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Chapter 1:  Introduction

With embedded processor technology moving towards faster and smaller pr

sors and systems on a chip, it becomes increasingly difficult to accurately evaluate

time performance.  Probing a piece of silicon, or accurately measuring values app

ing less than one nanosecond becomes more expensive and more difficult, if not im

sible. It becomes necessary to find additional methods to evaluate and debug emb

systems.

1.1:  Goal and Motivation

The goal of this research is to provide an additional method for evaluating a

debugging embedded systems.  This research presents a method of using full-sys

emulation to evaluate the real-time performance of an embedded system. An embe

architecture emulator was created, using the C programming language, that emulat

Motorola M-CORE embedded processor down to the register level and is accurate

within 100 cycles per million as compared to actual hardware.  This work touches 

several different aspects of embedded systems design, such as the testing and deb

of increasingly integrated systems, hardware/software codesign methodologies, an

evaluation of real-time systems.

One of the motivators of this research is that it is becoming increasingly diffic

to evaluate system behavior at the hardware level.  Apart from the unpleasantries 
1
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waiting for actual fabrication of the hardware, or the expense of such a task, it is s

times difficult to obtain information from the actual hardware. Five, ten years ago it w

easy enough to hook up a probe to the bus connecting the processor to the main me

or the connections between the processors and other pieces of the hardware.  Ho

with the advent of systems on a chip and application-specific integrated circuits, it 

longer possible to obtain those signals, for they never leave the silicon [32, 45].  Th

only way to debug these systems is to either probe the silicon itself, or to add additi

logic to the chip so that it brings the signal off the chip, and even that option is limited

the number of physical pins that can be put on a chip and spared for simple debug

evaluation purposes.  Also, with the speeds that some of today’s embedded proce

are running, it becomes difficult to find a logic analyzer that can keep up with the p

cessors, not to mention costing tens to hundreds of thousands of dollars [20, 29]. If

were another method to evaluate these systems early on, both valuable time and m

could be saved.

One of the methodologies gaining wide acceptance in both the embedded w

and the general purpose world is that of hardware/software codesign [24].  As opp

to the traditional methods of developing the hardware and software for a system s

rately, the hardware/software codesign methodology recognizes the benefits inher

the designing of the two together, at the same time.  The hardware being designed

the software needs in mind as well as the designing of the software with hardware

tations and issues in mind benefit the design both in performance and time to mar

given that if hardware and software designers communicate during the design pro

there is less chance of problems happening due to ignorance [9].  This research o
2
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method for the software engineer to test his software on a C emulator, something that he

will understand, as opposed to handing the software off to a technician to go run it on

actual hardware, or for him to try to understand how to operate a VHDL model.

Real-Time Operating Systems are commonly used in the development, pro

tizing, and deployment of embedded systems. Unlike the world of general purpose

puting, embedded systems are usually developed for a limited number of tasks.  A

facilities that these tasks might need are often built directly into the code and the fee

is often that real-time operating system would just add unnecessary overhead [13]

many cases, any RTOS functionality needed is provided by a homegrown design. 

ever, these “roll-your own” [13] pseudo operating systems that are created on the fl

not very portable and often times include additional work that could easily be acco

plished by using one of today’s many commercial RTOSs.  What is needed is a me

to test both commercially available Real-Time Operating Systems and in-house cr

ations on the target architecture to verify which would give the best behavior.

Many of the projects in the area of real-time systems concern themselves w

the development of scheduling algorithms and the demonstration that those algori

work [1,2,53,54]. However, as others have observed [28], “there currently exists a w

gap between real-time scheduling theory and the reality of RTOS implementation.”

majority of the work in this field is done through theoretical analysis testing the sch

uler code at the block level, or running the raw scheduler code by itself.  Very little 

that analysis follows those scheduling algorithms all the way to the RTOS impleme

tion, where other mechanisms like inter-process communication and semaphores 

act in subtle ways to make the behavior of the algorithms less easily understood a
3
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therefore less predictable.  The analysis of these scheduling algorithms should be

accompanied with experimental evaluation of RTOSs on the actual hardware.  Unf

nately, this sometimes presents a problem when the hardware is not available, or 

are questions of money or time. However, if it was possible to run tests on an emula

of that hardware, that would save both time and money and allow this analysis to b

complete.

The research effort going on currently that most resembles this work is the

SimOS project going on at Stanford [44].  Like the emulator described in this resea

SimOS is an execution driven simulator that is accurate enough to run a full opera

system on top of it.  The primary difference between the emulator developed for th

research and SimOS is the target application domain.  SimOS is focused on study

high performance machines, while the emulator created for this work is interested 

evaluating the real-time performance of low power embedded processors.

1.2:  Results

In this research, an embedded system emulator was built in C.  A study of t

Real-Time Operating Systems was run on that emulator.  Echidna [10] is a publicly

available RTOS based on Chimera [48].  NOS is a fixed-priority, multi-rate executiv

[27] based on descriptions of bare-bones RTOS given by designers in the industry

This study provides information about both of the RTOSs that might lead to

decision among them as to which one to use. Predictably, as loads increased, the R

hit their job deadlines until system loads were reached and missed those deadline

wards. Also predictably, as the system became overloaded in NOS, lower priority t

were completely ignored. It is seen that RTOS overheads are extremely high when
4
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pared to low overhead tasks.  In some cases, the RTOS can account for more than

of the processor’s busy time.  However, as the periodic task’s complexities and CP

requirements grow, the proportion of the RTOS diminished significantly, to a point

where the RTOS accounts for only 20-50% of the processor’s busy time.  Lastly, th

study has shown that this method of using a full-system software emulator can be 

as a valid method for the evaluation of embedded system behavior.

1.3:  Overview of Report

Chapter 2, Background, describes the work that has been done in this field

areas that relate to this field of research.  Chapter 3, The Emulator, gives a detaile

description of the emulator, the steps that went into making it, and the methods us

verify it. Chapter 4, Real-Time Performance Evaluation, first describes the two diffe

Real-Time Operating Systems that were run on the M-CORE Emulator, Echidna a

NOS, describes the four benchmarks that were run on each of the real-time opera

systems, describes the two types of background load run on the real-time operatin

tems, and describes the experiment.  Chapter 5, Results and Analysis, displays th

results from the experiment listed in Chapter 4, and analyzes the different results fo

several benchmarks. Chapter 6, Conclusions, gives the conclusions drawn from the

ings of this paper, and Chapter 7, Future Work, describes possible continuation of

work.
5
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Chapter 2:  Background

This chapter offers a brief background into the areas that are related to the

research performed in the report as well as the areas that support the reasons for 

forming this research. The first section takes a look at embedded systems, the issu

tools involved in their design, current trends, and how they can benefit from this

research.  The second section examines Hardware/Software Codesign, the metho

gies that it has produced, and how those methodologies can benefit from this rese

The third section gives an introduction to real-time operating systems and breaks d

the issues involved in their creation and use.  Section four discusses the evaluatio

real-time systems, the methods used to evaluate those systems, the metrics used

acterize them, and the current studies going on in the field.  In the final section of t

chapter, SimOS, a full-system simulation very much like the emulator created in th

research is described, and the studies that have been performed with it are listed, a

as how it differs from the emulator created in this research.

2.1: Embedded Systems

Embedded systems has become a buzz word in the last five years, but embe

systems and processors have been around for much longer than that [46].  One on

needs to look around to see embedded systems everywhere:  cell phones, alarm c

personal data assistants(PDAs), automobile subsystems such as ABS and cruise c
6
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etc. This section takes a look at embedded systems, the issues and tools involved i

design, current trends, and how they can benefit from the research performed for t

report.

2.1.1: Embedded Systems versus General Purpose Systems

An embedded system is usually classified as a system that has a set of pre

defined, specific functions to be performed and in which the resources are constra

[46].  Take for example, a digital wrist watch.  It is an embedded system, and it has

eral readily apparent functions: keeping the time, perhaps several stopwatch funct

and an alarm.  It also has several resource constraints.  The processor that is ope

the watch cannot be very large, or else no one would wear it.  The power consump

must be minimal; only a small battery can be contained in that watch, and that bat

should last almost as long as the watch itself. And finally, it must accurately display

time, consistently, for no one wants a watch that is inaccurate.  Each embedded d

satisfies its own set of functions and constraints.  According to [46], there are an e

mated 50,000 new embedded designs a year.

This is different from general purpose systems, such as the computer that si

a desk in an office.  The processor running that computer is termed a “general pur

processor because it was designed to perform many different tasks well, as oppos

an embedded system, that has been built to perform a few specific tasks either very

or within very strict parameters.

2.1.2: Design Issues

As mentioned above, embedded systems are defined by their functions and

constraints.  These constraints are almost as varied as the number of embedded s
7
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themselves, but a few of the more prevalent ones are response time accuracy, size,

consumption, and cost [46].  All of these present the embedded system designer w

some difficult decisions.

Response time is a critical factor in many embedded systems.  Whether it is

specific time that an embedded system tasks needs to be run, like that of the alarm

alarm clock; or the time between tasks that is important, like the system that delive

pain medication to a burn victim; all of these are time-critical issues. The most diffic

task for an embedded system designer to do is to quantify these time deadlines, d

whether these deadlines are firm, and recognize what the consequences are if thes

lines are not met.

Size, as mentioned above, is also an important decision in many embedded

tems. Many embedded systems designed today are bought and sold simply becaus

are smaller than the last implementation of that product.  Take for example, the ce

phone.  Today’s cellular phones are half the size of the phones available two years

and those phones two years ago were smaller than the phones available before the

if the manufacturer does not take into account size when designing his cell phone,

will most likely go out of business shortly after he produces a cell phone that is two

three times the size of all of his competitor’s phones.

Another design issue concerning today’s embedded system designers is th

power consumption. Continuing along the same line as the above mentioned size f

many of these devices that are very small are handheld devices that are made to b

mobile and thus must have a battery.  Since the designer does not want the user t

forced to plug in or recharge the device every five minutes, the designer must mak
8
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important choices in his design decisions and balance a feature’s merits against th

power that the feature will consume.

A final consideration that embedded designers deal with is cost.  Regardles

any choice of the above issues made, an embedded product is not going to sell if its

is exorbitant. Most end users will sacrifice a small amount of performance, or a slig

less amount of battery time, for an embedded product that is less costly than all of

competitors.  So just as with all of the above considerations, the designer must co

the cost of adding a particular modification to the design and whether or not the end

will be willing to pay that additional cost for that additional feature.

2.1.3: Development Tools

Embedded development tools have traditionally lagged behind tools for the

development of general systems [46].  Unlike general systems, the design space f

embedded systems is extremely large, so it is difficult to contain all of the facilities

specify, design, and test embedded systems.

However, now that embedded systems have garnered more interest in the

research community as well as there being an increased need for those embedde

tems, embedded systems tools are now catching up with regular system design tool

they have become more readily available and diverse in their area of coverage [46

Tools that were not available 5 to 10 years ago are now available as part of comm

EDA development suites.  Also, tools are now available for the development of em

ded system application software as well as the development of real-time operating

tems.
9
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2.1.4: Embedded System Trends

With the increase in interest and research of embedded systems have com

flood of new design trends.  It is hard to envision that five years from now embedd

systems will bear much resemblance to the systems today [46], other than their ba

functionalities, and even those may be replaced in the future.  Two of the trends cu

rently hot in the embedded systems world that are discussed here are that of appl

specific integrated circuits (ASICs) and systems on a chip (SOC).

2.1.4.1:Application Specific Integrated Circuits

The best way to define an application specific integrated circuit (ASIC) is to s

ing what it is not:  an integrated circuit designed for multiple uses.  Like the title su

gests, this is a IC that has been designed for a specific application. Examples of IC

are not ASICs are standard computer parts such as RAM, ROM, multiprocessors, 

Examples of ICs that are ASICs are a chip designed for a toy robot or a chip design

examine sun spots from a satellite [45].

The reason for mentioning this is that since ASICs are developed for a spec

purpose, they are most likely constrained with both a tight budget and a short time

market. Any and all methods that might aid in the development of these chips woul

welcomed with open arms in the industry.

2.1.4.2:System On A Chip

System on a chip (SOC) is exactly what it sounds like. Hardware designers h

taken the normally separate pieces of a complete system; the CPU, memory contr

main memory, I/O control, and the various buses and interconnects, and placed ma
10
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all of them on a single piece of silicon.  This has the added benefits of size reducti

power reduction, cost reduction, and time delay reduction.

On of the more popular forms of SOC is that of Dave Patterson’s Intelligent

RAM (IRAM) [20, 29].  IRAM is the combination of a processor on a chip with a lar

area of DRAM instead of or in addition to cache. This concept has several advanta

Like all forms of SOC, it reduces the number of chips in a system, allowing the prod

to be smaller and less expensive. IRAM addresses the key bottlenecks in many sys

memory bandwidth and memory latency. Memory bandwidth on IRAM is four times

wide as that on traditional systems, and memory latency is considerably less than th

traditional systems since the signals do not need to cross a pin barrier that can ha

maximum number of pins.

However, there are also several inherent difficulties with SOC and IRAM. On

that there is only so much area on a chip, and this limits what you can put on it.  It

upper limits on the amount of main memory that you can have with a system, unless

still want to rely on going off-chip occasionally for information. Another large proble

is that the design team creating the system on a chip must contain all of the knowled

create a processor, a main memory, a I/O controller, and optimize all of them togethe

32].

2.1.5: The Emulator’s Benefit to Embedded System Design

One of the problems with embedded systems, and more specifically ASICs

SOCs, is that it is no longer possible to obtain debug information that was readily a

able in systems with discrete components.  Those signals that are contained only 

silicon, such as information across the memory bus, never leave the silicon.  The o
11
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way to debug them is to either probe the silicon itself, or to add additional logic to t

chip that brings the signal off the chip, and even that option is limited by the numb

physical pins that can be put on a chip and spared for simple debug and evaluatio

poses.  Also, with the speeds that some of today’s embedded processors are runn

becomes difficult to find a logic analyzer that can keep up with the processors, not

mention costing tens to hundreds of thousands of dollars [20, 29]. If there were ano

method to test these system, both valuable time and money could be saved.  The 

tor that has been designed for this report could be used as an additional method to

those systems without incurring additional time and cost.

2.2: Hardware/Software Codesign

One of the methodologies gaining wide acceptance in both the embedded w

and the general purpose world is that of Hardware/Software codesign [24]. This se

first defines the concept and then the methodology of Hardware/Software codesig

Then a slightly different method of codesign is described.  This section is conclude

with how Hardware/Software Codesign can benefit from the emulator developed in

research.

2.2.1: Hardware/Software Codesign:  The Concept

For years, designers have partitioned systems into hardware and software c

ponents that were developed separately [16]. When this is done, the hardware des

usually make architectural choices early in the design process.  These decisions a

based on their knowledge of the hardware requirements and their limited knowledge

understanding of the software requirements.  And they are usually hard pressed to

back and make changes to these choices [18].  The result is that often the softwar
12
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designers are forced to make up for problems in the hardware through additional wo

the software, often leading to a less than optimal overall design of the system.

The concept of Hardware/Software Codesign is that of both hardware and s

ware designers work together to develop a system, whether that system be an emb

one, a general purpose one, or high performance one [9,24].  From specification o

requirements to exploration of the design space, and from development of the phy

design to the simulation and test of the final product, hardware and software desig

work cooperatively, concurrently, and most importantly, they communicate [9].

2.2.2: Hardware/Software Codesign:  The Methodology

In response to these problems listed above, designers as well as EDA tool 

facturers are moving towards a design methodology that has hardware and softwa

engineers working together from the beginning of the specification phase all the w

through simulation and test [12].  In hardware/software codesign, designers from b

disciplines integrate their work. The process begins with a functional exploration of

project that they are undertaking.  The designers define requirements and create a

ing specification.  Then the hardware and software designers work together to ma

specification on hardware and software architectures.  The designers then implem

these architectures onto silicon and code and come back together to simulate and

The entire process benefits from open communication from both sides [11,12].

2.2.3: Model Based Codesign

Another popular method of hardware/software codesign that is gaining grea

acceptance is that of model based codesign.  Model based codesign includes all o

above steps, but all of the work is done using mathematical models on a computer.
13
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gives the added benefit of being able to run the above process multiple times, i.e. it

on the design.  Each time the process runs with slight modifications, and through m

of these simulations, the optimal system is found.  The benefit of this methodology

that the designer does not have to wait while a physical design is being created or s

the cost of implementing that design.  Often times this model based codesign is au

mated, leaving the designers even more time to perform other tasks.  However, the

down-side of model based codesign is that it is a mathematical representation of th

world: many mathematical representations are only approximate [43].

