{r}}+\left(\frac{M_{u x}}{M_{r x}}+\frac{M_{u y}}{M_{r y}}\right) \leq 1.0
$$

$-\quad$ If $\mathrm{P}_{\mathrm{u}} / \mathrm{P}_{\mathrm{r}} \geq 0.2$
(LRFD Eq. 6.8.2.3-2)

$$
\frac{P_{u}}{P_{r}}+\frac{8}{9}\left(\frac{M_{u x}}{M_{r x}}+\frac{M_{u y}}{M_{r y}}\right) \leq 1.0
$$

(3) Limiting Slenderness Ratio
(LRFD Art. 6.8.4)

- main members, subject to stress reversal
$\ell / r \leq 140$
- main members, not subject to stress reversal
$\ell / r \leq 200$
- bracing members
$\ell / r \leq 240$

2.5 Compression Members

(LRFD Art. 6.9)
Limitation of Plate -

- Slenderness of plates

$$
\begin{equation*}
\frac{b}{t} \leq k \sqrt{\frac{E}{F_{y}}} \tag{LRFDEq.6.9.4.2-1}
\end{equation*}
$$

where $\mathrm{k} \quad=0.56-$
Flanges and projecting legs or plates (one edge supported)

$$
\begin{array}{lll}
& =0.75- & \\
& =0.45- & \\
\text { Stems of rolled tees (one edge supported) } \\
\mathrm{k} \quad & =1.4-\quad & \text { Other projecting elements (one edge supported) } \\
& =1.49- & \\
& & \text { Box flanges and cover plates (two edges supported) } \\
& & \text { supported) }
\end{array}
$$

$$
=1.86-\quad \text { Perforated cover plates (two edges supported) }
$$

- Wall thickness of tube
- circular $\frac{D}{t} \leq 2.8 \sqrt{\frac{E}{F_{y}}}$
(LRFD Eq. 6.9.4.2-5)
- rectangular $\quad \frac{b}{t} \leq 1.7 \sqrt{\frac{E}{F_{y}}}$
(LRFD Eq. 6.9.4.2-6)

FIGURE 2-3 AASHTO LIMITING WIDTH-THICKNESS RATIOS

$\mathrm{b} / \mathrm{t} \leq 0.56 \sqrt{\frac{\mathrm{E}}{\mathrm{F}_{y}}}$
$b / \dagger \leq 1.40 \sqrt{\frac{E}{F_{y}}}$
$h / t_{w} \leq 1.49 \sqrt{\frac{E}{F_{y}}} \quad h / t_{w} \leq 1.49 \sqrt{\frac{E}{F_{y}}}$
(1) Axial Compression $\quad \mathrm{P}_{\mathrm{r}}=\phi \mathrm{P}_{\mathrm{n}}$
where $\mathrm{P}_{\mathrm{n}}=0.66^{\lambda} \mathrm{F}_{\mathrm{y}} \mathrm{A}_{\mathrm{s}} \quad$ for $\lambda \leq 2.25$
(LRFD Eq. 6.9.4.1-1)

$$
\begin{aligned}
& P_{n}=\frac{0.88 F_{y} A_{s}}{\lambda} \quad \text { for } \lambda>2.25 \\
& \lambda=\left(\frac{K \ell}{r_{s} \pi}\right)^{2} \frac{F_{y}}{E}
\end{aligned}
$$

For lateral support, in both directions, at their ends
(LRFD Art. 4.6.2.5)

$$
\begin{aligned}
\mathrm{K} & =0.75 \quad \text { for bolted or welded end } \\
& =0.875 \text { for pinned ends } \\
& =1.0 \quad \text { For single angles, regardless of end connection }
\end{aligned}
$$

(2) Combined Axial Compression and Bending

- If $\mathrm{P}_{\mathrm{u}} / \mathrm{P}_{\mathrm{r}}<0.2$

$$
\begin{equation*}
\frac{P_{u}}{2 P_{r}}+\left(\frac{M_{u x}}{M_{r x}}+\frac{M_{u y}}{M_{r y}}\right) \leq 1.0 \tag{LRFDEq.6.9.2.2-1}
\end{equation*}
$$

- If $\mathrm{P}_{\mathrm{u}} / \mathrm{P}_{\mathrm{r}} \geq 0.2$

$$
\begin{equation*}
\frac{P_{u}}{P_{r}}+\frac{8}{9}\left(\frac{M_{u x}}{M_{r x}}+\frac{M_{u y}}{M_{r y}}\right) \leq 1.0 \tag{LRFDEq.6.9.2.2-2}
\end{equation*}
$$

