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Accurate and fast system modeling is central to the rapid design space exploration needed for

embedded-system design. With fast, complex SoCs playing a central role in such systems, system

designers have come to require MIPS-range simulation speeds and near-cycle accuracy. The so-

phisticated simulation frameworks that have been developed for high-speed system performance

modeling do not address power consumption, although it is a key design constraint. In this paper, we

define a simulation-based methodology for extending system performance-modeling frameworks

to also include power modeling. We demonstrate the use of this methodology with a case study

of a real, complex embedded system, comprising the Intel XScale® embedded microprocessor, its

WMMXTM SIMD coprocessor, L1 caches, SDRAM and the on-board address and data buses. We

describe detailed power models for each of these components and validate them against physical

measurements from hardware, demonstrating that such frameworks enable designers to model

both power and performance at high speeds without sacrificing accuracy. Our results indicate that

the power estimates obtained are accurate within 5% of physical measurements from hardware,

while simulation speeds consistently exceed a million instructions per second (MIPS).
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1. INTRODUCTION

As platforms and SoC designs become increasingly complex, high-speed system-
level simulation has become an indispensable design tool. Exploration of the
large design spaces involved often depends upon the ability to assess each de-
sign quickly, facilitating the efficient iteration over numerous candidate de-
signs. To be truly useful, this evaluation should include the major design crite-
ria, including performance and power consumption.

Our research aims to provide a fast, accurate, and practical power estima-
tion tool that can work with a variety of performance-estimation frameworks.
Toward this end, we present a methodology aimed at a system designer as-
sembling common well-characterized components (processors, caches, buses,
SRAM, DRAM, peripherals, etc.) into a system, either as discrete components
or IP cores. We define a software architecture for power modeling that can eas-
ily plug into existing execution-driven simulation infrastructures, including,
but not limited to, SystemC. Each component’s power consumption is charac-
terized using short instruction sequences to find the values of the parameters
in its power model. Since these are extremely short sequences, they can be
run either on hardware (such as by done by Tiwari et al. for microprocessors
[Tiwari et al. 1994]), or on RTL or low-level power models (as suggested by
Givargis et al. [2000b]). As a case study, we apply this methodology to a real
nontrivial embedded system based on the Intel XScale microprocessor. We build
parameterized SystemC-based power models of a variety of system components
and integrate them with a SystemC-based performance-modeling framework.
These include a detailed power model of the Intel XScale microprocessor [Intel
2004] (including previously unobserved effects), L1 caches, the XScale’s Wire-
less MMX (WMMX) SIMD coprocessor [Paver et al. 2004], SDRAM memory, and
system buses. To allow this approach to be used elsewhere, we provide details
of the software architecture used, including the interfaces and data structures
required for implementation.

Finally, we validate our models and methodology by comparing the
simulation-based power estimates obtained against physical measurements
on specially instrumented hardware, while running applications on a real op-
erating system (Windows CE, in this case). We find that our approach al-
lows both high-speed simulation and accurate power estimation. Integrating
our power models into an existing simulation infrastructure (simulating at
1 MIPS1) caused no appreciable slowdown in simulation speed, yet provided
power estimates that were accurate to within 5% of physical measurements.
In addition, simulation-based power modeling also exposes fine-grained power
behavior that cannot be revealed by physical measurements.

To the best of our knowledge, this is the first system description language
(SDL)-based approach to validate the accuracy of the power estimates obtained
against physical measurements from a real system. We are also the first to
report power-enabled simulation speeds over 1 million instructions per second

1It must be noted that there is a difference between MIPS and MHz in sumilation, since an in-

struction can take more than one clock cycle, especially when there is a memory stall. We report

MIPS because it is the lower of the two and it is more pertinent to instruction-based simulation.
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(MIPS). We simulate realistic lengths of time (a complete Windows CE OS boot
and application run over billions of clock cycles) and use large, realistic bench-
marks. The power estimates obtained are accurate within 5% of actual physical
measurements from hardware. The power modeling and characterization tech-
niques we use here were applied to a SystemC-based simulation infrastructure
but are applicable to any execution-driven simulation framework.

The contributions of the presented work include:

� Realistic validation of a system-level execution-driven power modeling ap-
proach against physical hardware.

� Detailed power models of various components, including an accurate
instruction-level power model of the XScale processor.

� A scalable, efficient, and validated methodology for incorporating fast, accu-
rate power-modeling capabilities into system description languages such as
SystemC. Major steps including characterization, modeling, validation, and
software architecture are all discussed in detail.