2.2.4: The Emulator’s Benefit to Hardware/Software Codesign

As mentioned above, one of the most difficult tasks for engineers to do is to

bridge the gap of knowledge between hardware and software designers.  The rese

that we are performing offers an aid for the software engineer in that he can test his

ware on a C emulator, something that he will understand, as opposed to handing th

ware off to a technician to go run it on the actual hardware, or for them to try to

understand how to operate a VHDL model. This research offers the hardware engin

tool that allows him to quickly evaluate architectural changes without having to re-f

the microprocessor or other pieces of the system’s hardware.

2.3: Real-Time Operating Systems

Real-Time Operating Systems (RTOS) are commonly used in the developm

productizing, and deployment of embedded systems.  Unlike the world of general 

pose computing, real-time systems are usually developed for a limited number of t

and have different requirements of their operating systems [5,14,15].  This section

gives the requirements of real-time operating systems, then breaks down the intern
14
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RTOSs and explains them in detail.  This section concludes with how the emulator

developed in this research would aid in the evaluation of RTOSs.

2.3.1: Real-Time Operating Systems:  The Requirements

According to Liu [34], a good RTOS not only offers efficient mechanisms an

services to carry out real-time scheduling and resource management but also kee

own time and resource consumption predictable and accountable.  A RTOS is resp

ble for offering the following facilities to the user programs that will run on top of it.

The first responsibility is that of scheduling: a RTOS needs to offer the user a metho

schedule his tasks.  The second responsibility is that of timing maintenance:  the R

needs to be responsible in both providing and maintaining an accurate timing meth

The third responsibility is to offer user tasks the ability to perform system calls:  the

RTOS offers facilities to perform certain tasks that the user would normally have to

gram himself, but the RTOS has them included in its library, and these system calls

been optimized for the hardware system that the RTOS is running on. The last thing

the RTOS needs to provide is a method of dealing with interrupts:  the RTOS need

offer a mechanism for handling interrupts efficiently, in a timely manner, and with a

upper bound on the time it takes to service those interrupts [34, 46].

There are several concepts that need to be defined in any discussion of RT

The first concept is that of preemption.  Real-time operating systems are either pre

tive or non-preemptive.  If a real-time operating system is preemptive, it means tha

task currently being run by the RTOS can be interrupted by another task with a hig

priority or an external interrupt.  The interrupted task’s state is saved, and this stat

be restored when it is run again, allowing it to continue along from the same point th
15
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was interrupted.  RTOSs that are nonpreemptive cannot be interrupted.  If a task is

rently running when a second task needs to run, that second task must wait for the

task to finish running before it can begin to run [46].

Another important concept is that of hard real-time versus soft real-time.  H

real-time means that a task must always be completed by a specific time.  The inte

of the system designed with hard real-time tasks will be compromised if such a dea

is missed.  An example of this is  the communication mechanism from the cockpit 

commercial airliner to the embedded system controlling the wing flaps.  If a pilot is

coming in for landing, and pulls up on his flaps to slow his descent, that communica

must work — for if it doesn’t, the entire plane has the possibility of crashing.  Soft r

time systems are any type of system that is not a hard real-time system, meaning th

task is late, the system will continue to keep running.  An example of this is an Aut

mated Teller Machine (ATM).  If the software running upon the ATM takes a little

longer to process a request, other than the costumer being slightly upset, the syste

be able to perform its tasks, albeit late [46].

There are several different types of task scheduling for today’s real-time op

ing systems to choose from.  There is the endless loop scheduler, that is basically

while(1) loop that continuously runs a piece of code.  Activities within the loop are 

cuted in sequence and as many times as possible.  The next level of task schedul

that of the basic cyclic executive scheduler.  In a basic cyclic scheduling algorithm

idea of the endless loop is extended in that designers can separate the code to be

cuted into separate tasks.  These tasks execute in a standard sequence in an infin

repeating loop. This type of scheduling is often called round-robin scheduling. Like
16
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endless loop, all of the tasks run as often as possible. Time driven cyclic scheduling

next level of task scheduling, differs from basic cyclic in that instead of running eac

one of these tasks as often as possible, it introduces the idea of a time interrupt.  I

scheduler, one hardware timer is used to wake up all tasks. This timer wakes up the

task in line, and as soon as that first task is finished, the next task runs. All of the tas

line must finish before the next timer interrupt.  Following the time driven cyclic sch

uler is the multi-rate cyclic executive scheduler. This is an expansion of the time dr

cyclic scheduler in that it allows multiple periods, so long as higher frequency task

a multiple of the base task’s frequency.  This is done by inserting a task more than

time into the chain or into multiple chains.  The multi-rate executive for periodic tas

scheduler adds the ability to have multiple periods by instituting a timer that is the 

est common multiple of all of the periods of all of the tasks.  At each tick of this tim

tasks can be made to execute.  All of the above scheduling algorithms usually dea

interrupts by inserting tasks that poll for them, and all of the above scheduling algo

rithms are nonpreemptive.  A multi-rate executive with interrupts allows external in

rupts to break into current execution and be serviced.  The task interrupted is then

restarted when the interrupt is done.  Finally, the priority based preemptive executi

scheduler is the same as the multi-rate executive with interrupts except that it allow

only interrupts to break into the current program, but tasks with higher priority as w

[27].

Scheduling algorithms are either static or dynamic.  Static scheduling is per

formed when the execution times of all tasks to be scheduled by the scheduler are

mined before any execution has taken place.  Static scheduling is done when the
17
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deadlines for all of the tasks are known, and the time that it takes to execute those

is also known.  All of the scheduling is done offline, before the execution of any tas

has begun, and is fixed.  Dynamic scheduling is performed when the execution tim

the tasks to be run is not fixed, is variable, and scheduling orders and priorities mu

done dynamically during execution.  This is done when task priority, execution time

deadlines either change during execution, or are unknown before execution begins

order in which tasks are scheduled and executed is decided upon during runtime, 

variable [34].

2.3.2: User Tasks and Threads

In RTOSs, user tasks are implemented in the form of threads. Each thread im

ments a computation job and is the basic unit of work handled by the scheduler.  W

the kernel creates a thread, it allocates memory to that thread and brings in the use

to be executed by that thread.  The two different types of threads are periodic and

odic.  Obviously, aperiodic threads run only once while periodic thread runs contin

ously at a given frequency [34].

Their are five major states of threads. The first is sleeping: this is when a tas

set to sleep for a certain amount of time before it is to be woken up and run. The se

state is ready: this is when the thread is ready to run and is simply waiting for the

resources to do so. The third state is that of executing: this is when a thread is curr

running on the operating system. The fourth state is that of suspended, or also kno

blocked: this is when the task cannot proceed for some reason, such as waiting fo

another event to occur, or for some value to be brought in. The final state is termina

this is when a thread has run, and is not to be run again [34].
18
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2.3.3: The Kernel

The kernel in any RTOS, as mentioned in the introduction to this section, is

responsible for four things. They are scheduling, system calls, timing maintenance

handling interrupts.  The RTOS is responsible for maintaining a schedule for all of 

tasks running on it, and one of the above scheduling techniques is usually chosen

system call is any function that the kernel might do at the request of a user thread.

perform a system call, the user task places the name or ID of the function that it w

to run in a preset location and then traps to the kernel. After the context switch has t

place, the kernel looks up the function that it has been asked to complete, comple

and puts the result of that function, if there is one, in a second preset location, and

returns control over to the user process. It is also possible for the user process to m

system call and continue working while the kernel is performing this system call.  T

kernel is also responsible for maintaining the timer.  Every time that a timer interru

handled, the kernel must update the time as well as wake up tasks that need to be w

up and put on the ready queue.  The last thing that a RTOS is responsible for is th

dling of interrupts.  Upon a interrupt, the hardware starts the RTOSs exception han

software.  The RTOS is then responsible for saving the current state on the stack, 

mining the type of interrupt that has interrupted normal processing, and to know w

that interrupt’s service routine is.  It then turns over control to that interrupt’s servic

routine.  After that routine has finished, the kernel is also responsible for transferri

control back to the user process [34].
19
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2.3.4: Synchronization and Communication

In addition to all of the above requirements, RTOSs are also responsible to 

vide methods of synchronization and communication between tasks.  Mechanisms

as semaphores, mutexes, and condition variables add the ability for tasks to synchr

amongst themselves.  To allow communication between the tasks, mechanisms su

message queues, mailboxes, and shared memory can be provided by the RTOS [

2.3.5: The Emulator’s Benefit to Real-Time Operating Systems

One of the biggest decisions in choosing a RTOS for an embedded system i

which RTOS to choose, but whether or not to use a RTOS.  Unlike the world of gen

purpose computing, embedded systems are usually developed for a limited numbe

tasks. Any facilities that these tasks might need are often built directly into the code

many designers believe that a real-time operating system would just add unneces

overhead [13]. What is needed, and what this research provides, is a method to tes

commercially available Real-Time Operating Systems and in-house creations on th

get architecture to verify which would give the best performance, without having to

the RTOS on the actual hardware, saving both time and money.

2.4: Evaluation of Real-Time Systems

From complex mathematical theories to full system hardware simulation, th

are many different ways to evaluate real-time systems. The evaluation of these sys

like research in many fields, usually falls into two parties; theoretical and experimen

While many argue for one over the other, these two fields should not be at odds ag

each other. They are in fact complementary, and any evaluation cannot really be s

be complete without both having been performed.  This section provides both the 
20
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research that is being done in the evaluation of real-time systems, and concludes wi

benefits that the emulator that was developed for this report can give to the evaluati

real-time systems.

2.4.1: Methods of Evaluation

There are varying levels of real-time systems evaluation.  The most prevale

ones are the use of analytical models, the simulation of scheduling algorithms, and

ware simulation.  Analytical models are mathematical theorems and proofs that m

the worst time performance of one or more of the aspects of real-time systems, an

changing certain inputs to these theorems, an optimum performance can be prove

Simulation takes the analytical models one step further in creating a simulation us

scheduling theory to experiment with behavior of real-time systems.  Finally, hardw

tests take the theorems that were postulated by the analytical model and have been

lated through the use of scheduling algorithms, and run tests on the actual hardwa

discover any behavior that was not determined through either of the other two met

2.4.2: Metrics of Characterization

Two of the most common metrics used to characterize real-time systems are

and response time. Jitter represents the minimum and maximum time separating s

sive iterations of periodic tasks. If this inter-arrival time is greater than the period of

task, it means that the task is running late, and this will show up as a positive jitter va

If that inter-arrival time is less than the period of the task, that means that the task is

ning early, and this will show up as a negative jitter value. Response time is the time
21
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it takes for a real-time system to respond to an external interrupt and represents the

tion time of the system to an unscheduled event while under load.

2.4.3: Current Studies

Simulation and hardware execution of real-time software has been used in m

different projects:  from validating the accuracy of schedulers and analytical mode

8, 30, 33, 53], to measuring worst case execution time of functional blocks in datafl

graphs [17, 19, 22, 31], to measuring the effects of pipelined and superscalar proce

on timer analysis [23, 35, 51], and to validating the performance of real-time datab

[7, 21, 26]. However, while some simulations are accurate down to cycle behavior, m

experiments model systems by using dataflow graphs to represent real-time syste

behavior.

2.4.4: The Emulator’s Benefit to the Evaluation of Real-Time Systems

The analysis of these scheduling algorithms should be accompanied with ex

mental evaluation on the actual hardware.  Unfortunately, this sometimes presents

problem when the hardware is not available, or there is a question of money or tim

However, with the emulator developed for this research it is possible to run tests o

emulation of that hardware, saving both time and money.

2.5: SimOS

The research effort going on currently that most resembles this work is the

SimOS project going on at the SimOS group at Stanford [44].  The sections follow

will discuss what SimOS is, describe the studies that have been performed using i

detail the differences that exist between it and the emulator created during this res
22
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2.5.1: The SimOS Approach

SimOS is a full-system simulation environment that is capable of modeling c

puter hardware in enough detail to run a complete operating system, and all of the

cations running on that operating system, on top of it [40]. The SimOS project starte

1992, and was built to study the execution behavior of modern workloads [25].  It i

capable of studying both uniprocessor and multiprocessor systems and is used to

and evaluate the performance of high-performance and general purpose compute

44].

The SimOS environment is a simulation layer that runs on top of general-pu

pose Unix multiprocessors such as the Silicon Graphics Inc. Challenge series [40]

top of that general purpose multiprocessor system is the operating system running

that hardware, and in this case, it is IRIX version 5.x.  On top of this software is run

SimOS environment.  The SimOS environment takes in a hardware description file

is capable of modeling uniprocessors, multiprocessors, RAM, ethernet, hard disk, 

other pieces of hardware associated with today’s hardware platforms.  On top of th

SimOS is run an operating system that has been ported to the hardware platform th

SimOS environment is currently modeling.  Finally, on top of that operating system

run the unaltered applications programs [40].  All of this can be seen in Figure 1.

One of the advantages of the SimOS operating systems is that it allows the

to choose which level of output detail in which to simulate.  The system offers a sim

trade-off of speed versus detail of simulation [40].  If the user is interested in obtain

detail simulation results of a particular program, SimOS employs slower, more det

simulation.  And when the user wishes to run an application for long periods of tim
23
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instead of for detailed simulation results, SimOS can scan over unimportant parts o

workload.  Also, SimOS allows the user to modify this choice on-the-fly.  The user 

choose certain sections of code that he is interested in seeing the simulation resul

and scan over the rest of the code as unimportant[44].

2.5.2: Studies Performed with SimOS

This SimOS simulator has been used in a variety of different research studi

SimOS has aided studies in the areas of architectural evaluation, such as the study

Stanford FLASH multiprocessor.  With the detailed model provided by SimOS,

researchers within this project have examined the performance impacts of several

R4000-based SGI multiprocessor

IRIX version 5.X - UNIX SVR4

SimOS Target Hardware Layer

IRIX version 5.2 (target OS)

App. 1 App. N

Figure 1:  The SimOS Environment.
This figure shows the layout of the SimOS development environment.  The SimOS
get hardware layer runs on top of an Unix Operating System running on a R4000-
SGI multiprocessor workstation.  On top of the SimOS environment is run the targe
Operating System, and any applications that are run on top of that Operating Syst
24
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their design decisions. SimOS has helped studies of system software development

as in the development for an operating system for the above mentioned FLASH m

processor.  Having the ability to run on the operating system on the SimOS simula

hardware has provided a more complete set of debug information for those resear

than they could obtain from the actual hardware.  SimOS has also been used in th

research of workload characterization, such as the characterization of the Sybase

base [40].  Other studies performed with the aid of SimOS include the breakdown 

operating system execution time on today’s processors as opposed to tomorrow p

sors [41], in the evaluation of different organizations of chip multiprocessors [39], a

the evaluation of the system performance on large commercial workloads [6].

2.5.3: SimOS versus our Emulator.

The SimOS simulation environment differs from the emulation tool develope

during this research in two different ways.  The first is that the two have very differe

target application domains.  The SimOS system studies both high performance an

eral purpose systems.  The emulator developed for this research was created to s

embedded systems.

The second difference is the system characteristics that each studies.  Bein

ated to study high-performance and general purpose systems, SimOS studies ma

end-to-end performance.  The emulator developed during this research was create

evaluate the real-time performance of low power embedded processors, such as m

ing the difference between the invocations of periodic tasks, measuring if they are e

early or late, and measuring the reaction time from external interrupts or stimuli.
25
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Chapter 3:  The Emulator

For this project, Motorola’s M-CORE architecture was used as the model ar

tecture for our emulator.  This architecture was chosen because the M-CORE arch

ture is one of the cutting edge embedded processors on the market today, and the

M-CORE was designed for high performance and low power operation [37]. In this

chapter, first the M-CORE architecture is described, followed by the specifics of th

emulator, how it works, what information it takes as an input, how it processes tha

information, and what information it outputs during the emulation.  Finally, the met

used to validate the emulator is described. Figure 2 shows a system view of the emu

and both the hardware and operating system that it is running on and the Real-Tim

Operating System and applications that are running on it.