(3) Limiting Slenderness Ratio

- main members
$K \ell / r \leq 120$
- bracing members
$K \ell / r \leq 140$
(4) Composite column and Axial compression

$$
\begin{array}{cl}
\mathrm{P}_{\mathrm{n}}=0.66^{\lambda} \mathrm{F}_{\mathrm{e}} \mathrm{~A}_{\mathrm{s}} \text { for } \quad \lambda \leq 2.25 & \text { (LRFD Eq. 6.9.5.1-1) } \\
P_{n}=\frac{0.88 F_{e} A_{s}}{\lambda} \quad \text { for } \quad \lambda>2.25 & \text { (LRFD Eq. 6.9.5.1-2) } \\
\lambda=\left(\frac{K \ell}{r_{s} \pi}\right)^{2} \frac{F_{e}}{E_{e}} & \text { (LRFD Eq. 6.9.5.1-3) } \tag{LRFDEq.6.9.5.1-3}\\
F_{e}=F_{y}+C_{1} F_{y r}\left(\frac{A_{r}}{A_{s}}\right)+C_{2} f_{c}^{\prime}\left(\frac{A_{c}}{A_{s}}\right) & \text { (LRFD Eq. 6.9.5.1-4) } \\
E_{e}=E\left[1+\left(\frac{C_{3}}{n}\right)\left(\frac{A_{c}}{A_{s}}\right)\right] & \text { (LRFD Eq. 6.9.5.1-5) }
\end{array}
$$

Column Type	C_{1}	C_{2}	C_{3}
Concrete Filled tubing	1.0	0.85	0.4
Concrete encased shape	0.7	0.6	0.2

2.6 I-Section Flexural Members

2.6.1 Composite Sections

(1) Effective Width

2008: Interior - one-half the distance to the adjacent girder on each side of the component;
Exterior - one-half the distance to the adjacent girder plus the full overhang width.
(2) Yield Moment Resistance

$$
\mathrm{M}_{\mathrm{y}}=\mathrm{M}_{\mathrm{D} 1}+\mathrm{M}_{\mathrm{D} 2}+\mathrm{M}_{\mathrm{AD}}
$$

Solve for the M_{AD} from

$$
\begin{equation*}
F_{y}=\frac{M_{D 1}}{S_{N C}}+\frac{M_{D L}}{S_{L T}}+\frac{M_{A D}}{S_{S T}} \tag{LRFDD6.2.2-1}
\end{equation*}
$$

$\mathrm{S}_{\mathrm{NC}} \quad=\quad$ Non-composite section modulus
$\mathrm{S}_{\mathrm{ST}} \quad=\quad$ Short-term composite section modulus
$\mathrm{S}_{\mathrm{LT}} \quad=\quad$ Long-term composite section modulus
$\mathrm{M}_{\mathrm{D} 1}, \mathrm{M}_{\mathrm{D} 2} \& \mathrm{M}_{\mathrm{AD}} \quad=\quad$ Moments due to the factored loads
(3) Depth of Web in Compression

- \quad Elastic $\left(\mathrm{D}_{\mathrm{c}}\right)$
- \quad Positive flexure (distance from web top to elastic neutral axis)

$$
\begin{equation*}
D_{c}=\left[\frac{\left|f_{C}\right|}{\left|f_{C}\right|+f_{t}}\right] d-t_{f} \tag{LRFDD6.3.1-1}
\end{equation*}
$$

- \quad Negative flexure (distance from web bottom to elastic neutral axis) D_{c} may be computed for the section consisting of the steel girders plus the longitudinal reinforcement.
- \quad Plastic $\left(\mathrm{D}_{\mathrm{cp}}\right)$, Positive flexure (distance from web top to plastic neutral axis)
- The plastic natural axis is in the web.

$$
\begin{equation*}
D_{c p}=\frac{D}{2}\left[\frac{F_{y t} A_{t}-F_{y c} A_{c}-0.85 f_{c}^{\prime} A_{s}-F_{y r} A_{r}}{F_{y w} A_{w}}+1\right] \tag{LRFDD6.3.2-1}
\end{equation*}
$$

- All others, $\mathrm{D}_{\mathrm{CP}}=0$
- \quad Plastic $\left(\mathrm{D}_{\mathrm{cp}}\right)$, Negative flexure (distance from web bottom to plastic neutral axis)
- The plastic natural axis is in the web

$$
\begin{equation*}
D_{c p}=\frac{D}{2 A_{w} F_{y w}}\left(F_{y t} A_{t}+F_{y w} A_{w}+F_{y r} A_{r}-F_{y c} A_{c}\right) \tag{LRFDD6.3.2-2}
\end{equation*}
$$