3.1:  M-CORE Architecture

The Motorola M-CORE architecture is a 32-bit Load/Store architecture with

fixed 16-bit instruction length and 32-bit data length. Figure 3 shows all of the availa

instruction formats in the M-CORE architecture. It has a 16 entry 32-bit general reg

file, a 16 entry 32-bit alternate register file to allow fast interrupt support, and a 13 e

control register file accessible only by the supervisor mode. Its execution pipeline’s

stages are completely hidden from the application software.  Most instructions exe

in a single cycle with two cycle execution for loads, stores, and taken branches an
26
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jumps. The address space is byte, halfword, and word addressable, and allows bo

and normal interrupts, allowing those interrupts to be either vectored or autovector

interrupts.

The pipeline for the M-CORE consists of four stages:  instruction fetch, inst

tion decode/register file read, execute, and writeback.  All of these stages operate

taneously, making single cycle instructions possible.  All sixteen general purpose

x86 Processor

Sun Solaris OS

M-CORE Emulator

Echidna/NOS RTOS

App. 1 App. N

Figure 2:  The Emulation Environment.
This figure shows the emulation environment developed in this work for real-time s
tem evaluation. The emulator runs on top of the Sun Solaris Operating System, run
on top of a x86 Processor. On top of the emulator is run the target Real-Time Oper
System, either Echidna or NOS.  On top of the RTOS, the benchmark applications
run.
27
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Figure 3.  Instruction Format.
The above figure shows all 13 of the possible instruction formats for the M-CORE a
tecture.  The first six instruction formats are register to register instructions, and th
are:  (a) Monadic Register Addressing, (b) Dyadic Register Addressing, (c) Regist
with 5-Bit Immediate, (d) Register with 5-Bit Offset Immediate, (e) Register with 7-
Immediate, and (f) Control Register Addressing. The next three are data memory a
instructions, and they are:  (g) Scaled 4-Bit Immediate Addressing, (h) Load/Store
ister Quadrant and Multiple Register, and (i) Load Relative Word. The last four form
are flow control instructions, and they are: (j) Scaled 11-Bit Displacement, (k) Regi
Addressing, (l) Indirect, and (m) Register with 4-Bit Negative Displacement.
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registers can be used as source operands and instruction results (i.e. it is an ortho

register file).

The architecture’s execution unit contains the following sub-units:  A 32-bit

ALU, a 32-bit barrel shifter, a find-first-one unit, a multiplication/division unit, and

result feeding forward hardware. All arithmetic instructions are single cycle instructi

with the exception of the multiply and signed and unsigned divide instructions.  Th

multiply is implemented with a 2-bit per cycle Booth algorithm, and the divide instru

tion’s timing is also data dependent.

The program counter (PC) unit has a PC incrementer and a dedicated bran

address adder.  This minimizes the change of instruction flow delays to only a sing

pipeline bubble delay, for the branch target addresses are calculated during the in

tion decode phase.  If a branch is not taken, no delay is incurred.

Byte, halfword, and word memory accesses are provided with this architect

with an automatic zero-extension of bytes and halfwords.  Single memory accesse

independent of size, execute in two cycles. Multiple memory accesses, such as the

Multiple instruction, or the Store Quadrant instruction, can execute in a number of

cycles equal to the number of words transferred plus one.

The M-CORE programming model is defined for two privilege modes:  supe

sor and user mode.  There are certain operations not available in user mode.  Use

grams can only access registers in the general register file, whereas supervisor m

programs can access all registers, using control registers to perform supervisory fu

tions.  User programs are prohibited from accessing privileged information (the co

registers, vector offset table, settings for I/O, etc.). If a user program tries to access
29
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ileged information or tries to execute a privileged instruction, a privilege violation

exception occurs.  A single bit (the S bit) in the Program Status Register(PSR) det

mines which mode the architecture is currently running in.

This architecture uses the user programming model during normal user mo

operation.  During exception and interrupt processing, the processor changes ove

user mode to privileged mode.  Exception processing saves the current values of t

and the PSR, and then sets the S bit in the PSR, and loads the new PC from the exc

vector table. During the return from exception (rfe) instruction (or return from fast in

rupt (rfi) instruction for fast interrupts) the original PC and PSR values from before

exception are restored, and execution continues in the user mode.

There are thirteen control registers in the M-CORE architecture that can only

accessed during the supervisor mode.  These include the PSR as mentioned abov

Vector Base Register (VBR) holding the base address used in the calculation of ex

tion handler PCs, an Exception Program Status Register (EPSR) and Exception Pro

Counter (EPC), to store the PSR and PC during exceptions, a Fast Interrupt Progr

Status Register (FPSR) and Fast Interrupt Program Counter (FPC), to store the PS

PC during fast interrupts, five scratch registers for supervisor software to use durin

handling of exceptions, and two registers are used for global control and status. Bot

user programming model as well as those resources that are available during supe

mode can be seen in Figure 4.

The M-CORE supports two’s-complement data formats, and instructions eit

explicitly encode the operand size in the instruction (load/store) or implicitly define

for the instruction operation (index operations, byte extraction).  Memory is viewed
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is located at address zero.

There are ninety-eight instructions for the M-CORE architecture.  A table of

these can be found in Appendix A (Table A-1).

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Stack pointer

Volatile, 1st arg

Volatile

Volatile, 2nd arg

Volatile, 3rd arg

Volatile, 4th arg

Volatile, 5th arg

Volatile, 6th arg

Non-volatile

Non-volatile

Non-volatile

Non-volatile

Non-volatile

Non-volatile

Non-volatile

Link register

PC Program counter

C

(a) User Programming Model

RO’

R1’

R2’

R3’

R4’

R5’

R6’

R7’

R8’

R9’

R10’

R11’

R12’

R13’

R14’

R15’

CRO

CR1

CR2

CR3

CR4

CR5

CR6

CR7

CR8

CR9

CR10

CR11

CR12

PSR
VBR

EPSR

FPSR

EPC

FPC

SS0

SS1

SS2

SS3

SS4

GCR

GSR

Alternate file

(b) Supervisor Additional Resources

Figure 4:  User Program Model and Supervisor Additional Resources.
The above figure shows both the limited resources available during user mode exec
as well as the additional resources available during supervisor mode execution. In
can be seen that the user mode programs can use any of the sixteen general purp
isters, access the Program Counter, and the Carry bit.  In supervisor mode (b), the
nate register file can be accessed, as well as all of the control registers.
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All of the information in the above section has been obtained from [36, 37, 3

52].

3.2:  Emulator Parts

The emulator for the Motorola M-CORE was written entirely using the C pro

gramming language and can be broken down into several distinguishable parts. Th

tions following look at each of those points in detail. Section 3.2.1 describes the me

for bringing in the program to be run on the emulator using the ELF file format. Sec

3.2.2 describes the mechanisms used to store and retrieve information in the main

ory and the general purpose registers. Sections 3.2.3-3.2.6 describe the pipeline.

emulator, the pipeline is instantiated in reverse order, that is, write back first, then e

tion, then decode, and finally fetch. The order does not matter since all stages are t

place simultaneously, but ordering the phases this way in C allows for easier handlin

data transfer as well as for exception processing.  Section 3.2.7 describes all of th

stage maintenance that needs to be maintained every cycle, specifically maintainin

timer, checking for interrupts, and handling exceptions.  Section 3.2.8 describes th

optional output of the simulator. Finally, Section 3.3 describes the method used to 

date the emulator.

3.2.1:  ELF Input

The emulator takes as its input the executable and linking format (ELF) file 

is produced by the compiler.  An ELF file, like any other compiler output file, conta

all of the information necessary to run a program on its target hardware.  The ELF

contains sections of data called program segments that are blocks of data to be pl

directly into the M-CORE’s memory at locations also given in the file as physical
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addresses.  Each one of these areas are given as either read-only (code), or read

(such as the stack and the heap). Writing to either an undefined area of memory, o

read-only section causes an exception. See Figure 5 for an overview of the ELF fil

mat.  The emulator uses a separate executable C program that brings the ELF file

parses it, and creates a file the emulator can read.  This file contains a translation 

consisting of the start address, final address, and offset for each block of memory —

the actual data itself. During emulator start up, this file is brought in, the translation m

is loaded, and the data is placed into the memory storage device (described in 3.2

3.2.2:  Main Memory and Registers

Given the four gigabytes of addressable memory space in the M-CORE arch

ture, it is both impossible and unnecessary to store the entire addressable memory

in an array.  Instead, the emulator stores smaller segments of that addressable sp

ELF Header

Program Header Table

Segment 1

Segment 2

Segment 3

. . .

Figure 5: Format of an ELF file.
This figure shows the breakdown of an ELF file.  The first group of information is th
ELF Header. This data will contain the location of the Program Header Table. The
gram Header Table gives information about the programs segments:  How many a
there, where are they located in this file, and were do they need to be placed in the
systems memory map.
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located in arrays, and institutes a method of accessing locations in memory throug

translation map.  For example:  A load instruction wishes to load a word from mem

location ‘x’.  From looking in the translation map, the emulator finds that address ‘x

falls between locations ‘w’ and ‘y’. The associated offset to values that fall between

and ‘y’ is ‘z’.  Therefore the data at that memory location can be found in the mem

array using an index of ‘x’-‘z’.

Since the M-CORE architecture uses memory mapped devices, the emulator

two main memory structures, one for values sent to and from the physical memory

one for values sent to and from the memory mapped devices such as I/O and the 

The first structure, OnChipRam, is the physical memory. This is where the data bro

in from the ELF file is placed.  The second structure, OnChipMapRam, is an array

taining all locations in the memory map that correspond to memory mapped device

such as the exception vector table, interrupt registers, timer registers, and I/O devi

Other values that need to be stored, beside the above mentioned memory a

the sixteen member 32-bit register file, its shadow register file, and the control reg

file, are the PC value and instruction before and after each stage. Therefore the em

has five pairs of registers: MAIN and MAINpc store the values about to enter the p

line, IFID and IFIDpc store the values between the Instruction Fetch and Instructio

Decode stages, IDEX and IDEXpc store the values between the Instruction Decod

Execution Stages, EXWB and EXWBpc store the values between the Execution a

Write Back stages, and WBEnd and WBEndpc stores the values leaving the pipeli
34
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3.2.3:  Write Back Stage

In the emulator, since the majority of the assignments are done in the execu

stage, the only operation that occurs during this stage is the moving of PC and ins

tion values from the EXWB registers before this stage to the WBEnd registers follow

this stage.  This stage’s purpose is to show which instruction is currently in the wri

back stage of the pipeline.

3.2.4:  Execution Stage

Both instruction execution and assignment take place during this stage.  All

the instruction execution code for each instruction is placed into a function of the s

name as that instruction. All of these instructions are then mapped into an array of

tions, indexed by the opcode. The first level of the function array is indexed by the m

IF
Instruction Fetch

Stage

ID
Instruction Decode

Stage

EX
Execution

Stage

WB
Write Back

Stage

M
A
I
N

I
F
I
D

I
D
E
X

E
X
W
B

W
B
E
n
d

Figure 6: The M-CORE pipeline.
The above diagram shows the M-CORE pipeline. It consists of four stages: Instruc
Fetch, Instruction Decode, Execution, and Write Back.  Between each of the stage
at the beginning and end of the pipeline there are pairs of registers that hold informa
between cycles.  These registers are MAIN & MAINpc, IFID & IFIDpc, IDEX &
IDEXpc, EXWB & EXWBpc, and WBEnd &WBEndpc.
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significant four bits in the opcode. If these first four bits are enough to determine wh

instruction is to be executed, then that instruction’s function is immediately called. 

not, a second level function array is indexed with the second four most significant bi

the opcode, and so on.  On the average, only the first two function pointers need t

indexed before the instruction has been found, greatly improving upon the worst c

performance of a 98 element if-then-else-if-then-else/switch statement.

Once the function is called, the instruction is executed.  It is also important 

note here that during this phase the divide instructions check for possible divide-by-

exceptions and the load and store instructions check for misaligned access to mem

exceptions. Another important point to make here is that there are instructions that

more than one cycle to execute, such as loads and stores, branches, and multiplie

divides.  If the instruction executing is one that takes more then one cycle, a stall v

able is set with the number of bubbles that need to be inserted into the pipeline.

After executing the instruction, if the stall variable is still zero, the PC and

instruction values for the execute phase are moved to the EXWB registers.  Howev

the stall variable is not zero, the PC and instruction values are not passed on, sinc

do not leave this stage (they are still executing).  It is also important to note that if 

stall variable is greater than zero during the beginning of this stage, no instruction 

execute since the instruction currently in the stage is the one that caused the stall an

already executed.

3.2.5:  Instruction Decode Stage

The instruction decode phase is almost as important as the execution phas

that it also checks for a number of exceptions that can happen during the decode 
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These exceptions are the illegal instruction exception, the privilege violation excep

and the four different trap exceptions.  It is important to catch these exceptions he

because they must not be allowed to reach the execution phase.  If the exception 

here, the instruction in this stage must be flushed and exception handling must be

At the end of this stage, like the end of the execution stage, the PC and ins

tion values are moved to the IDEX registers if the stall variable is set to zero. If not,

assumed that this instruction is stalled here while waiting for the instruction executin

the execution stage to finish.  Also, the exception check is not made if the stall var

is greater than zero (since this check already occurred when the instruction originall

to this stage).

3.2.6:  Instruction Fetch Stage

During this stage, the instruction is fetched from memory, and passed to the I

registers.  Again, however, this only occurs when the stall variable is set to zero.

3.2.7:  Post Stage Maintenance

After all of the stages have completed, there are a few tasks that need to be

formed before the emulator can continue onto the next cycle.  Specifically, if the tim

needs to be incremented, that needs to be completed.  Also, a check must be mad

verify that no interrupts are waiting to happen.  Finally, if an exception has occurre

state needs to be saved, and the exception handler needs to be started.

3.2.7.1:  The Timer

The timer described in the M-CORE documentation sets off a timer interrup

every 0.1 seconds.  Since the emulator is modeling a 20MHz processor, that mean

every 2 million cycles there needs to be a timer interrupt.  A timer tick variable (two
37
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bytes) is set, and every time that the variable overflows, an interrupt occurs.  The v

able flows from a start value of 0x0bdb and continues to 0xffff.  This calculates to

62,500 “ticks”. Dividing this value into 2 million cycles determine that every 32 cycle

the timer tick value needs to be incremented. Therefore, every cycle, a check is mad

it has been 32 cycles since the last timer tick increment, the timer tick is incremente

when this occurs, the timer tick overflows, the timer tick is set back to 0x0bdb (0xFF

62,500), and a timer interrupt is signaled by the emulator [36]. Since this descriptio

the timer is very straight forward and easy to program in C, this is how the emulato

implements the timer.

3.2.7.2:  Interrupts

The Motorola M-CORE architecture allows for both fast and regular interrupts

occur. The difference between a fast and a regular interrupt is that a regular interrup

be interrupted (by a fast interrupt) while a fast interrupt cannot.  To determine whe

an interrupt has occurred, every cycle the M-CORE architecture does a bitwise AN

between two registers: the interrupt source register (the fast interrupt source regist

fast interrupt and the regular interrupt source register for regular interrupts), which

contain all zeros, unless there is an interrupt pending on one of the interrupt lines;

the interrupt enable register (the fast interrupt enable register for fast interrupts, an

regular interrupt enable register for regular interrupts), which is set by the supervis

determining which interrupts will be serviced, and which will be ignored.

If the ANDing of these two registers returns any value other than zero, an in

rupt occurs. The interrupt number is then determined and from that number a vecto

set is then determined and sent to the exception handler.  Interrupts are handled b
38
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exception handler.  The only difference is the method in which they are detected, a

that the interrupt vector offset is sent to the exception handler [36, 37, 38].  Being 

this is very straight forward and easy to program in C, this is how the emulator imp

ments interrupts.

3.2.7.3:  Exceptions

In the M-CORE architecture, if either an exception or an interrupt has occur

a flag is set showing that an exception (or interrupt) has happened and needs to b

dled.  The first thing that occurs is that both the current PC and PSR values are sa

either the EPC and EPSR registers (for exceptions and regular interrupts) or the FP

FPSR registers (for fast interrupts).  The PC value that is stored is determined by w

type of interrupt or exception that is happening. If it is an exception that occurred du

the instruction decode stage, the PC for the instruction in the decode stage is stor

Likewise, if the exception was a divide-by-zero or misaligned access in the execut

stage, the PC of that instruction is saved.  However, if a misaligned access occurre

ing the calculation of either a jump to subroutine immediate (jsri) or jump immedia

(jmpi) instruction, the PC value fetched is the value that is stored. All of the instructi

in the pipeline behind the instruction that caused the exception are flushed. Howeve

the instructions further along in the pipe are allowed to complete.