- All others, $\mathrm{D}_{\mathrm{CP}}=\mathrm{D}$

Figure 2-4 Computation of Dc at sections in Positive Flexure

TABLE 2-1 AASHTO TABLE OF THE PLASTIC MOMENT FOR THE POSITIVE BENDING SECTIONS
(AASHTO LRFD Table D6.1-1 - Calculation of \bar{y} and M_{p} for Positive ending Sections)

| CASE | PNA | CONDITION | \bar{y} AND M_{p} |
| :--- | :--- | :--- | :--- | :--- |
| I | In Web | $P_{t}+P_{w} \geq P_{c}+P_{s}+P_{r b}+P_{r t}$ | $\bar{y}=\left(\frac{D}{2}\right)\left[\frac{\left.P_{t}-P_{c}-P_{s}-P_{r t}-P_{r b}+1\right]}{P_{w}}\right.$ |

TABLE 2-2 AASHTO TABLE OF THE PLASTIC MOMENT FOR THE NEGATIVE BENDING SECTIONS
(AASHTO LRFD Table D6.1-2 - Calculation of \bar{y} and $M_{\boldsymbol{p}}$ for Negative Bending Sections)

CASE	PNA	CONDITION	\bar{y} and M_{p}
I	In Web	$P_{c}+P_{w} \geq P_{t}+P_{r b}+P_{r t}$	$\bar{y}=\left(\frac{D}{2}\right)\left[\frac{P_{c}-P_{t}-P_{r t}-P_{r b}}{P_{w}}+1\right]$
			$M_{p}=\frac{P_{w}}{2 D}\left[\frac{\left.\bar{y}^{2}+(D-\bar{y})^{2}\right]+\left[P_{r t} d_{r t}+P_{r b} d_{r b}+P_{t} d_{t}+P_{c} d_{c}\right]}{}\right.$
II	In Top	$P_{c}+P_{w}+P_{t} \geq P_{r b}+P_{r t}$	$\bar{y}=\left(\frac{t_{t}}{2}\right)\left[\frac{P_{w}+P_{c}-P_{r t}-P_{r b}}{P_{t}}+1\right]$
	Flange		$M_{p}=\frac{P_{t}}{2 t_{t}}\left[\bar{y}^{2}+\left(t_{t}-\bar{y}\right)^{2}\right]+\left[P_{r t} d_{r t}+P_{r b} d_{r b}+P_{w} d_{w}+P_{c} d_{c}\right]$

2.6.2 Noncomposite Sections

Sections where the concrete deck is not connected to the steel section by shear connectors designed in this section shall be considered noncomposite sections.

Depth of web in compression for plastic:
If: $F_{y w} A_{w} \geq\left|F_{y c} A_{c}-F_{y t} A_{t}\right|$ Then

$$
D_{c p}=\frac{D}{2 A_{w} F_{y w}}\left(F_{y t} A_{t}+F_{y w} A_{w}-F_{y c} A_{c}\right)
$$

(LRFD Eq. D 6.3.2-4)

Otherwise

$$
D_{c p}=D
$$

2.7 Cross-Section Proportion Limits
(LRFD Art. 6.10.2)

Web Proportions	w/o longitudinal Stiffeners	$\frac{D}{t_{w}} \leq 150$	(LRFD Eq. D 6.10.2.1.1-1)
	w longitudinal Stiffeners	$\frac{D}{t_{w}} \leq 300$	(LRFD Eq. D 6.10.2.1.2-1)
Flange Proportions	Compression Flanges	$\begin{aligned} & \frac{b_{f}}{2 t_{f}} \leq 12.0 \\ & b_{f} \geq D / 6 \end{aligned}$	(LRFD Eq. D 6.10.2.2-1) (LRFD Eq. D 6.10.2.2-2)
	Tension Flanges	$\begin{aligned} & t_{f} \geq 1.1 t_{w} \\ & 0.1 \leq \frac{I_{y c}}{I_{y t}} \leq 10 \end{aligned}$	(LRFD Eq. D 6.10.2.2-3) (LRFD Eq. D 6.10.2.2-4)

2.8 Constructibility

(LRFD Art. 6.10.3)
(1) Flexural Requirement

Discretely Braced Flanges in Compression	$f_{b u}+f_{\ell} \leq \phi_{f} R_{h} F_{y c} \quad$ (LRFD Eq. 6.10.3.2.1-1)	For sections with slender webs, it shall not be checked when f_{ℓ} is equal to zero.
	$f_{b u}+\frac{1}{3} f_{\ell} \leq \phi_{f} R_{h} F_{y c} \quad$ (LRFD Eq. 6.10.3.2.1-2)	
	$f_{b u} \leq \phi_{f} F_{c r w} \quad$ (LRFD Eq. 6.10.3.2.1-3)	For sections with compact or noncompact webs, It shall not be checked.
Discretely Braced Flanges in Tension	$f_{b u}+f_{\ell} \leq \phi_{f} R_{h} F_{y t} \quad$ (LRFD Eq. 6.10.3.2.2-1)	
Continuously Braced Flanges in Tension or Compression	$f_{b u} \leq \phi_{f} R_{h} F_{y f} \quad \quad($ LRFD Eq. 6.10.3.2.3-1)	
Concrete Deck	The longitudinal tensile stress in a composite concrete deck due to the factored loads shall not exceed ϕf_{r} during critical stages of construction, unless longitudinal reinforcement is provided according to the provisions of LRFD Article 6.10.1.7.	f_{r} shall be taken as the modulus of rupture of the concrete determined as specified in LRFDArticle 5.4.2.6