If an interrupt caused the exception handler to start, the PC value stored is th

after the instruction that is in the instruction fetch stage.  So whenever an interrupt

occurs, it allows all instructions in the pipe to complete before beginning the excep

handler.
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After the PC and PSR values have been saved, certain bits are set in the new

to disable further exceptions and interrupts (except fast interrupts, unless the exce

was caused by a fast interrupt — in that case, no further exceptions or interrupts a

allowed), and then the location of the new PC for the exception handler is calculate

the exception occurring is an interrupt, then the vector offset is already known.  If n

then the vector offset is calculated by multiplying the exception number by four.  T

value is then added to the value in the vector base register (control register one), and

the new PC value is loaded from this location in memory.  Then, after the appropri

number of cycles to emulate the delay that all of the above actions take, execution

started at this new PC.

Upon completion of the exception handling, either a return from exception (

or return from fast interrupt (rfi) instruction is reached, which will reset the PC back

the value that it was before the exception, as well as reset the PSR [37, 38].  Agai

is very straightforward and is how exceptions are implemented in the emulator.

3.2.8:  Output

During the calling of the emulator, the user has the option of turning on deta

output. If this option is set, the emulator prints out information at the end of every cyc

The information that it prints out is:  what instruction is currently in the execution st

of the pipeline, the current cycle number, a listing of the pc address and opcode fo

instruction in each stage of the pipeline, the condition bit, and values contained in 

register file, the shadow register file, and the control registers.

For use during the experiment stage of this research, the emulator outputs a

ment whenever a particular I/O address has been written to, giving the I/O address
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ten to and the time in microseconds.  This shows when processes have executed 

whether or not they are executing at their set frequency.

Finally, at the end of execution, the emulator prints out the number of micro

onds that it has spent in each section of the code.  This is performed by having the

cess running on the emulator store a value to a particular memory address denoting

section of the code it is in:  Kernel code, Application code, Interrupt Handling code

Idle code. The emulator reads this memory location every microsecond and increm

the time value for whatever section it is in.

An example of all of this output can be found in Figure 7.

3.3:  Validating the Emulator

There were two steps used to test and validate the M-CORE Emulator.  The

was the creation of a simple suite of 8 programs.  These applications and what op

tions they perform can be seen in Table 1.  This test suite was first run on the actu

M-CORE hardware and then was run on the emulator.  These applications were u

make sure that all of the basic instructions of the M-CORE architecture were work

By running these applications, several small bugs were found and eliminate

the code.  Also, a disparity with the M-CORE Reference Manual [37] was found.  T

opcode for one of the instructions, move c bit to register (mvc), was listed different

one of the areas of the manual than the actual opcode. This problem was quickly f

and fixed, for when the emulator was supposed to be performing the mvc instructio

instead ran across an invalid instruction exception.

The second validation that was performed was the running of Echidna [10]

(described in more detail in Chapter 4) on both the Emulator and the actual hardw
41
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DEBUG: decoding [Ld rz,rx,u]: Rz=14 U=0 Rx=12

State at the end of cycle 112014860
   MAINpc  = 14340
   IFIDpc  = 1433e    IFID   = efe0
   IDEXpc  = 1433c    IDEX   = 2a0e
   EXWBpc  = 1433a    EXWB   = 8e0c
   WBEndpc = 1433a    WBEnd  = 8e0c
  C       = 0
   Regs:        Shadows:        Control Registers:
    00    10a88        0                  80000150
    01 80000150        0                         0
    02    10040        0                  80000150
    03    14f38        0                         0
    04        0        0                     147be
    05    100d0        0                         0
    06        0        0                         0
    07    1004c        0                         0
    08    10348        0                         0
    09    10328        0                         0
    10        0        0                         0
    11    10004        0                         0
    12    10008        0                         0
    13    1000c        0                         0
    14        0        0                         0
    15    14338        0                         0

READ to Location 14004 at cycle count 53209751
WRITE to Location 14006 at cycle count 53506932

Kernel=718250 Application=291250 Int=32 Idle=1490467

Figure 7: Output Example.
Shown above is the output that the emulator can provide the user. The first group s
the status of all of the registers at the end of a cycle.  This prints every cycle if the 
turns on the debug mode.  The second group shows reads and writes to the variou
ports used for the experiment stage of this research.  These values printout whene
there is a read or write to one of the selected I/O ports.  The last group shows the 
breakdown for the program run on the emulator.  This prints at the end of emulatio
42
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This was done for several reasons.  The first reason was to test out the interrupt a

exceptions portions of the Emulator code, which had not been tested. The second r

was to determine the speed at which the emulator could operate.  The number tha

achieved was 500,000 cycles per second, or 500KHz.  Compared with the hardwa

speed of 20MHz, this is only a 40 times slow down — very respectable for a softw

emulation.  The final reason for this test to determine how accurately the emulator

running against the hardware.  Comparing the cycle counts between the emulator 

hardware, it was determined that the emulator experienced less than 100 cycle diffe

per million cycles, or less than 0.01% error, this is exceptionally good, considering

SimOS simulator is typically 5-10% off and is considered acceptably accurate at th

level[44].  This disparity is due to several factors.  For the actual hardware to give 

mation about the processor (register state, etc.) it must perform a breakpoint instru

in order to transfer the information off chip.  Our emulator does not need to do this

Application 1 Basic Arithmetic

Application 2 Basic Loop

Application 3 Array Manipulation

Application 4 Basic Pointer Manipulation

Application 5 Complex Pointer Manipulation

Application 6 Quick Sort Algorithm and Function Calls

Application 7 Linear Sort Algorithm

Application 8 Search and Return Algorithm

Table 1:  Test Applications.
The above listed applications were used to test the functionality of the emulator.
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return processor state.  Also, the amount of time before an interrupt occurs and is 

viced is variable, so we approximate it by using the average value. If the interrupt in

emulator starts at a different point in execution than the hardware does, the time s

servicing that interrupt can vary, due to the asynchronous behavior of interrupts.

At this point, the emulator was ready for the experiment.
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Chapter 4:  Real-Time Performance Evaluation

The experiment carried out on the emulator was a real-time performance ev

tion and comparison of an experimental RTOS and a bare-bones scheduler repres

a minimal RTOS, as well as the theoretical performance.  Both the experimental R

that was used and the bare-bones operating system that was created are described

Following that is a description of the benchmarks run on those RTOSs to evaluate

formance and the types of background noise added to simulate non-determinism i

time systems.  This chapter ends with a description of the experiment that was per

formed.

4.1:  Echidna RTOS

Echidna is a cooperative multitasking Real-Time Operating System that is ba

on the Chimera [48] operating system developed at the Advanced Manipulators La

tory at Carnegie Mellon University.  A smaller version of Chimera (~6KB footprint),

Echidna swaps Chimera’s POSIX-like threads in the microkernel for port-based ob

and supports reconfigurable component-based software for microcontrollers and d

signal processors [10].

The traditional coding method used by most of today’s real-time operating s

tems is that processes are created, each with their own main().  Each of these pro

executes their own user code and controls the flow of the program.  This process c
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upon the operating system whenever an operating system service is needed.  The

vices include communication, time control, the creation of new processes, and syn

nization.  The port-based object method, on the other hand, gives a consistent stru

for every process, and thus operating system services as listed above are perform

predictable manner.  Only when necessary, the operating system calls a port-base

object’s method to perform user-defined functions [49].

In this port-based object model, each independent object does not need to e

itly communicate or synchronize with any other component in the system, making 

gration very easy.  When an object needs information, it obtains that information fr

its input ports.  When that object generates informations that needs to be passed o

either another process, or to a future invocation of itself, it sends that information t

output ports.  The information on these ports is stored in shared memory so data c

sent between objects [47, 50].

Echidna was designed to support dynamically reconfigurable real-time softw

and was targeted to run on 8 to 32 bit microcontrollers as well as DSPs [49].  Like 

mera, Echidna provides cooperative multitasking, but unlike Chimera, it offers a go

deal of functionality in a relatively small footprint, and therefore it is a good candida

for this study in real-time performance in embedded systems.

4.2:  NOS

The Non-Operating System (NOS) is a bare-bones, fixed priority, multi-rate

executive [27] similar to a real-time operating system that an embedded-systems

designer might create on the fly [14].  Although not a full operating system, just a t

scheduler, NOS represents the attainable performance limit of a non-preemptive RT
46
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A multi-rate executive scheduler was chosen over something simpler, such as a ba

cyclic executive or a time-driven cyclic executive scheduler [27], because we neede

ability to have several jobs that had different frequencies, and the timing of the mu

rate executive is less independent on the code size of the jobs run upon it, which i

important because each of the benchmarks to be run is contains a different amoun

code.  NOS’s main control loop can be seen in Figure 8.

When a job is created, it is set onto a callout queue similar to the callout tabl

UNIX [4]. Jobs added to this queue are assigned a location in this queue by the time

they are to occur.  Upon entry to this queue, each job is assigned a delta value, wh

the time difference between when this job is to run and the time the job ahead of it

run.  If a task is periodic, the last thing that it does during its runtime is to reinstant

itself on the queue a time in the future equal to its period.

NOS is capable of handling two different priority levels of tasks (HARD and

SOFT deadline tasks), and two different priority levels of interrupts (HIGH and LOW

priority interrupts).  Interrupts in NOS are handled via masking the interrupts and p

ing the interrupt status register.  However, HIGH priority interrupts are not polled u

all HARD deadline tasks scheduled to run have executed.  Likewise, SOFT deadlin

tasks are not executed until all HARD deadline tasks scheduled to run have finished

cuting and all HIGH priority interrupts have been handled, and so on.  For this exp

ment all tasks are run as HARD deadline tasks and all interrupts are HIGH priority

interrupts.  This means that if the NOS is overloaded with HARD deadline jobs, su

that as soon as one job finishes another must run, interrupts will be handled much

than when they occur, if ever.
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4.3:  Benchmarks

To aid in the real-time performance evaluation of these two RTOSs, four be

marks were created.  Each one of these benchmarks executes two separate jobs.

first job grabs a value from an input I/O port.  The second job performs some oper

on the data gathered by the read job, and then writes to an output I/O port.  The fo

struct event {
struct event *next;
time_t delta;
void (*execute)();
char *data;
int priority; // HARD_DEADLINE or SOFT_DEADLINE

};

struct event *calloutq;
struct event *freelist;

time_t time = now();
while (1) {

for (entryp = calloutq; time_to_execute(time, entryp); entryp = entryp->next) {
if (entryp->priority == HARD_DEADLINE) {

entryp->execute(entryp->data);
entryp = free_entry(entryp);
time = update_calloutq(now(), time);

}
}

if (HIGH_PRIORITY(interrupt_status())) {
handle_interrupt(HIGH_PRIORITY(interrupt_status()));
time = update_calloutq(now(), time);
continue;

}

if (calloutq && calloutq->delta <= 0) {
calloutq->execute(calloutq->data);
free_entry(calloutq);
time = update_calloutq(now(), time);
continue;

}

if (LOW_PRIORITY(interrupt_status())) {
handle_interrupt(LOW_PRIORITY(interrupt_status()));
time = update_calloutq(now(), time);
continue;

}

if (calloutq) {
delta = calloutq->delta;

} else {
delta = INDEFINITE;

}

sleep(delta); // wakes up only for interrupt or timeout

time = update_calloutq(now(), time);
}

Figure 8:  NOS main loop.
The above figure shows the main control loop for the simple multi-rate executive RT
[27] based on descriptions of designers in the industry [14].  There are two levels o
ority for tasks (HARD and SOFT deadline tasks), and two levels of interrupts (HIG
and LOW priority interrupts).  All HARD deadline tasks schedule to run now must b
completed before any HIGH priority interrupts can be serviced.  All HIGH priority
interrupts must be completed before any SOFT deadline tasks are serviced, etc.
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benchmarks are periodic inter-process communication, up sampling, down sampli

and a finite impulse response filter.

4.3.1:  Periodic Inter-Process Communication

Periodic inter-process communications (IPC) is the simplest of the benchma

that was used to evaluate performance.  As mentioned above, the first job grabs d

of the input I/O port and stores it into shared memory.  The second job takes that v

from shared memory and writes it to the output I/O port. There is no computation, o

the movement of data.  This task represents the simplest possible two-job applicat

possible.

4.3.2:  Up Sampling

With up sampling (UP), the second job runs at a higher frequency than that o

first job. Only a fraction of times that the second job has run will there be any new in

mation.  Therefore the second job carries out a basic form of interpolation.

4.3.3:  Down Sampling

As with up sampling, the frequencies of the first and second jobs in down sa

pling (DOWN) are not the same. However, as opposed to up sampling, the first job

at a higher frequency than that of the second job.  The second job takes all of the 

that have been brought in by the read job since last time that second job has run, 

ages them, and then outputs that average to the output I/O port.

4.3.4:  Finite Impulse Response Filter

The finite impulse response (FIR) filter is the most computation intensive of

four benchmarks.  The second job runs a 128-tap filter on the data that has been c
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  It is
lected by the first task. For each run of the second job, the last 128 values to be inp

by the first job are used in a dot product, and that value is outputted to the I/O port

4.4:  Background Load

To add some non-determinism to the evaluation of these two operating syst

and to offer more realistic simulations indicative of real-world systems, two differen

additional tasks were created. These tasks can be run concurrently with the above

benchmarks to provide a background load.  These two tasks are a periodic contro

and an aperiodic inter-process communication process.

4.4.1:  Control Loop

The control loop was created to run in the background at a period of 32ms 

simulate the background load that many embedded systems have running while the

performing other tasks, such as a cell phone that has a task that runs every so ofte

refresh its LCD display.  This control loop performs several  RAM lookups with an

index that is randomly generated.

4.4.2:  Aperiodic Inter-Process Communication

The aperiodic inter-process communication (AP-IPC) task is run only when 

interrupt is generated by the hardware. The interrupt inter-arrival times obeys a geo

ric distribution:  the emulator generates an interrupt every 100µs with a probability of

0.01, giving an average of 100 interrupts a second.

Because the Echidna RTOS can only have periodically scheduled tasks, a p

cess with the smallest period possible on the Echidna RTOS (1ms) checks to see 

AP-IPC interrupt has occurred.  If such is the case, then the AP-IPC code will run.

important to note that since an interrupt is possible every 100µs, and the interrupt is
50
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checked only every 1ms, it is possible for several interrupts to happen before any 

them are serviced.

For the NOS, as mentioned above, if processes with higher priorities are co

stantly running, interrupts from the AP-IPC may not be serviced at all.

4.5:  The Experiment

For the experiment, all four periodic benchmarks (P-IPC, UP, DOWN, and F

were executed on both the Echidna RTOS and NOS. The background load that is r

simulate non-determinism was varied (none, a periodic control loop running every

32ms, an interrupt driven aperiodic IPC, or both the control loop and the aperiodic IP

For each our the runs, the number of each of those benchmarks ran was varied (1, 2

8 tasks), as well as the period at which each of the individual tasks were run (16ms,

4ms, 2ms, 1ms, 0.5ms, 0.25ms, 0.125ms, and 0.064ms).  For UP and DOWN, the

pling ratios that were run are 2:1, 4:1, and 8:1. The effective cross product of the a

variations was run, but it is important to note that, as mentioned above, Echidna ca

schedule a task with a period less than 1ms, therefore periods of less than 1ms wer

run on NOS.  Also, as mentioned above, each benchmark task is actually two jobs

reading from I/O job, and a writing to I/O job.

In this study, three things are studied: jitter, delay, and CPU breakdown. Jitte

found by measuring the time between periodic I/O writes, and comparing that time

the goal period of that task.  If that inter-arrival time is greater than the period, it m

that the task is late, and this will show up as a positive jitter value.  If that inter-arriv

time is less than the period, then that task is early, and this will show up as a negativ

ter value.  Delay is measured by keeping track of the time between when an aperi
51
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IPC interrupt occurs and when the corresponding I/O write occurs.  This represent

response time of the system under varying loads.  CPU breakdown is a breakdown

time spent in either the application, kernel, interrupt handler, or idle compilation.
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Chapter 5:  Results and Analysis

As mentioned earlier, three things were evaluated during this research: jitte

delay, and CPU breakdown. Jitter is the offset in the goal arrival-time between peri

I/O writes, delay is the time between an aperiodic IPC interrupt and its correspond

I/O write, and CPU breakdown is a breakdown of the time spent in the application,

nel, interrupt handler, or idle sections of computation. This chapter is broken down

four sections.  The first section examines the characteristics found in the jitter grap

the second section looks at the traits found in the delay graphs, the third section g

over the trends in CPU breakdown, and the last section summarizes the character

found. Each of the first three sections is further broken down by benchmark (note: d

and CPU breakdown results were obtained for UP and DOWN, but due to their sim

ity to those of IPC, they will not be shown in this report).

5.1:  JITTER

As described above, jitter measurements represent the time deltas between

cessive output seen at the I/O ports for a given task.  When more than one task is 

ning, each task is assigned a separate I/O port to write to, enabling the distinction

between tasks.  On those runs, the jitter information for each of the tasks is combi

into a single set of data points.
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All of the graphs shown are probability density graphs, centered on the des

period.  Negative numbers along the x-axis represent tasks that have run early, an

tive numbers represent tasks that have run late, in relation to the previous task. To

tain readable graphs, only non-zero y-values have been shown, and all of the values

been grouped into 100µs intervals.

5.1.1:  Periodic Inter-Process Communication

In this section the Jitter characteristics found in the periodic inter-process co

munication benchmark runs are examined.  Figures 9 and 10 show the Jitter chara

tics for P-IPC. Figure 9 shows runs on the Echidna RTOS, and Figure 10 shows run

NOS.  The periodic IPC task represents the simplest possible case of two interact

jobs. There is no computation performed other than the movement of data betwee

cesses; IPC thus represents the smallest workload that a realistic application woul

schedule on a RTOS.

Figure 9 shows the runs on the Echidna RTOS.  On Figure 9, graphs (a)-(e

resent individual tasks running at periods of 16ms down to 1ms with no backgroun

load, while graphs (f)-(j) represent individual tasks running at periods of 16ms dow

1ms with a background load of a control loop running at a period of 32ms and an a

odic interrupt-driven IPC.

The first five graphs in Figure 9 ((a)-(e)), those runs with no background loa

show spikes of data points that are for the most part centered at zero, indicating th

tasks are executing at the given period.  As mentioned above, the heights of the d

points indicate the probability of seeing that time delta.  For example, in Figure 9(a

when only 1, 2, or 4 tasks are running, they always execute on time.  However, wh
54
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(a) Background=None, 16ms period (b) Background=None, 8ms period (c) Background=None, 4ms period

(d) Background=None, 2ms period (e) Backgound=None, 1ms period

(f) Background=AP-IPC+CL, 16ms period (g) Background=AP-IPC+CL, 8ms period (h) Background=AP-IPC+CL, 4ms period

(i) Background=AP-IPC+CL, 2ms period (j) Background=AP-IPC+CL, 1ms period

 1 task
 2 tasks
 4 tasks
 8 tasks

Figure 9:  JITTER probability density graphs for P-IPC on Echidna.
The x-axis represents time deltas between successive I/O output events as they d
from the expected period.  Negative numbers mean a task ran early, and positive n
bers mean a task has run late, in relation to the last task run.  The y-axis indicates
probability of each delta.  The legend shows the symbols used to represent system
of 1, 2, 4, and 8 simultaneous tasks. Graphs (a)-(e) represent individual tasks runn
periods of 16ms down to 1ms with no background load. Graphs (f)-(j) represent ind
ual tasks running at periods of 16ms down to 1ms with a background load of a con
loop running every 32ms, and an aperiodic interrupt driven IPC.
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tasks are running, only 95% of the tasks occur on time, while 5% occur 100µs off in

either direction.  As the period decreases, simulations of 1, 2, and 4 tasks still tend

execute on time, with only 2% falling either 100µs too late or too early for 4 tasks. With

8 tasks, as the period decreases, the values that fall either before or after the expe

period start to move away from the origin, (all the way to 1ms off in Figure 9(d)). The

values are balanced on both sides of the origin because when a task runs late in Ec

Echidna schedules the task to run early the next time to make up for the difference

thus return to running on period.  In Figure 9(e), with 8 tasks running, the average 

no longer falls on 0; instead 70% of the time the task falls at 700µs past the period,

meaning that upon reaching this point, the tasks are always executing late almost 

additional period of time.  This appears to be the workload level at which the RTOS

becomes overloaded.

The second five graphs in Figure 9 ((f)-(j)) were runs with a background loa

both the 32ms control process and the aperiodic interrupt driven IPC. Like those wit

load, these graphs also show spikes of data mostly centered at zero when only 1 o

tasks are running (see Figure 9(f), (g), and (h)).  However, as the number of tasks 

increased, or the period at which those tasks are running is decreased, several inter

characteristics start to show.

In Figure 9(f), when 8 tasks are running, the data points appear to form a V sh

(Other than the two points and +/-200µs that amount to less than 1%, 40% of the data

falls at -100µs, 40% falls at +100µs, and remaining 20% falls at 0.).  Among all of the

IPC graphs running on Echidna, this only appears in this graph, when 8 tasks are 

ning at 16ms each.  The reason for this occurrence is the control loop.  Because th
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trol loop runs once for every two times the IPC tasks do, half of the time that the IP

tasks are running, the control loop is also scheduled, pushing the average I/O writ

100µs past period instead of at 0. And to counteract that late arrival, Echidna sched

the next task earlier which accounts for the negative peak.  This V characteristic o

appears when there are 8 tasks (which is 16 jobs: 8 I/O reads, and 8 I/O writes), be

Echidna first schedules the control tasks, then each pair of reads and writes.  This

explains why this characteristic does not appear with only 4 tasks, when only 5% o

tasks are pushed out to 100µs:  the additional task overhead with 4 tasks is only large

enough to make the last write occasionally late.

As the period decreases to 8ms and 4ms (Figure 9 (g), (h)), when 4 or 8 task

running, the peaks are still centered on zero, but data points on both sides of the o

start to increase in probability and distance from the origin, showing that the contro

loop and the aperiodic interrupt-driven IPC are having more of an affect on I/O writ

output times.

At a period of 2ms (Figure 9 (i)), another interesting trend presents itself.  T

values are all still centered on zero, however the values are no longer balanced at

probability on both sides of the origin for runs of 8 tasks (1,2, and 4 task runs are s

balanced). Along with the equally balanced data points on each side of the origin, t

are also higher probability data points just a fraction of a millisecond early, and sev

data points much further away from the origin on the positive side of the graph with

lesser probability.  What this is showing is that the background load is causing task

run late, and Echidna is trying to make up for those late runs by scheduling the next

to run early, but it occasionally takes more than one run to fix that late arrival. For ex
57
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 with
ple, a task runs 2ms past deadline (causing a delta value of +2ms). Therefore, to fi

problem, Echidna schedules the next run of this task to run the period minus 2ms 

now to make up for the late run.  However, the task runs late again (this time only 

past when it was originally scheduled, causing a delta value of -1ms), and so Echi

has to schedule the next run to also run early to still make up for the remainder of 

original 2ms late for the first task (setting the next run to occur at the period minus

from now).  This time, the task runs when scheduled,  causing a delta value of -1m

this example, the data point at -1ms would have a probability twice that of the data p

at +2ms.  However, if all of the points’ delta values are multiplied times their proba

ties and summed, the result of 0, meaning that the average case still falls at the or

In the final graph (Figure 9(j)), runs of 1, 2, and 4 tasks start to show some of

same characteristics mentioned in the above paragraph for 8 tasks running at 2ms

(higher probability data points of negative deltas close to the origin balanced out b

lower probability data points of positive deltas further away from the origin).  Also, 

was seen in Figure 9(e), for 8 tasks, the values are no longer centered on zero, bu

900µs, with values also landing as far as 3.7 ms off, meaning that during certain ru

the task ran almost three periods late.  This is due to the control process running e

32 ms, as well as the aperiodic IPC, which in Echidna is performed by a periodic pro

that polls the interrupt every 1ms. So every 1ms there is the AP-IPC polling job, 16

associated to the 8 reads and 8 writes, and all of the scheduling overhead involved

maintaining those tasks.  And every 32 times that this occurs, a control loop is also

scheduled to run.
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It appears that for IPC running on Echidna, when there is any background loa

to 2 tasks running at 8 to 16ms periods is the limit in order to always have tasks run

on time.  If it only matters to run tasks on time for the average case, 1, 2, or 4 task

speeds of 16-1ms, or 8 tasks from 16-2ms can be run. Beyond that, the RTOS bec

overloaded and unpredictable.

Figure 10 shows the runs on NOS.  On Figure 10, graphs (a)-(e) represent 

vidual tasks running at periods of 1ms down to 0.064ms with no background load, w

graphs (f)-(j) represent individual tasks running at periods of 1ms down to 0.064ms

a background load of a control loop running at a period of 32ms and an aperiodic 

rupt driven IPC. Runs with periods of greater than 1ms are not shown because all o

runs at those periods, both with and without background load, always run on perio

For the first five graphs in Figure 10 ((a)-(e)), those runs with no backgroun

load, regardless of the number of tasks or what the delta of those points are, the pro

ity arrival time for all of the data points fall at 1.  The only trait that varies is where 

data points fall.  For 1 or 2 tasks and for all of the periods from 1ms to 0.064ms, th

tasks run on time.  Only when 4 or 8 tasks are run do the tasks start running late, 

even the 4 task runs still meet their period down to 125µs.  Unlike Echidna, NOS does

not attempt to fix late arrival times, so a task that occurs late will still be reschedule

with its original period. However, NOS would not benefit from this correction, becau

for periods of 250µs or slower with runs of 8 tasks, the delta is always greater than 

period, so this delay is not caused by application computation time; instead it is ca

by scheduler overhead, which is independent of the period at which the tasks are ru

instead is a function of the number of tasks that are being run.
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(a) Background=None, 1ms period (b) Background=None, 500µs period (c) Background=None, 250µs period

(d) Background=None, 125µs period (e) Backgound=None, 64µs period

(f) Background=AP-IPC+CL, 1ms period (g) Background=AP-IPC+CL, 500µs period (h) Background=AP-IPC+CL, 250µs period

(i) Background=AP-IPC+CL, 125µs period (j) Background=AP-IPC+CL, 64µs period

 1 task
 2 tasks
 4 tasks
 8 tasks

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y 

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y 

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y 

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y 

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y 

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y 

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y 

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y 

of
 A

rr
iv

al
 T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

ba
bi

lit
y 

of
 A

rr
iv

al
 T

im
e

Figure 10:  JITTER probability density graphs for P-IPC on NOS.
The x-axis represents time deltas between successive I/O output events as they d
from the expected period.  Negative numbers mean a task ran early, and positive n
bers mean a task has run late, in relation to the last task run.  The y-axis indicates
probability of each delta.  The legend shows the symbols used to represent system
of 1, 2, 4, and 8 simultaneous tasks. Graphs (a)-(e) represent individual tasks runn
periods of 1ms down to 0.064ms with no background load. Graphs (f)-(j) represent
vidual tasks running at periods of 1ms down to 0.064ms with a background load o
control loop running at a period of 32ms, and an aperiodic interrupt driven IPC. Gra
with periods of higher than 1ms have been omitted since they always meet their d
lines.
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By examining the data points for 8 tasks running at decreasing periods, the m

mum period that 8 tasks can be run at before the kernel has maxed out can be de

mined. In Figure 10(b), the data point for 8 tasks is 400µs past the goal period of 500µs.

In Figure 10(c), 8 tasks are running 650µs past their goal period of 250µs.  In Figure

10(d), 8 tasks are 800µs off, and in Figure 10(e), 8 tasks are 800µs off. So by adding the

goal period to the amount of time that the tasks are late in each case gives the mini

period that 8 tasks can successfully run at on NOS as ~900µs.

The second five graphs in Figure 10 ((f)-(j)), those runs with a background l

of both a 32ms control loop and the aperiodic interrupt driven IPC, match almost id

cally with those with no load with the exception of a data point occasionally falling

100µs away from the origin with a probability of less than 0.01. Also, the data points

8 tasks have shifted a little further from the origin, changing the minimum period fr

being ~900µs to falling between 900µs and 1ms.

This shows that the control loop and the AP-IPC have very little effect on th

arrival time of our IPC runs on NOS. This makes sense for two reasons. The first is

the control loop runs at a period of 32 ms, while our processes are running at perio

1ms to 64µs, so the control loop has very little effect. Second, since in NOS the AP-I

interrupt is only serviced after all of the tasks that need to run have run, the AP-IPC

very little effect.

So it appears that for IPC runs on NOS, the limiting factor is not how fast th

tasks are run, but instead it is the number of tasks that are run at that speed.  So, 

design specification calls for 8 tasks to be run at a period of 500µs each, it would be
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more optimal to run four tasks at 250µs instead, and all of those tasks will run on time

where 8 tasks at 500µs will always run 400µs late.

Comparing Echidna to NOS, we find that workload level that Echidna begin

fail at is around a period of 1ms with 8 tasks running, while NOS, which is a much

pler, bare-bones scheduler, can operate successfully even below the 1ms limit of

Echinda for 4 tasks or less.

5.1.2:  Up Sampling

This section examines the Jitter characteristics found in the up sampling be

mark runs.  Figures 11 and 12 show the Jitter characteristics for UP.  Figure 11 sh

runs on the Echidna RTOS, and Figure 12 shows runs on NOS. The up sampling b

mark is not as simple a benchmark as IPC.  The first job still only reads an I/O inp

value, but the second job performs some basic computation in addition to writing t

I/O output port. With up sampling, the second job runs at a faster period than that o

first job.  The second job takes the last input value brought in and spreads that val

amongst all of the write jobs until the next input job is set to run.

Figure 11 shows the runs on the Echidna RTOS.  On Figure 11, graphs (a)-

represent individual tasks running at increasing loads (8/4, 8/2, 4/2, 8/1, 4/1, and 2/

periods in ms) with no background load, while graphs (g)-(l) represent individual ta

running at increasing loads (8/4, 8/2, 4/2, 8/1, 4/1, and 2/1, all periods in ms) with 

background load of a control loop running at a period of 32ms and an aperiodic inter

driven IPC.

The first six graphs in Figure 11 ((a)-(f)) are the runs that operate with no ba

ground load. However, these graphs show characteristics that we saw with the IPC
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(a) Background=None, 8/4ms period (b) Background=None, 8/2ms period (c) Background=None, 8/1ms period

(d) Background=None, 4/2ms period (e) Backgound=None, 4/1ms period

(g) Background=AP-IPC+CL, 8/4ms period (h) Background=AP-IPC+CL, 8/2ms period (i) Background=AP-IPC+CL, 8/1ms period

(j) Background=AP-IPC+CL, 4/2ms period (k) Background=AP-IPC+CL, 4/1ms period
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(f) Backgound=None, 2/1ms period

(l) Background=AP-IPC+CL, 2/1ms period

Figure 11:  JITTER probability density graphs for UP on Echidna.
The x-axis represents time deltas between successive I/O output events as they d
from the expected period.  Negative numbers mean a task ran early, and positive n
bers mean a task has run late, in relation to the last task run.  The y-axis indicates
probability of each delta.  The legend shows the symbols used to represent system
of 1, 2, 4, and 8 simultaneous tasks. Graphs (a)-(f) represent individual tasks runni
increasing loads (8/4, 8/2, 4/2, 8/1, 4/1, and 2/1, all in ms) with no background loa
Graphs (g)-(l) represent individual tasks running at increasing loads (8/4, 8/2, 4/2, 8/
1, and 2/1, all in ms) with a background load of a control loop running at a period o
32ms, and an aperiodic interrupt driven IPC.
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on Echidna with background load because they are multi-rate tasks.  For example

ure 11(a) shows the run where the first job is running at a period of 8ms while the 

job runs at a rate of 4ms.  Half of the time when a write job wants to run, it has to a

compete with a read job, and half the time it doesn’t, just like when the IPC write jo

occasionally had to deal with a control loop, thus the V shape.

Like the IPC graphs for Echidna, these graphs also show spikes for data po

centered around zero, until the RTOS becomes overloaded (see the 8 tasks data p

Figure 7(f)). Those values that do not fall on the origin are balanced, meaning that

point on the negative portion of the graph is matched by a corresponding data poin

the positive portion of the graph.  An interesting observation is that those runs with

read/write ratio of 2:1 (Figure 11 (a), (c), and (f)) show V characteristics for runs of 4

8 tasks, like those mentioned in the IPC section. These occur for same reasons as

above; half of the time, the writes have to deal with an accompanied read, pushing

execution time for those last few writes later, pushing the average away from 0, cau

the positive half of the V, and the Echidna correction causes the negative half.  Thi

not seen in the 8/2, 8/1, or 4/1 graphs (Figure 11 (b), (d), and (e)) because the rea

happen only a quarter or an eighth as often as the write does.