(2) Shear Requirement

Interior panels of webs with transverse stiffeners, with or without longitudinal stiffeners, shall satisfy the following requirement during critical stages of construction:

$$
\begin{equation*}
V_{u} \leq \phi_{v} V_{c r} \tag{LRFDEq.6.10.3.3-1}
\end{equation*}
$$

2.9 Service Limit State (Permanent Deformations)

(LRFD Art. 6.10.4.2)
(1) For Composite:
a) For the top steel flange:

$$
\begin{equation*}
f_{f} \leq 0.95 R_{h} F_{y f} \tag{LRFDEq.6.10.4.2.2-1}
\end{equation*}
$$

b) For the bottom steel flange:

$$
\begin{equation*}
f_{f}+0.5 f_{\ell} \leq 0.95 R_{h} F_{v f} \tag{LRFDEq.6.10.4.2.2-2}
\end{equation*}
$$

(2) For Noncomposite:

$$
\begin{equation*}
f_{f}+0.5 f_{\ell} \leq 0.80 R_{h} F_{y f} \tag{LRFDEq.6.10.4.2.2-3}
\end{equation*}
$$

Except for composite sections in positive flexure, all sections shall satisfy:

$$
\begin{equation*}
f_{c} \leq F_{c r w} \tag{LRFDEq.6.10.4.2.2-4}
\end{equation*}
$$

2.10 Fatigue and Fracture Limit State

(LRFD Art. 6.10.5.3)

- The Fatigue load combination the fatigue live load shall follow Section 2.1.4 (LRFD Art. 3.6.1.4)
- The provisions for fatigue in shear connectors shall follow Section 2.2.15 (LRFD Art. 6.10.10)
- Special Fatigue Requirement for Webs

Interior panels of webs w/ transverse stiffeners, w/ or w/o longitudinal stiffeners:

$$
\begin{equation*}
V_{u} \leq V_{c r} \tag{LRFDEq.6.10.5.3-1}
\end{equation*}
$$

2.11 Strength Limit State

(LRFD Art. 6.10.6)

2.11.1 Flexure

(1) General

If there are holes in the tension flange, the tension flange shall satisfy:

$$
\begin{equation*}
f_{t} \leq 0.84\left(\frac{A_{n}}{A_{g}}\right) F_{u} \leq F_{y t} \tag{LRFDEq.6.10.1.8-1}
\end{equation*}
$$

(2) Composite Sections in Positive Flexure
a) Composite sections in straight bridges that satisfy the following requirements shall qualify as compact composite sections:

- the specified minimum yield strengths of the flanges do not exceed 70.0 ksi ,
- the web satisfies the requirement of Section 2.2.7 (LRFD Art. 6.10.2)
- the section satisfies the web slenderness limit:

$$
\begin{equation*}
\frac{2 D_{c p}}{t_{w}} \leq 3.76 \sqrt{\frac{E}{F_{y c}}} \tag{LRFDEq.6.10.6.2.2-1}
\end{equation*}
$$

b) Compact and Noncompact sections shall satisfy the requirements of Section 2.2.12 (LRFD Art. 6.10.7).
(3) Composite Sections in Negative Flexure and Noncomposite Sections

Sections in kinked (chorded) continuous or horizontally curved steel girder bridges shall be proportioned according to provisions specified in Section 2.2.13 (LRFD Art. 6.10.8)
2.11.2 Shear

Follow Section 2.2.14 (LRFD Art. 6.10.9)
2.11.3 Shear Connector

Follow Section 2.2.15 (LRFD Art. 6.10.10)

2.12 Flexural Resistance-Composite Sections in Positive Flexure

(LRFD Art. 6.10.7)
(1) Compact Sections:
$M_{u}+\frac{1}{3} f_{\ell} S_{x t} \leq \phi_{f} M_{n}$
If $D_{p} \leq 0.1 D_{t}$,
$M_{n}=M_{p}$
(LRFD Eq. 6.10.7.1.2-1)

Otherwise,

$$
\begin{equation*}
M_{n}=M_{p}\left(1.07-0.7 \frac{D_{p}}{D_{t}}\right) \tag{LRFDEq.6.10.7.1.2-2}
\end{equation*}
$$