As before, as load increases, more and more of the data values move away

the origin, until the point at which the system is overloaded. This occurs in Figure 1

with 8 tasks; the values are no longer centered at 0, they are instead centered at a

of 100-200µs.

The second six graphs in Figure 11 ((g)-(l)), those runs with a background l

of both the 32ms control process and the aperiodic interrupt driven IPC, show the 
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characteristics as those with no background load, except the values tend to spread

further away from the origin and with a greater probability. Also, values that are not

anced around the origin can be seen.  This occurs for the same reason as was de

in section 5.1.1, that as the speed of the jobs running is increased, the effect of the

trol loop as well as the aperiodic interrupt IPC becomes more prevalent and more 

cult to recover from.

An important difference to note between the runs with background load and

those without background load is that, when there is no background load, when on

task is running, that task always runs on time, regardless of period or the ratio of the

and write job. However, when the background load is added, that is no longer the c

For all of the runs with background load, the runs with 1 task never reach the goal pe

more than 90% of the time.  For the runs of UP on Echidna with a background loa

tasks are no longer guaranteed to run on period, they only run on period on averag

Figure 12 shows the UP runs on NOS.  In Figure 12, graphs (a)-(d) represe

tasks running at increasing loads (1/.5, .5/.25, .25/.125, and .125/.065, all periods in

with no background load, while graphs (e)-(h) represent tasks running at increasin

loads (1/.5, .5/.25, .25/.125, and .125/.064, all periods in ms) with a background lo

a control loop running at a period 32ms and an aperiodic interrupt driven IPC.  Run

with periods greater than 1/.5 are not shown because all of the runs at those periods

with and without the background load, always run on period.

The first four graphs in Figure 12 ((a)-(d)), those runs with no background lo

for the most part, fall at the origin. In Figure 12(a), all data points are at the origin wi

probability of 1 with the exception of the run with 8 tasks. The reason that the 8 task
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is off slightly is due only to the number of tasks running, and like mentioned above

occasionally the read jobs push the last write back a bit, but only very rarely.  Whe

Figure 12:  JITTER probability density graphs for UP on NOS.
The x-axis represents time deltas between successive I/O output events as they d
from the expected period.  Negative numbers mean a task ran early, and positive n
bers mean a task has run late, in relation to the last task run.  The y-axis indicates
probability of each delta.  The legend shows the symbols used to represent system
of 1, 2, 4, and 8 simultaneous tasks. Graphs (a)-(d) represent individual tasks runn
increasing loads (1/.5, .5/.25, .25/.125, and .125/.64 all in ms) with no background lo
Graphs (e)-(l) represent individual tasks running at increasing loads (1/.5, .5/.25, .2
.125, and .125/.65 all in ms) with a background load of a control loop running at a pe
of 32ms, and an aperiodic interrupt driven IPC.  Graphs with periods of higher than
.5ms have been omitted since they always meet their deadlines.

(a) Background=None, 1/.5ms period (b) Background=None, 500/250µs period (c) Background=None, 250/125µs period
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(d) Background=None, 125/64µs period

(g) Background=AP-IPC+CL, 250/125µs period (h) Background=AP-IPC+CL, 125/64µs period(f) Background=AP-IPC+CL, 500/250µs period

(e) Background=AP-IPC+CL, 1/.5ms period
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decrease the period, the values once again start moving away from the origin.  As

tioned above, the tasks are running late because too many tasks are trying to be s

uled within a short amount of time and the kernel cannot handle it. This is shown by

fact that only runs of 4 to 8 tasks are running off period. Runs of 1 or 2 tasks are righ

period, down to 64µs.

As shown above, by examining the data points for 8 tasks running at decrea

periods, the minimum period that 8 tasks can be run at can be determined. From F

12(a), the 8 tasks data point is late by 100µs. In Figure 12(b), the 8 tasks data point is

late by 550µs.  With Figure 8(c), the data point is off by 700µs, and in Figure 12(d) the

data point is off by 800µs.  Thus, the minimum periods for UP on NOS is between

1.8ms/900µs and 1.2ms/600µs.

The second four graphs in Figure 12 ((e)-(h)), those runs with a background

of a 32ms control loop and the aperiodic interrupt driven IPC, match almost identic

with those with no load, with occasionally a small shift of 100µs for a part of the data (as

seen in Figures 12 (e), (h)), caused by the control loop. As mentioned above, this is

because the control loop runs much more slowly than these jobs, and that the AP-I

not serviced unless there are no waiting jobs.  Like with the IPC data, the 8 task m

mum is pushed out100µs by the background load, making the minimum period betwe

2/1ms and 1.4ms/700µs.

As seen with IPC, it again appears for UP that with NOS, the limiting factor 

not how fast we are running the tasks, but instead it is the number of tasks that are

ning.  Also seen with IPC, when comparing Echidna to NOS, it is found that the wo

load level that Echidna begins to fail is at 2/1ms periods with 8 tasks running, while
67
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NOS appears be able to run well below that.  However, as opposed to IPC, UP ha

much greater variance in the data points than IPC did on Echidna.

5.1.3:  Down Sampling

This section examines the Jitter characteristics found in the down sampling

benchmark runs.  Figures 13 and 14 show the Jitter characteristics for DOWN.  Fig

13 shows runs on the Echidna RTOS, and Figure 14 shows runs on NOS.  Like up

pling, the down sampling benchmark is not a simple benchmark like IPC, but it is no

complicated a benchmark as FIR. While the first job still only reads an I/O input va

the second job does perform some basic computation.  Since the second job runs

slower period than the first job, it takes all of the input values brought in since the l

run of the write job and averages them, and then outputs that value to the write I/O

Figure 13 shows the runs on the Echidna RTOS.  On Figure 13, graphs (a)-

represent individual tasks running at increasing loads (4/8, 2/8, 2/4, 1/8, 1/4, and 1/

periods in ms) with no background load, while graphs (g)-(l) represent individual ta

running at increasing loads (4/8, 2/8, 2/4, 1/8, 1/4, and 1/2, all periods in ms) with 

background load of a control loop running at a period of 32ms and an aperiodic inter

driven IPC.

The first six graphs in Figure 13 ((a)-(f)) are the runs that operate with no ba

ground load. For the most part, all of the spikes are centering around the origin, an

only runs that are not 100% at zero are those of 8 tasks.  And those runs of 8 task

are having their output move away from the origin, while not being a problem of ke

overhead (see the 8 tasks data point in Figure 13(f)), are Figure 13 (d) and (e). Th

son for this is because unlike the up sampling write job, which performs a simple
68
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(a) Background=None, 4/8ms period (b) Background=None, 2/8ms period (c) Background=None, 2/4ms period

(d) Background=None, 1/8ms period (e) Backgound=None, 1/4ms period

(g) Background=AP-IPC+CL, 4/8ms period (h) Background=AP-IPC+CL, 2/8ms period (i) Background=AP-IPC+CL, 2/4ms period

(j) Background=AP-IPC+CL, 1/8ms period (k) Background=AP-IPC+CL, 1/4ms period
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(f) Backgound=None, 1/2ms period

(l) Background=AP-IPC+CL, 1/2ms period
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Figure 13:  JITTER probability density graphs for DOWN on Echidna.
The x-axis represents time deltas between successive I/O output events as they d
from the expected period.  Negative numbers mean a task ran early, and positive n
bers mean a task has run late, in relation to the last task run.  The y-axis indicates
probability of each delta.  The legend shows the symbols used to represent system
of 1, 2, 4, and 8 simultaneous tasks. Graphs (a)-(f) represent individual tasks runni
increasing loads (4/8, 2/8, 2/4, 1/8, 1/4, and 1/2, all in ms) with no background loa
Graphs (g)-(l) represent individual tasks running at increasing loads (4/8, 2/8, 2/4, 1/
4, and 1/2, all in ms) with a background load of a control loop running at a period o
32ms, and an aperiodic interrupt driven IPC.
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divide, the down sampling write job executes a loop that sums all of the values inp

since its last iteration, and then performs a divide. Also, this loop runs longer if the r

between the read and the write job is greater; as it is in the 1/8ms and 1/4ms grap

The second six graphs in Figure 13 ((g)-(l)), those with a background load o

both the 32ms control process and the aperiodic interrupt driven IPC, show charac

tics as those with no background load, except some of data points start to spread 

from the origin.  We also can see the added trend of values that are not balanced 

the origin (Figure 13 (i), (j), (k), and (l)), as mentioned above, and for the same reaso

mentioned above, that as you increase the speeds at which the jobs are running, t

effect of the control loop as well as the aperiodic interrupt IPC becomes more prev

and also becomes more difficult to recover from.  This is very clear in Figure 13(j),

because in this instance, with 8 tasks, each one of the write tasks performs the mo

amount of work possible(due to the 1:8 ratio), and the control loop runs once for e

four times that the write job does.

Figure 14 shows the DOWN runs on NOS.  On Figure 14, graphs (a)-(d) rep

sent tasks running at increasing loads (.5/1, .25/.5, .125/.25, and .065/.125, all perio

ms), with no background load, while graphs (e)-(h) represent tasks running at increa

loads (.5/1, .25/.5, .125/.25, and .065/.125, all periods in ms) with a background lo

a control loop running at a period of 32ms and an aperiodic interrupt driven IPC.  R

with periods greater than .5/1ms are not shown because all of the runs at those pe

both with and without the background load, always run on period.

The first four graphs in Figure 14 ((a)-(d)), those runs with no background lo

when the system is not being overloaded, all of the data points fall at the origin wit
70
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probability of 1.  However, when the system begins to be overloaded (2 tasks at 64

125µs, 4 tasks at 125/250µs, and 8 tasks at 250/500µs), the values slowly start drifting to

(a) Background=None, .5/1ms period (b) Background=None, 250/500µs period (c) Background=None, 125/250µs period

 1 task
 2 tasks
 4 tasks
 8 tasks

(d) Background=None, 64/125µs period

(g) Background=AP-IPC+CL, 125/250µs period (h) Background=AP-IPC+CL, 64/125µs period(f) Background=AP-IPC+CL, 250/500µs period

(e) Background=AP-IPC+CL, .5/1ms period
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Figure 14:  JITTER probability density graphs for DOWN on NOS.
The x-axis represents time deltas between successive I/O output events as they d
from the expected period.  Negative numbers mean a task ran early, and positive n
bers mean a task has run late, in relation to the last task run.  The y-axis indicates
probability of each delta.  The legend shows the symbols used to represent system
of 1, 2, 4, and 8 simultaneous tasks. Graphs (a)-(d) represent individual tasks runn
increasing loads (.5/1, .25/.5, .125/.25, and .64/.125 all in ms) with no background lo
Graphs (e)-(l) represent individual tasks running at increasing loads (.5/1, .25/.5, .1
.25, and .64/.125 all in ms) with a background load of a control loop running at a pe
of 32ms, and an aperiodic interrupt driven IPC.  Graphs with periods of higher than
1ms have been omitted since they always meet their deadlines.
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the positive side of the origin.  Once again the minimum period for 8 tasks running

be derived by examining the data in the graphs.  The minimums derived from thes

ures is 1ms/500µs.

The second four graphs in Figure 14 ((e)-(h)), those runs with a background

of a 32ms control loop and the aperiodic interrupt driven IPC, match almost identic

with those with no load, with the exception of an occasional small shift of 100µs for a

part of the data (as seen in Figures 14 (e), (f), and (g)), caused by the control loop w

8 tasks are running.  As mentioned above, this lack of effect of the background loa

both because the control loop runs much slower than these jobs and because the A

is not serviced unless there are no waiting jobs.  Again, by examining these graph

minimum period can be derived to be 1.2ms/600µs.

As seen with UP and IPC, it appears that for NOS the limiting factor is not h

fast we are running the tasks, but instead it is the number of those tasks that we a

ning. Also seen with UP, when comparing Echidna to NOS it is found that the worklo

level that Echidna begins to fail at is 1/2ms periods with 8 tasks, where NOS appea

able to run normally below that limit.  However, as opposed to UP, the amount of v

ance in the data values with Echidna is more dependent on the ratio of periods tha

periods that the jobs are running at.  This is easily explained by the fact that the se

job’s workload is proportional to the number of times the first job has run since the

time the second job has run.

5.1.4:  Finite Impulse Response Filter

This section examines the Jitter characteristics found in the finite impulse

response filter benchmark runs.  Figures 15 and 16 show the Jitter characteristics 
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FIR.  Figure 15 shows runs on the Echidna RTOS, and Figure 16 shows runs on N

Of the four benchmarks that are being used for this experiment, FIR is the most co

tationally intensive.  The first job reads an I/O input value, and the second job runs

128-tap filter on the data that has been collected by the first job in the past. For eac

of the second job, the last 128 values inputted by the first job are used in a dot pro

and that value is outputted to the I/O port.

Figure 15 shows the runs on the Echidna RTOS.  On Figure 15, graphs (a)-

represent individual tasks running at periods of periods of 16ms down to 1ms with

background load, while graphs (f)-(j) represent individual tasks running at periods 

16ms down to 1ms with a background load of a control loop running at a period of 32

and an aperiodic interrupt driven IPC.

The first five graphs in Figure 15 ((a)-(e)), those runs with no background lo

show spikes of data points, for the most part centered at the origin, indicating that 

tasks are executing at the given period.  As the period decreases, data points star

show up on both sides of the origin, starting with 8 tasks in Figure 15(b), then with b

4 and 8 tasks in Figure 15(c).  However, as opposed to all of the other benchmark

Figure 15(d), 8 task runs are no longer centered at 0 for the 2ms period.  And in F

15(e) both 8 and 4 task runs are no longer centered at 0.  This shows that now, in 

tion to delays caused by the kernel being maxed out due to scheduling issues, the

are also experiencing problems due to applications interfering with each other bec

of the computation-intensive nature of the FIR benchmark.

The second five graphs in Figure 15 ((f)-(j)), those runs with a background l

of both the 32ms control process and the aperiodic interrupt driven IPC, like those
73
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(a) Background=None, 16ms period (b) Background=None, 8ms period (c) Background=None, 4ms period

(d) Background=None, 2ms period (e) Backgound=None, 1ms period

(f) Background=AP-IPC+CL, 16ms period (g) Background=AP-IPC+CL, 8ms period (h) Background=AP-IPC+CL, 4ms period

(i) Background=AP-IPC+CL, 2ms period (j) Background=AP-IPC+CL, 1ms period
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Figure 15:  JITTER probability density graphs for FIR on Echidna.
The x-axis represents time deltas between successive I/O output events as they d
from the expected period.  Negative numbers mean a task ran early, and positive n
bers mean a task has run late, in relation to the last task run.  The y-axis indicates
probability of each delta.  The legend shows the symbols used to represent system
of 1, 2, 4, and 8 simultaneous tasks. Graphs (a)-(e) represent individual tasks runn
periods of 16ms down to 1ms with no background load. Graphs (f)-(j) represent ind
ual tasks running at periods of 16ms down to 1ms with a background load of a con
loop running at a period of 32ms, and an aperiodic interrupt driven IPC.
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no load, also show spikes of data, again mostly centered at zero, when only 1 or 2

are running (see Figure 15(f),(g), and (h)). However, as number of tasks is increase

the period of those tasks is decreased, several interesting characteristics start to a

In Figure 15(f), when 8 tasks are running, the data points appear to form a 

shape (Other than the two points and +/-200µs that amount to less than 1%, 40% of th

data falls at -100µs, 40% falls at +100µs, and remaining 20% falls at 0.).  Among all o

the FIR graphs running on Echidna, this only appears in this graph, when 8 tasks 

running at 16ms each. As mentioned in the IPC section, the reason for this occurren

the control loop.  Because the control loop runs once for every two times the FIR t

do, half of the times that the FIR tasks are running, the control loop is also schedu

pushing the average I/O write to 100µs past period instead of at 0.  And to counteract

that late arrival, Echidna schedules the next task earlier, which accounts for the neg

peak.

As the period decreases, when 4 or 8 tasks running, the peaks are still cen

on zero, but data points on both sides of 0 start to both increase in probability as we

distance from the origin, showing that the control loop and the aperiodic interrupt-dr

IPC are having more of an affect on I/O write output times.

When the period of the tasks approaches 4ms (Figure 15 (h)), the trait expla

in the IPC section of values no longer being balanced at equal probability on both 

of the origin is once again seen. The values are all still centered on zero (until the pe

decreases to 2ms and 1ms with 4 or 8 tasks running), but when a task executes la

takes more than a single early scheduled task to return to the set period.
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With the 2ms and 1ms graphs, (Figure 15 (i), (j)), 1 and 2 tasks continue to s

the same traits as listed above, but first the 8 tasks running at a 2ms period run and

tasks running at 1ms period run are no longer centered at the origin, but at 500µs for the

4 task run, and at 2.5ms for the 8 task run. As mentioned above, this shows that in

tion to delays caused by the kernel being maxed out, the runs also experiencing the

lem of applications interfering with each other due to the computation intensive na

of the FIR benchmark.

It appears that with FIR running on Echidna, when any background load is 

ning, only the one or two task runs are achieving their goal period, and only at period

16ms to 8ms.  If the number of tasks is increased, or the period at which they run 

decreased, the task only arrives on period on average, with 4 tasks down to a 2ms p

and with 8ms down to a 4ms period.  Beyond this point, the system has become o

loaded, and will never achieve its goal period.

Figure 16 shows the runs on NOS.  On Figure 16, graphs (a)-(f) represent i

vidual tasks running at periods of periods of 2ms down to 0.064ms with no backgr

load, while graphs (g)-(l) represent individual tasks running at periods of 2ms down

0.064ms with a background load of a control loop running at a period of 32ms and

aperiodic interrupt driven IPC.  Runs with periods of greater than 2ms are not show

because all of the runs at those periods, both with and without background load, a

run on period (with the exceptions of 8 tasks being 0.7ms off in graphs with and with

background load).

The first six graphs in Figure 16 ((a)-(f)), those runs with no background loa

regardless of the number of tasks, or what the delta of those points are, the proba
76
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(a) Background=None, 2ms period (b) Background=None, 1ms period (c) Background=None, 500µs period

(d) Background=None, 250µs period (e) Backgound=None, 125µs period

(g) Background=AP-IPC+CL, 2ms period (h) Background=AP-IPC+CL, 1ms period (i) Background=AP-IPC+CL, 500µs period

(j) Background=AP-IPC+CL, 250µs period (k) Background=AP-IPC+CL, 125µs period

 1 task
 2 tasks
 4 tasks
 8 tasks

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

P
ro

b
a

b
ili

ty
 o

f 
A

rr
iv

a
l T

im
e

(f) Backgound=None, 64µs period

(l) Background=AP-IPC+CL, 64µs period

Figure 16:  JITTER probability density graphs for FIR on NOS.
The x-axis represents time deltas between successive I/O output events as they d
from the expected period.  Negative numbers mean a task ran early, and positive n
bers mean a task has run late, in relation to the last task run.  The y-axis indicates
probability of each delta.  The legend shows the symbols used to represent system
of 1, 2, 4, and 8 simultaneous tasks. Graphs (a)-(f) represent individual tasks runni
periods of 2ms down to 0.064ms with no background load.  Graphs (g)-(l) represe
individual tasks running at periods of 2ms down to 0.064ms with a background load
control loop running at a period of 32ms, and an aperiodic interrupt driven IPC. Gra
with periods of higher than 2ms have been omitted since they always meet their d
lines.
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arrival time for all of the data points fall at 1. The only trait that varies is where the d

points fall. For a 2ms period, 8 task runs are late. For a 1ms period, only runs of 1

tasks run on period, while 4 and 8 tasks are late. For a 500µs period, only runs of 1 task

run on period, and all other runs with periods of less than 500µs all of the tasks run late.

From these graphs, the minimum frequency for 1, 2, 4, and 8 tasks can be determ

For 8 tasks, the minimum period that can be run is 2.7ms.  For 4 tasks, the minimu

period that can be run is 1.2ms.  For 2 tasks, the minimum period that can be run 

600µs.  And for 1 task, the minimum period is 300µs.

The second six graphs in Figure 16 ((g)-(l)), those runs with a background l

of both a 32ms control loop and the aperiodic interrupt driven IPC, match almost id

cally with those with no load, with the exception of Figure 16(g), in which the data po

are clustered around one of the 100µs boundaries, with 90% falling on one side, and

10% falling on the other.  Once again this shows that the control loop and the AP-I

have very little effect on the jitter time of the FIR runs.  This makes sense for two r

sons.  The first is that the control loop runs at a period of 32ms, while the FIR task

running at speeds of 1Kz to 16KHz, so the control loop has very little effect.  Seco

since in the NOS the AP-IPC interrupt is only serviced after all of the tasks that ne

run now have run, the AP-IPC has very little effect.

It appears that for FIR runs on NOS, the minimum period that a task can run

function of both the number of tasks running as well as the amount of computation

FIR needs to perform in order to run.

Comparing Echidna with NOS, it can be seen that the average case from b

operating systems is the same.  The reason for this is that the minimum period po
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is no longer determined by scheduler overhead but by how many iterations of FIR ca

run in a specific period of time (theorectical limit).

5.1.5:  JITTER Summary

For the first three benchmarks (IPC, UP, and DOWN), each with relatively sm

computational workloads, it appears that the scheduler overhead for multiple jobs 

most limiting factor.  When running on Echidna, in order to always run on time, the

period must be limited to 16 to 8ms.  To only run on period on the average case, a

periods with any number of tasks can be run, with the exception of 8 tasks running

period of 1ms, which is when the output will become unpredictable and almost alw

late.  NOS on the other hand, is capable of going below a 1ms period and still arriv

time, with 4 tasks or less.

With FIR, we found that the limiting factor with the workload level was a comb

nation of both application time and kernel overhead.  Both Echidna and NOS begin

experience late tasks when 8 tasks are running at a period of 2ms.

5.2:  DELAY

The delay measurements represent the time between an external interrupt 

ating an aperiodic IPC and the corresponding output to an I/O port from the respon

thread. Therefore, this delay measures the response time of the system in terms of

the first reaction to an interrupt could take place.

Neither Echidna nor NOS handles interrupts preemptively; both use a pollin

technique.  The difference is that Echidna has a periodic thread that is scheduled 

every 1ms to check for an interrupt, and if one is found, respond to it; NOS checks to

if an interrupt has occurred only when the system is idle: If the system is either bus
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overloaded, an interrupt will be ignored, perhaps indefinitely, unless the system re

to an idle state and checks to see if an interrupt is waiting.

An important difference to note between the values obtained for the Jitter gra

and the values obtained for the Delay graphs is that the values on the delay graph

grouped into intervals of 10µs, instead of 100µs like in the Jitter graphs.  This is done

because in many of the Delay graphs, all of the values would fit into the first 100µs, but

would give several points in a 10µs interval graph.

In this section, we take a look at the effect of the AP-IPC on the IPC benchma

and the FIR benchmarks. Both the UP and the DOWN benchmarks have results si

to those of P-IPC.

5.2.1:  Periodic Inter-Process Communication

This section examines the Delay characteristics found in the periodic inter-p

cess communication benchmark runs.  Figure 17 shows the graphs selected to sh

trends in delay for IPC. Eight graphs were chosen, four from runs on Echidna, and

from runs on NOS.  For each of the two above, the first two runs were run without 

control loop running in the background, and the second two runs were run with the

trol loop. For each of these sets of two, the run with the lightest load (1 task running

period of 16ms), and the run with the heavier load (8 tasks running at periods of 1 

each) are shown.

Figure 17(a) shows the run when Echidna is the least loaded and when there

control loop running.  The figure shows that the delay probability times are equally

spread out from 0 to 1ms.  This make sense.  Since this system is not overloaded,

interrupts occur with equal probability over time, and Echidna checks for interrupts
80
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(a) ECHIDNA: No Background Load, 1 task, 16ms period (b) ECHIDNA: No Background Load, 8 tasks, 1ms period

(c) ECHIDNA: Background Load, 1 task, 16ms period (d) ECHIDNA: Backgroun Load, 8 tasks, 1ms period

(e) NOS: No Background Load, 1 task, 16ms period (f) NOS: No Background Load, 8 tasks, 1ms period

(g) NOS: Background Load, 1 task, 16ms period (h) NOS: Background Load, 8 tasks, 1ms period
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Figure 17:  Delay probability density graphs for P-IPC.
The x-axis represents time between an interrupt being generated by an I/O device
the corresponding output to an I/O port of the responding thread.  The y-axis indic
the probability of each delta. (a)-(d) are graphs from runs on Echidna. (a) and (b) w
run without the control loop, while (c) and (d) were run with a background load of a c
trol loop running at a period of 32ms. (e)-(h) are graphs from runs on NOS.  (e) an
were run without the control loop, while (g) and (h) were run with a background load
a control loop running at a period of 32ms. (a), (c), (e), and (g) were runs with only
task running at a period of 16ms (minimal load), while (b), (d), (f), and (h) were run
with 8 tasks running each at a period of 1ms.(Note: x-axis is 0 to 2ms).
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every 1ms. Figure 17(b) shows when Echidna is more heavily loaded. In this graph

response times span from 0 to almost 2ms.  These measurements show that the p

checking for interrupts is not running every 1ms, instead it is running much more slo

almost twice as slow.  This is caused by the overhead involved in managing 8 task

jobs) and the job checking the interrupt, at periods of 1ms each.  Figure 17 (c) and

show the same situations as Figure 17 (a) and (b), except that a control process is

running. The only noticeable difference in these runs is that there is an occasional

past 1 and 2ms (not shown) respectively.  These are caused by interrupts that occ

ing one of the control loops runs, and the response time is affected.

Figure 17(e) shows the run when NOS is the least loaded and when there i

control loop running. From the figure it can be seen that 100% of the interrupts are

dled within the first 15µs (note, the first bin is centered at 0, and contains any values

occur from 0-4µs).  This makes sense since this is the least loaded run on NOS, an

interrupt is serviced during idle times.  Figure 13(f) shows the run when NOS is loa

with 8 tasks each running at 1ms. In this graph it can be seen that the values of res

time vary from 0 to 275µs. This additional time is caused by the wait for the NOS to fi

ish all currently scheduled tasks, so that it can check for interrupts. Figure 17 (g) an

show the same situations that Figure 17 (e) and (f) show, except that a control loop

also running at the same time.  The only noticeable difference is that there is a ver

small bar at 50µs in Figure 17(g), and the values in Figure 17(f) continue out to 375µs.

These additions are caused by the running of the control loop, and the additional t

that it takes up in the scheduler before the system becomes idle and interrupts are p
82
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An additional point to note is that as NOS becomes overloaded interrupts are

checked.  For runs of IPC on NOS for periods less than 1ms, no interrupts at all w

serviced for runs of 8 tasks at 500µs and faster, for runs of 4 tasks at 250µs and faster,

and for runs of 2 tasks at 125µs and slower.  Only the runs of 1 task were successfull

able to service the I/O interrupt down to 64µs.

As seen in Figure 17, for Echidna, when the load is low, an interrupt is serv

within 1ms (since the interrupt polling routine runs at 1ms), and when the load is hig

can take twice as long to service an interrupt.  The control loop seems to have a v

minimal affect on the response time.  For NOS, when the load is low, the response

is almost immediate.  When the load is greater, the response is slower, but it is stil

quicker than that of Echidna.  When the system is overloaded NOS does not respo

the interrupt at all.

5.2.2:  Finite Impulse Response Filter

This section examines the Delay characteristics found in the finite impulse

response filter benchmark runs. Figure 18 shows the graphs selected to show the

in delay for FIR.  FIR is more computation-intensive than any of the other benchm

so it is expected to have the worst delay times.  Ten graphs have been chosen, six

runs on Echidna, four from runs on NOS.  For Echidna, there is a light load run (1 

running at 16ms), a heavy load run (4 tasks running at 1ms), and an overloaded ru

(8tasks running at 1ms) both with and without the control loop. For NOS, only the li

and medium loads with and without the control loop are shown.

Figure 18(a) shows the run when Echidna is the least loaded and when there

control loop running. From this figure, it can be seen that the delay probability times
83
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(a)ECHIDNA: No Background Load, 1 task, 16ms period (b)ECHIDNA: No Background Load, 4 tasks, 1ms period (c)ECHIDNA: No Background Load, 8 tasks, 1ms period

(d)ECHIDNA: with CL, 1 task, 16ms period (f)ECHIDNA: Background Load, 8 tasks, 1ms period(e)ECHIDNA: Background Load, 4 tasks, 1ms period

(g)NOS: No Background Load, 1 task, 16ms period (h)NOS: No Background Load, 4 tasks, 1ms period

(i)NOS: Background Load, 1 task, 16ms period (j)NOS: Background Load, 4 tasks, 1ms period
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Figure 18:  Delay probability density graphs for FIR.
The x-axis represents time between an interrupt being generated by an I/O device
the corresponding output to an I/O port of the responding thread.  The y-axis indic
the probability of each delta.  (a)-(f) are graphs from runs on Echidna.  (a), (b) and
were run without the control loop, while (d), (e), and (f) were run with a backgroun
load of a control loop running at a period of 32ms. (g)-(j) are graphs from runs on NO
(g) and (h) were run without the control loop, while (i) and (j) were run with a back-
ground load of a control loop running at a period of 32ms. (a), (d), (g), and (i) were r
with only 1 task running at a period of 16ms (minimal load), (b), (e), (h), and (j) we
runs with 4 tasks at a period of 1ms, and (c) and (f) were runs with 8 tasks running e
at a period of 1ms.  Graphs of NOS with 8 tasks running at a period of 1ms are no
shown because no interrupts are serviced during these runs. (Note: x-axis is 0 to 6
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equally spread out from 0 to 1ms. This make sense, since this system is not overlo

the interrupts occur with equal probability over time, and Echidna checks for interr

every 1ms. Figure 18(b) shows when Echidna is sustaining a heavy load. In this gr

the response times span from 0 to almost 1.75ms.  These measurements show th

process checking for interrupts is not running every 1ms, instead it is running muc

slower.  Figure 18(c) shows when the system is overloaded.  As seen in the graph

response times go from 0 to almost 4ms.  This means that the interrupt polling tas

is supposed to be running every 1ms is instead only running every 4ms.  This is ca

by the overloaded state of the system, when the system is trying to run more applica

than possible.  Figure 18 (d), (e), and (f) show the same situations as Figure 18 (a

and (c), except that a control process is also running. The difference between thes

sets of  graphs is that in the control graphs, there are some additional points beyo

areas listed above for the runs without the control loop.  These are caused by inte

that occur during one of the control loop runs.

Figure 18(g) shows the run when NOS is the least loaded and when there i

control loop running.  This figure shows that 95% of the interrupts are handled with

the first 15µs.  However, unlike the other benchmarks, even at this light load, we ha

delay values all the way until 300µs.  This is due to the more computational nature of

FIR: it takes longer to run the job.  Figure 18(h) shows the run when NOS is heavil

loaded with 4 tasks running at a period of 1ms.  This graph shows the response tim

varying from 0 to 1ms, and the values appear more frequently at higher delays tha

of Figure 18(g).  This additional time is caused by the wait for the NOS RTOS to fin

all currently scheduled benchmark tasks, and become idle, when it checks for interru
85
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Figure 18 (i) and (j) show the same situations that Figure 18 (h) and (g) show, excep

a control loop is also running at the same time.  In Figure 18(i), the response times

from 0 to 250µs, and in Figure 18(j), the values vary from 0 to 1.25ms.

The graphs that were chosen for this section were chosen differently than th

other sections because the graphs of 8 tasks running at periods of 1ms on NOS con

no information. This is because at that point the system is overloaded, and the syst

never idle, and therefore never checks for interrupts.  For FIR on NOS, no interrup

all were serviced for runs of 8 tasks at 1ms and faster, for runs of 2 and 4 tasks at 5µs

and faster, and for runs of 1 task at 250µs and slower.

5.2.3:  DELAY Summary

Both delay sections show similar traits.  For Echidna, when the load is low, 

interrupt is serviced within 1ms (since the interrupt polling routine runs at 1ms), an

when the load is high, it can take between two to four times as long to service an i

rupt.  The control loop seems to have minimal affect on this response time.  For NO

when the load is low, the response time is almost immediate.  When the load is gre

the response is slower, but it is still quicker than that of Echidna  When the system

overloaded, the response to interrupts in NOS is non-existent.