In a continuous span, $\quad M_{n} \leq 1.3 R_{h} M_{y}$ Unless:

- the span under consideration and all adjacent interior-pier sections satisfy the requirements of LRFD Article B6.2,
- the appropriate value of $\theta_{\text {RL }}$ from LRFD Article B6.6.2 exceeds 0.009 radians at all adjacent interior-pier sections.
(2) Noncompact Sections
- Compression flange:

$$
\begin{equation*}
f_{b u} \leq \phi_{f} F_{n c} \tag{LRFDEq.6.10.7.2.1-1}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{n c}=R_{b} R_{h} F_{y c} \tag{LRFDEq.6.10.7.2.2-1}
\end{equation*}
$$

- Tension flange:

$$
\begin{equation*}
f_{b u}+\frac{1}{3} f_{\ell} \leq \phi_{f} F_{n t} \tag{LRFDEq.6.10.7.2.1-2}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{n c}=R_{h} F_{y t} \tag{LRFDEq.6.10.7.2.2-2}
\end{equation*}
$$

- For shored construction,
the maximum longitudinal compressive stress in the concrete deck $\leq 0.6 f_{c}^{\prime}$
(3) Ductility Requirement

$$
\begin{equation*}
D_{p} \leq 0.42 D_{t} \tag{LRFDEq.6.10.7.3-1}
\end{equation*}
$$

2.13 Composite Sections in Negative Flexure and Noncomposite Sections (LRFD Art.

 6.10.8)(1) General

Discretely Braced Flanges in Compression	$f_{b u}+\frac{1}{3} f_{\ell} \leq \phi_{f} F_{n c}$	(LRFD Eq. 6.10.8.1.1-1)
Discretely Braced Flanges in Tension	$f_{b u}+\frac{1}{3} f_{\ell} \leq \phi_{f} F_{n t}$	(LRFD Eq. 6.10.8.1.2-1)
Continuously Braced Flanges in Tension or Compression	$f_{b u} \leq \phi_{f} R_{h} F_{v f}$	(LRFD Eq. 6.10.8.1.3-1)

(2) Compression-Flange Flexural Resistance

Local Buckling (FLB) Resistance	$\lambda_{f} \leq \lambda_{p f}$	$F_{n c}=R_{b} R_{h} F_{y c}$
	otherwise	$F_{n c}=\left[1-\left(1-\frac{F_{y r}}{R_{h} F_{y c}}\right)\left(\frac{\lambda_{f}-\lambda_{p f}}{\lambda_{r f}-\lambda_{p f}}\right)\right] R_{b} R_{h} F_{y c}$
Lateral Torsional Buckling (LTB) Resistance	$L_{b} \leq L_{p}$	$F_{n c}=R_{b} R_{h} F_{y c}$
	$L_{p}<L_{b} \leq L_{r}$	$F_{n c}=C_{b}\left[1-\left(1-\frac{F_{y r}}{R_{h} F_{y c}}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right)\right] R_{b} R_{h} F_{y c} \leq R_{b} R_{h} F_{y c}$
	$L_{b}>L_{r}$	$F_{n c} \leq R_{b} R_{h} F_{y c}$

(3) Tension-Flange Flexural Resistance

$$
\begin{equation*}
F_{n t}=R_{h} F_{y t} \tag{LRFDEq.6.10.8.3-1}
\end{equation*}
$$

2.14 Shear Resistance

At the strength limit state, straight and curved web panel shall satisfy:

$$
\begin{equation*}
V_{u} \leq \phi_{v} V_{n} \tag{LRFDEq.6.10.9.1-1}
\end{equation*}
$$

A flowchart for determining the shear resistance of I-section is shown in Figure 2-9 (also AASHTO LRFD Figure C6.10.9.1-1)

Figure 2-5 Flowchart for Shear Design of I Sections

(1) Unstiffened web
(LRFD Art. 6.10.9.2)

$$
\begin{align*}
& V_{n}=C V_{p} \tag{LRFDEq.6.10.9.2-1}\\
& V_{p}=0.58 F_{y w} D t_{w}
\end{align*}
$$

(LRFD Eq. 6.10.9.2-2)
(2) Stiffened web
a) Interior Panels -
(LRFD Art. 6.10.9.3.2)
$-\quad$ if $\frac{2 D t_{w}}{\left(b_{f c} t_{f c}+b_{f t} t_{f t}\right)} \leq 2.5$:

$$
V_{n}=V_{p}\left[C+\frac{0.87(1-C)}{\sqrt{1+\left(\frac{d_{o}}{D}\right)^{2}}}\right]
$$

(LRFD Eq. 6.10.9.3.2-2)

- otherwise:

$$
V_{n}=V_{p}\left[C+\frac{0.87(1-C)}{\sqrt{1+\left(\frac{d_{o}}{D}\right)^{2}}+\frac{d_{o}}{D}}\right]
$$

(LRFD Eq. 6.10.9.3.2-8)
for which

$$
V_{p}=0.58 F_{y w} D t_{w}
$$

(LRFD Eq. 6.10.9.3.2-3)

- Determination of C

$$
\begin{gather*}
-\quad \text { if } \frac{D}{t_{w}}<1.12 \sqrt{\frac{E k}{F_{y w}}} \\
\mathrm{C}=1.0 \tag{LRFDEq.6.10.9.3.2-4}
\end{gather*}
$$

$$
\text { - if } 1.12 \sqrt{\frac{E k}{F_{y w}}} \leq \frac{D}{t_{w}} \leq 1.40 \sqrt{\frac{E k}{F_{y w}}}
$$

$$
\begin{aligned}
& C=\frac{1.12}{\frac{D}{t_{w}}} \sqrt{\frac{E k}{F_{y w}}} \\
& -\quad \text { if } \frac{D}{t_{w}}>1.40 \sqrt{\frac{E k}{F_{y w}}} \\
& C=\frac{1.57}{\left(\frac{D}{t_{w}}\right)^{2}}\left(\frac{E k}{F_{y w}}\right)
\end{aligned}
$$

(LRFD Eq. 6.10.9.3.2-6)

$$
\begin{equation*}
\text { where } k=5+\frac{5}{\left(\frac{d_{o}}{D}\right)^{2}} \tag{LRFDEq.6.10.9.3.2-7}
\end{equation*}
$$

b) \quad End Panels -

$$
\begin{aligned}
V_{n}= & C V_{p} \\
\quad & \text { where } V_{p}=0.58 F_{y w} D t_{w}
\end{aligned}
$$

(LRFD Eq. 6.10.9.3.3-2)

- w/o longitudinal stiffener:
- $\quad \mathrm{w} /$ longitudinal stiffener:
$\mathrm{d}_{\mathrm{o}} / \mathrm{D} \leq 1.5$
$\mathrm{d}_{\mathrm{o}} / \mathrm{D} \leq 1.5$

2.15 Shear Connectors

- In the negative flexure regions, shear connectors shall be provided where the longitudinal reinforcement is considered to be a part of the composite section.
- Otherwise, shear connectors need not be provided in negative flexure regions, but additional connectors shall be placed in the region of the points of permanent load contraflexure.

$$
\begin{equation*}
n_{A C}=\frac{A_{r} f_{s r}}{Z_{r}} \tag{LRFDEq.6.10.10.3-1}
\end{equation*}
$$

(1) Fatigue Limit State

$$
\begin{align*}
p & \leq \frac{n Z_{r}}{V_{s r}} \\
Z_{r} & =\alpha d^{2} \geqslant 5.5 d^{2} / 2 \tag{LRFDEq.6.10.10.2-1}
\end{align*}
$$

where $\alpha=34.5-4.28 \log \mathrm{~N}$
(LRFD Eq. 6.10.10. 2-2)
(2) Strength Limit State

$$
\begin{align*}
& Q_{r}=\phi_{s c} Q_{n} \tag{LRFDEq.6.10.10.4.1-1}\\
& n=\frac{P}{Q_{r}}
\end{align*}
$$

(LRFD Eq. 6.10.10.4.1-2)
(a) Nominal Shear Force,

- Simple\&continuous spans that are noncomposite for negative flexure:

$$
\begin{equation*}
P=\sqrt{P_{p}^{2}+F_{P}^{2}} \tag{LRFDEq.6.10.10.4.2-1}
\end{equation*}
$$

where

$$
\begin{array}{r}
P_{p}=\min . \quad \text { of }\left\{\begin{array}{cc}
0.85 f_{c}^{\prime} b_{s} t_{s} & \text { (LRFD Eq. 6.10.10.4.2-2) } \\
F_{y w} D t_{w}+F_{y t} b_{f t} t_{f t}+F_{y c} b_{f c} t_{f c} & \text { (LRFD Eq. 6.10.10.4.2-3) }
\end{array}\right. \\
F_{p}=P_{p} \frac{L_{p}}{R} \tag{LRFDEq.6.10.10.4.2-4}\\
\text { (LRFD Eq. 6.10.10.4.2-4) }
\end{array}
$$

(For straight spans or segments, F_{p} may be taken equal to zero)