5.3:  CPU Breakdown

The CPU breakdown graphs show the amount of time spent by the system in

nel, application, interrupt handling, and idle portions of the code. Two different type

graphs are shown:  (1) Those with a constant task period, while varying the numbe

tasks that are being run; and (2) Those with a constant number of tasks running, w

varying the frequency that those tasks are running at. On each graph, there are thr
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tinct groups of data.  The first group is the calculated theoretical limit of a system r

ning the application code.  This group only contains application and idle segments

the values are calculated by multiplying the number of tasks to be run at that frequ

by the time it takes to run a single task.  The second group of bar graphs show the

breakdowns for the runs on NOS.  The final group of bar graphs are the CPU brea

downs for those runs on the Echidna RTOS.  As with the Delay graphs, only the re

from simulations of IPC and FIR are shown, as the results from UP and DOWN fal

between them.

5.3.1:  Periodic Inter-Process Communication

This section examines the CPU breakdown characteristics found in the peri

inter-process communication benchmark runs.  The periodic IPC benchmark repre

the simplest case of two interacting jobs. There is no computation performed other

the movement of data, and this represents the least amount of workload that an ap

tion would schedule on an RTOS, therefore it is most likely to exhibit the highest ke

overhead.  Figure 19 contains all of the graphs used to evaluate CPU breakdown f

IPC runs.  All of the graphs shown are executions with background load, for there 

tle difference between those runs with and without background load.

The first five graphs (Figure 19 (a)-(e)), show the runs in which, for each gra

the period that the tasks are running at is constant, and the number tasks run at th

period is varied. The second four graphs (Figure 19 (f)-(i)), show the runs in which

each graph, the number of tasks is constant, and the period is varied. The first thing

is that the percentage of time spent in application execution is very small for all of 

runs.  For NOS, kernel overhead is 95% of the non-idle CPU time, and the Echidn
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(f) Tasks executing: 1 (g) Tasks executing: 2

(h) Tasks executing: 4 (i) Tasks executing: 8

(a) Task Period: 16ms (b) Task Period: 8ms (c) Task Period: 4ms

(d) Task Period: 2ms (e) Task Period: 1ms
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Figure 19:  CPU-BREAKDOWN graphs for P-IPC.
Along the x-axis there are three distinct groups of bar graphs.  The first group are 
lations of theoretical limit of user application execution time versus idle time.  The 
ond group are the CPU breakdowns of NOS runs.  The final group are the CPU
breakdowns of Echidna runs.  In graphs (a)-(e) the x-axis represents increasing nu
of tasks for periods 16ms down to 1ms. In graphs (f)-(i) the x-axis represents decrea
periods for 1, 2, 4, and 8 tasks. The y-axis represents the total CPU breakdowns fo
much time is spent executing kernel code, executing user application code, handli
interrupts, and sitting idle.  Idle includes both time sleeping as well as some loop o
head in the main loop and parts of the timekeeping code for Echidna.
88



imit of

ning

nal

e

com-

k-

ad,

ph,

t that

for

that

 much

ce the

down

e.

er

 ker-

asks
 kernel time dominates even more.  One can also see where the runs reach their l

execution before they become overloaded.  For Echidna, that limit is at 8 tasks run

at 1ms (as seen in Figure 19(i)); for in the transition from 2 to 1ms, no more additio

application time is spent. For NOS, the limit is at 500µs for 8tasks (see Figure 19(i)), at

250µs for 4 tasks (see 19(h)), and the limit for 2 tasks is 125µs. Runs of 1 task on NOS

do not appear to reach a limit, even at a period of 64µs.

5.3.2:  Finite Impulse Response Filter

This section examines the CPU breakdown characteristics found in the finit

impulse response filter benchmark runs.  Of the four benchmarks FIR is the most 

putation-intensive.  Figure 20 contains all of the graphs used to evaluate CPU brea

down for the FIR runs.  All of the graphs shown are executions with background lo

for there is little difference between those runs with and without background load.

The first five graphs (Figure 20 (a)-(e)), show the runs in which, for each gra

the period that the tasks are running at is constant, and the number of tasks run a

period is varied. The second four graphs (Figure 20 (f)-(i)), show the runs in which,

each graph, the number of tasks is constant, and the period is varied. The first thing

is seen is that in contrast to the IPC runs, the time spent in the application code is

greater than anything else once the number of tasks has increased to 4 or 8, and on

period of those tasks drops below 4ms. For NOS, the kernel overhead has dropped

to 20-50% of the non-idle CPU time while Echidna takes 50-95% of the non-idle tim

In the FIR runs, the system becomes overloaded much sooner than that of the oth

benchmarks, and in this case it is a combination of too much application work and

nel scheduling overhead that is causing the overload. For Echidna, that limit for 8 t
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Figure 20:  CPU-BREAKDOWN graphs for FIR.
Along the x-axis there are three distinct groups of bar graphs.  The first group are 
lations of theoretical limit of user application execution time versus idle time.  The 
ond group are the CPU breakdowns of NOS runs.  The final group are the CPU
breakdowns of Echidna runs.  In graphs (a)-(e) the x-axis represents increasing nu
of tasks for periods 16ms down to 1ms. In graphs (f)-(i) the x-axis represents decrea
periods for 1, 2, 4, and 8 tasks. The y-axis represents the total CPU breakdowns fo
much time is spent executing kernel code, executing user application code, handli
interrupts, and sitting idle.  Idle includes both time sleeping as well as some loop o
head in the main loop and parts of the timekeeping code for Echidna.
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running is at 4ms (as seen in Figure 20(i)) and  for 4 tasks running it is at 2ms (see

ure 20(h)).  For NOS, those limits are at 2ms for 8tasks (see Figure 20(i)), at 1ms 

tasks (see Figure 20(h)), at 500µs for 2 tasks (see Figure 20(g)), and at 250µs for runs of

a single task (see Figure 20(f)). Clearly, at these faster periods, the limit is caused n

kernel overhead alone, but by a combination of limit of how much one can run on a

given system and the maximum number of tasks that a RTOS can schedule in a g

period of time.

5.3.5:  CPU Breakdown Summary

Several things were seen from the CPU breakdown graphs.  The first was n

really talked about, but interrupt handling overhead is insignificant.  This makes se

because both of the RTOSs that we are looking at are polled systems, so no state

to be saved or restored, so interrupt overhead is non-existent.

The second thing that was seen was that on the systems where the applica

are not computationally intensive, as mentioned in the jitter and delay sections,  it 

cheaper to run fewer applications at a faster period than to run more applications a

slower period.

Finally, once the system is finally overloaded, it gravitates to an optimal rati

kernel versus user time.  This ratio is a function of benchmark and configuration.  T

characteristic is best seen in Figure 20(h) and (i).

5.4:  Analysis Summary

This experiment has evaluated three aspects of real-time behavior:  jitter, d

and CPU breakdown.  With Jitter, it was observed that as the number of tasks is

increased, the amount of scheduling overhead incurred is increased, more so with
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Echidna than NOS. With IPC, UP, and DOWN, the limit for Echidna is reached whe

tasks are running at periods of 1ms(or 2/1ms, or 1/2ms), while NOS can continue to

on time for periods lower than that of Echidna’s limit.  For FIR, scheduling overhea

only one factor in calculating the limit, and both NOS and Echidna reach a limit of 

tasks running at 2ms, or 4 tasks running at 1ms.  For Echidna runs, if there is any 

ground load, the data points start to move away from the origin, but the average ru

still on time.  For NOS, the background has very little affect.

With delay, when a system has a light load, both Echidna and NOS are able

service the interrupt immediately (within 1ms is as fast as Echidna can check the i

rupt).  However, if the system is running with a significant load, Echidna can take u

four times as long to service the interrupt, and NOS has the possibility of dropping

interrupt entirely. Addition of the control loop has very little affect on these characte

tics.

With CPU breakdown, several things were seen.  Interrupt handling overhea

was insignificant because both RTOSs use polling.  On the systems where applica

are not computationally intensive it is cheaper to run fewer applications at a faster pe

than to run more applications at a slower period.  And once the system is overload

gravitates to an optimal ratio of kernel versus user time.
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Chapter 6:  Conclusions

This report has presented a method of using full-system emulation to evalu

the real-time performance of an embedded system. An embedded architecture em

was created, using the C programming language, that emulates the Motorola M-C

embedded processor down to the register level and is accurate to within 100 cycle

million as compared to actual hardware.  With tests and experiments run on this e

tor, the goal of this report was to show that this method can be successfully used i

evaluation of embedded systems.

A study of non-preemptive real-time operating systems was presented, focu

on Echidna, a small, public domain RTOS, and comparing it to NOS, a bare-bones

scheduler that represents the performance limit for non-preemptive RTOSs.  Three

ferent real-time performance characteristics were measured: JITTER, DELAY, and C

USAGE.

With Jitter, it was observed that as the number of tasks was increased, the

amount of scheduling overhead incurred was increased, more so with Echidna tha

NOS. With IPC, UP, and DOWN, the limit for Echidna is reached when 8 tasks are

ning at periods of 1ms(or 2/1ms, or 1/2ms), while NOS can continue to run on time

periods lower than that of Echidna’s limit.  For FIR, scheduling overhead is only on

factor in calculating the limit, and both NOS and Echidna reach a limit of 8 tasks ru
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ning at 2ms, or 4 tasks running at 1ms.  For Echidna runs, if there is any backgrou

load, the data points start to move away from the origin, but the average run is still

time.  For NOS, the background has very little affect.  With delay, when a system h

light load, both Echidna and NOS are able to service the interrupt immediately (wi

1ms is as fast as Echidna can check the interrupt).  However, if the system is runn

with a significant load, Echidna can take up to four times as long to service the interr

and NOS has the possibility of dropping the interrupt entirely.  The addition of back

ground load has very little affect on these characteristics. With CPU breakdown, se

things were seen.  Interrupt handling overhead was insignificant because both RTO

use polling.  On the systems where applications are not computational-intensive, i

cheaper to run fewer applications at a faster period than to run more applications a

slower period.  Once the system is overloaded it gravitates to an optimal ratio of ke

versus user time.

All of the results obtained in this report could have been obtained using oth

methods, such as using a logic analyzer to obtain those signals that leave the chip

signals) or using breakpoint instructions to bring off-chip those signals that do not 

mally leave the chip (register contents).  However, those signals that could be obta

with the logic analyzer can only be obtained in this particular instance because an e

ation board of the M-CORE was used in which the components were discrete parts

printed circuit board, rather than logic blocks on an integrated circuit.  The M-COR

processors used in industry are systems on a chip, and therefore those signals wou

leave the chip.  For those signals that are brought off-chip using the breakpoint ins

tion, this incurs its own penalty, both slowing the system down, as well as modifyin
94



arch

ddi-
some of the register values.  This report is a tool thesis.  It presents the emulator,

describes how it works, and then provides an experiment to validate it.

With the tests and experiments run on this emulator, the report and the rese

that has lead up to it has shown that this method can be successfully used as an a

tional method in the evaluation of embedded systems.
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Chapter 7:  Future Work

There are several different directions that future work in this area can contin

in.  Adding more emulator output would be very beneficial.  In addition to the cycle

count, register contents, access to I/O, and CPU usage that the emulator already ou

memory write and read frequencies, memory access localities, instruction frequen

power estimates, and cost estimates could be added.  This information would lend

ther insight to given architecture and would allow speculation on possible changes

modifications to improve on those values.  The memory frequencies and locality in

mation might show whether an on chip cache would be beneficial, where as the in

tion frequencies would show where improvements could be made to the architectu

method for carrying out those instructions.

Running more experiments and more diverse benchmarks on the emulator w

also be beneficial.  Observing the performance of varying benchmarks and progra

would allow the determination of which applications would benefit from this particu

architecture, and which applications might benefit from changes to the current arc

ture.  If a class of applications seem to be running slowly, and it is determined that

applications use a large number of multiply and divide instructions, this would lead

consideration of improving the multiply/divide unit.
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Porting other Real-Time operating systems to this emulator also might prov

beneficial.  The SERTS Laboratory Echidna is a operating system that is currently

development, and porting a system such as MicroC/OS-II, Linux, or Windows CE t

has wide spread use in industry might provide additional information.

Creating other architectural emulators is another possible route of research

Once several other architectures have been implemented (such as StrongARM, Co

etc.), comparisons could be made between the output for each of the architectures

After an emulator has been created, and tested with various benchmarks an

grams, modifications to that emulator is the next logical step.  As mentioned above

embedded systems without caches might benefit from the addition of them.  The e

tor allows this investigation to proceed at a minimum of cost, where as in the real wo

adding an on chip cache to an existing embedded chip would be both costly and ti

consuming.

Finally, a method of dynamic emulator creation would be a worthy direction

further research.  Creating some method, perhaps using Perl scripting, to dynamic

create, from an instruction set architecture file, an emulator capable of accurately 

lating the architecture, would both be greatly useful for testing multiple architecture

accurately as well as cutting the generation time for each architecture down to nea

nothing.
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Appendix A:  M-CORE Instruction Set

Table A-1: M-CORE Instructions
Below is a complete listing of all of the M-CORE instructions with a short description
what each instruction does.

Mnemonic Description

ABS Absolute Value

ADDC Add with C bit

ADDI Add Immediate

ADDU Add Unsigned

AND Logical AND

ANDI Logical AND Immediate

ANDN AND NOT

ASR Arithmetic Shift Right

ASRC Arithmetic Shift Right, Update C Bit

BCLRI Clear Bit

BF Branch on Condition False

BGENI Bit Generate Immediate

BGENR Bit Generate Register

BKPT Breakpoint

BMASKI Bit Mask Immediate

BR Branch

BREV Bit Reverse

BSETI Bit Set Immediate

BSR Branch to Subroutine

BT Branch on Condition True

BTSTI Bit Test Immediate

CLRF Clear Register on Condition False

CLRT Clear Register on Condition True

CMPHS Compare Higher or Same
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CMPLT Compare Less-Than

CMPLTI Compare Less-Than Immediate

CMPNE Compare Not Equal

CMPNEI Compare Not Equal Immediate

DECF Decrement on Condition False

DECGT Decrement Register and Set Condition if Result Greater-Than Ze

DECLT Decrement Register and Set Condition if Result Less-Than Zero

DECNE Decrement Register and Set Condition if Result Not Equal to Zero

DECT Decrement on Condition True

DIVS Divide (Signed)

DIVU Divide (Unsigned)

DOZE Doze

FF1 Find First One

INCF Increment on Condition False

INCT Increment on Condition True

IXH Index Halfword

IXW Index Word

JMP Jump

JMPI Jump Indirect

JSR Jump to Subroutine

JSRI Jump to Subroutine Indirect

LDB Load Byte

LDH Load Halfword

LDW Load Word

LDM Load Multiple Registers

LDQ Load Register Quadrant

LOOPT Decrement with C-Bit Update and Branch if Condition True

LRW Load Relative Word

Mnemonic Description
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LSL Logical Shift Left

LSLC Logical Shift Left, Update C Bit

LSLI Logical Shift Left by Immediate

LSR Logical Shift Right

LSRC Logical Shift Right, Update C Bit

LSLI Logical Shift Right by Immediate

MFCR Move from Control Register

MOV Move

MOVI Move Immediate

MOVF Move on Condition False

MOVT Move on Condition True

MTCR Move to Control Register

MULT Multiply

MVC Move C Bit to Register

MVCV Move Inverted C Bit to Register

NOT Logical Complement

OR Logical Inclusive-OR

ROTLI Rotate Left by Immediate

RSUB Reverse Subtract

RSUBI Reverse Subtract Immediate

RTE Return from Exception

RFI Return from Fast Interrupt

SEXTB Sign-Extend Byte

SEXTH Sign-Extend Halfword

STB Store Byte

STH Store Halfword

STW Store Word

STM Store Multiple Registers

Mnemonic Description
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STQ Store Register Quadrant

STOP Stop

SUBC Subtract with C Bit

SUBI Subtract Immediate

SUBU Subtract Unsigned

SYNC Synchronize

TRAP Trap

TST Test Operands

TSTNBZ Test for No Byte Equal to Zero

WAIT Wait

XOR Exclusive OR

XSR Extended Shift Right

XTRB0 Extract Byte 0

XTRB1 Extract Byte 1

XTRB2 Extract Byte 2

XTRB3 Extract Byte 3

ZEXTB Zero-Extend Byte

ZEXTH Zero-Extend Halfword

Mnemonic Description
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