- Continuous spans that are composite for negative flexure:

$$
\begin{equation*}
P=\sqrt{P_{T}^{2}+F_{T}^{2}} \tag{LRFDEq.6.10.10.4.2-5}
\end{equation*}
$$

where

$$
\begin{gather*}
P_{T}=P_{p}+P_{n} \tag{LRFDEq.6.10.10.4.2-6}\\
P_{n}=\min . \text { of }\left\{\begin{array}{c}
F_{y w} D t_{w}+F_{y t} b_{f t} t_{f t}+F_{y c} b_{f c} t_{f c} \\
0.45 f_{c}^{\prime} b_{s} t_{s}
\end{array}\right. \\
F_{T}=P_{T} \frac{L_{n}}{R}
\end{gather*}
$$

(LRFD Eq. 6.10.10.4.2-7)
(LRFD Eq. 6.10.10.4.2-8)
(LRFD Eq. 6.10.10.4.2-9)
(b) Shear Resistance, Q_{n}

Stud shear connector

$$
\begin{equation*}
Q_{n} \quad=0.5 A_{s c} \sqrt{f_{c}^{\prime} E_{c}} \leq A_{s c} F_{u} \tag{LRFDEq.6.10.10.4.3-1}
\end{equation*}
$$

- Channel shear connector

$$
\begin{equation*}
Q_{n} \quad=0.3\left(t_{f}+0.5 t_{w}\right) L_{c} \sqrt{f_{c}^{\prime} E_{c}} \tag{LRFDEq.6.10.10.4.3-2}
\end{equation*}
$$

2.16 Transverse Stiffeners

(LRFD Art. 6.10.11.1)

- Stiffeners in straight girders not used as connection plates shall be tight fit at the compression flange, but need not be in bearing with the tension flange.
- Stiffeners used as connecting plates for diaphragms or cross-frames shall be attached to both flanges.

The width, b_{t}, of each projecting stiffener element shall satisfy:
$b_{t} \geq 2.0+\frac{D}{30.0}$
(LRFD Eq. 6.10.11.1.2-1)
and
$16.0 t_{p} \geq b_{t} \geq 0.25 b_{f}$
(LRFD Eq. 6.10.11.1.2-2)
where : $\quad b_{f}=\quad$ full-width of steel flange

The moment of inertia of any transverse stiffener must satisfy:
\min. of $\left\{\begin{array}{c}I_{t} \geq b t_{w}^{3} J \\ I_{t} \geq \frac{D^{4} \rho_{t}^{1.3}}{40}\left(\frac{F_{y w}}{E}\right)^{1.5}\end{array}\right.$
(LRFD Eq.6.10.11.1.3-1\&2)
for which:
$\mathrm{J}=2.5\left(\frac{D}{d_{o} / D}\right)^{2}-2.0 \geq 0.5$
(LRFD Eq.6.10.11.1.3-3)
where:
$I_{t} \quad=\quad$ moment of inertia of the transverse stiffener taken about the edge in contact with the web for single stiffeners and about the mid-thickness of the web for stiffener pairs
$b \quad=\quad$ the smaller of d_{o} and D
$t_{w} \quad=\quad$ web thickness
$d_{o} \quad=\quad$ the smaller of the adjacent web panel widths
$D \quad=\quad$ web depth

Transverse stiffeners used in web panels with longitudinal stiffeners must also satisfy:

$$
\begin{equation*}
I_{t} \geq\left(\frac{b_{t}}{b_{\ell}}\right)\left(\frac{D}{3.0 d_{o}}\right) I_{\ell} \tag{LRFDEq.6.10.11.1.3-5}
\end{equation*}
$$

where:
$b_{t} \quad=\quad$ projecting width of transverse stiffener
$b_{\ell} \quad=\quad$ projecting width of longitudinal stiffener
$I_{\ell}=$ moment of inertia of the longitudinal stiffener determined by (LRFD
Eq.6.10.11.3.3-1)
$D \quad=\quad$ web depth

2.17 Bearing Stiffeners

(LRFD Art. 6.10.11.2)

Bearing stiffeners should be placed on webs of builtup sections at all bearing locations.

- Bearing stiffeners should be placed on the webs of plate girders at all bearing locations and at all locations supporting concentrated loads.
- Bearing stiffeners consist of one or more plates or angles welded or bolted to both sides of the web. The connections to the web are to be designed to transmit the full bearing force due to the factored loads.
- The stiffeners should extend the full-depth of the web and, as closely as practical, to the outer edges of the flanges.

The width, b_{t}, of each projecting stiffener element must satisfy:

$$
\begin{equation*}
b_{t} \leq 0.48 t_{p} \sqrt{\frac{E}{F_{y s}}} \tag{LRFDEq.6.10.11.2.2-1}
\end{equation*}
$$

where:
$t_{p} \quad=\quad$ thickness of projecting element
$F_{y s}=$ specified minimum yield strength of the stiffener

The factored bearing resistance, $\left(R_{s b}\right)_{r}$, shall be taken as:

$$
\begin{equation*}
\left(R_{s b}\right)_{r}=\phi_{b}\left(R_{s b}\right)_{n}=1.4 \phi_{b} A_{p n} F_{y s} \tag{LRFDEq.6.10.11.2.3-1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& F_{y s}=\text { specified minimum yield strength of the stiffener } \\
& A_{p n}=\begin{array}{l}
\text { area of the projecting elements of the stiffener outside of the web-to- } \\
\text { flange fillet welds, but not beyond the edge of the flange }
\end{array} \\
& \phi_{b}=\begin{array}{l}
\text { resistance factor for bearing }
\end{array}
\end{aligned}
$$

2.18 Longitudinal Stiffeners

Where required, longitudinal stiffeners should consist of either a plate welded to one side of the web, or a bolted angle. Longitudinal stiffeners shall be located at a vertical position on the web such that constructability (LRFD Eq. 6.10.3.2.1-3) is satisfied, requirement (LRFD Eq. 6.10.4.2.2-4) is satisfied at the service limit state, and all the appropriate design requirements are satisfied at the strength limit state.

The flexural stress in the longitudinal stiffener, f_{s}, due to the factored loads at the strength limit state and when checking constructability shall satisfy:

$$
\begin{equation*}
f_{s} \leq \phi_{f} R_{h} F_{y s} \tag{LRFDEq.6.10.11.3.1-1}
\end{equation*}
$$

The projecting width, b_{ℓ}, of the stiffener must satisfy:

$$
\begin{equation*}
b_{\ell} \leq 0.48 t_{s} \sqrt{\frac{E}{F_{y s}}} \tag{LRFDEq.6.10.11.3.2-1}
\end{equation*}
$$

where:
$t_{s} \quad=\quad$ thickness of stiffener
$F_{y s}=$ specified minimum yield strength of the stiffener

Longitudinal stiffeners must satisfy:

$$
\begin{align*}
& I_{\ell} \geq D t_{w}^{3}\left[2.4\left(\frac{d_{o}}{D}\right)^{2}-0.13\right] \beta \tag{LRFDEq.6.10.11.3.3-1}\\
& r \geq \frac{0.16 d_{o} \sqrt{\frac{F_{y s}}{E}}}{\sqrt{1-0.6 \frac{F_{y c}}{R_{h} F_{y s}}}} \tag{LRFDEq.6.10.11.3.3-2}
\end{align*}
$$

where:
$\beta=$ curvature correction factor for longitudinal stiffener rigidity

β	Case	Z : curvature parameter$Z=\frac{0.95 d_{0}^{2}}{R t_{w}} \leq 10$
$\frac{Z}{6}+1$	the longitudinal stiffener is on the side of the web away from the center of curvature	
$\frac{Z}{12}+1$	the longitudinal stiffener is on the side of the web toward the center of curvature	

$I_{\ell} \quad=\quad$ moment of inertia of the longitudinal stiffener including an effective width of the web equal to $18 t_{w}$ taken about the neutral axis of the combined section
$r=$ radius of gyration of the longitudinal stiffener including an effective width of the web equal to $18 t_{w}$ taken about the neutral axis of the combined section
$D \quad=\quad$ web depth
$d_{o} \quad=\quad$ transverse stiffener spacing
$t_{w} \quad=\quad$ web thickness
$F_{y s}=$ specified minimum yield strength of the stiffener
A longitudinal stiffener meeting the requirements above will have sufficient area to anchor the tension field. Therefore, no additional area requirement is given for longitudinal stiffeners.

Appendix - Modification Factor $\mathbf{C}_{\mathbf{b}}$ (for non-uniform bending moment variation)

C_{b} for a Simple Span Bridge
C_{b} FOR PARABOLIC SEGMENTS
USING LRFD-F1.2a, FORMULA
(C-F1-3), EQ. $9.6 .11^{*}$

Case 1	Laterally braced at ends; points 1 and 5 only; $M_{\text {max }}$ at 3	$C_{b}=1.14$
Case 2	Laterally braced at ends and midspan; points 1,3 , and 5 only; $M_{\text {max }}$ at 3	$C_{b}=1.30$
Case 3	Laterally braced at end and 1st quarter point; bracing at points 1 and $2 ; M_{\text {max }}$ at 2	$C_{b}=1.52$
Case 4	Laterally braced at 1st and 2nd quarter points; bracing at points 2 and $3 ; M_{\text {max }}$ at 3	$C_{b}=1.06$
Case 5	Laterally braced at 1st and 3rd quarter points; bracing at points 2 and $4 ; M_{\text {max }}$ at 3	$C_{b}=1.03$

* Values from 1986 LRFD, Eq. 9.6 .12 shown in parenthesis.

Nominal Moment Strength M_{u} as affected by C_{b}