The rest of this paper is structured as follows. Section 2 provides an overview
of various approaches to power modeling and a discussion of related work in
literature. Section 3 contains an overview of SystemC and transaction-level
modeling. Section 4 provides an overview of the proposed methodology, includ-
ing characterization and modeling methods and software architecture. Section 5
provides detailed power models for each component studied: the XScale micro-
processor, the WMMX SIMD coprocessor, address and data buses, caches, and
SDRAM. Section 6 describes the experimental setup used for validation of the
system-level power models against hardware, and Section 7 describes the re-
sults obtained. Finally, conclusions as well as directions for future work are
discussed in Section 8.

2. RELATED WORK

As power is a growing concern for a wide variety of systems, a range of tools
have been built that address the spectrum of issues, design stages, and levels of
abstraction involved. HDL/RTL-based tools allow cycle-accurate performance
simulation and accurate power modeling, but simulate many orders of mag-
nitude too slowly to permit the modeling of realistic system-level workloads.2

Layout-level tools are even slower and are not suitable for any system-level
design space exploration. Microarchitectural simulators, such as SimpleScalar
[Austin et al. 2002], allow cycle-accurate microprocessor performance modeling.
Microarchitectural power modeling tools [Brooks et al. 2000; Chen et al. 2001;
Contreras et al. 2004; Ye et al. 2000] can often work in conjunction with such
tools. These can run 10–100x faster than RTL and maintain reasonable accu-
racy. However, they require detailed microarchitectural information about each
component being modeled, which may not always be available to a designer, es-
pecially in the case of proprietary third-party IP cores. For microprocessors,

2At typical HDL simulation speeds of 100 Hz, modeling the billion or so cycles required to boot

Windows CE on a 403 MHz XScale would take approximately 4 months.
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in particular, instruction-level power modeling can be used to speed things up
[Sinha and Chandrakasan 2001; Tiwari et al. 1994, 1996] and this can often
be coupled with a fast instruction-based timing simulator or traces from a sim-
ulation run. This approach has been successful in modeling embedded micro-
processors, since they can be constructed without knowledge of the processor
microarchitecture. However, this still leaves the system designer with ad-hoc
models for nonmicroprocessor components. Software developers often also use
functional simulators—fast instruction-level simulators that discard all timing
information to achieve very high simulation speed.

A recent advance in system design has been the use of higher-level languages
and tools for expressing hardware constructs. These include SystemVerilog
[Rich 2004], SystemC [Grötker et al. 2002], SpecC [Fujita and Ra 2001], and
Handel-C [Loo et al. 2002], among others [Habibi and Tahar 2003]. Such system
description languages (SDLs) can characterize designs at a variety of levels of
abstraction, enabling extremely compact system descriptions early in the de-
sign flow and fast simulation without compromising accuracy [Jayadevappa
et al. 2004]. In particular, SystemC, a C++-based library that provides a va-
riety of hardware-oriented constructs and an event-based simulation kernel,
has gained wide acceptance, especially as a tool for early design space ex-
ploration. It is now supported by a variety of EDA tools and IP vendors and
has rapidly gained acceptance as a standard modeling platform (approved as
IEEE standard 1666 in December 2005) that enables the development and
exchange of very fast system-level models and for the development of system-
level software. It is not uncommon to reach performance simulation speeds up
to 500 KHz with these tools [Rissa et al. 2005]; however, such tools are aimed
at performance modeling of systems and provide no constructs for express-
ing component power consumption, or methodologies on how to address power
modeling.

System-level power modeling has been explored relatively recently in liter-
ature. Initial attempts at system power modeling were aimed at developing
simple power models of various components so that insights into overall sys-
tem behavior could be obtained. Examples of this include Simunic et al.’s work
[Simunic et al. 1999] with simple analytical models of embedded system com-
ponents and Benini et al.’s study of simple state-machine based power models
for certain components of embedded systems [Benini et al. 1998]. Further work
in the field has focused both on using detailed power models and on overall
methodologies.

Bergamaschi et al.’s SEAS [Bergamaschi et al. 2003] attempts early block
diagram-level analysis of systems in order to allow key design decisions to
be made earlier. Core performance is estimated using latency-based timing
approximations, and actual functionality is abstracted away in order to achieve
higher throughput. Power is modeled using state machine/spread sheet-based
analysis. Designers can also use SEAS to aid floorplanning. We differ from
this approach, since we model power, performance, and functionality, yielding
a simulation tool that enables designers to easily obtain power information for
real applications. However, designers must rely on other tools for floorplanning
decisions.
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Power models parameters are typically obtained from characterizations of
low-level (such as HDL) or hardware implementations of the component be-
ing studied. Givargis et al. [2000a, 2000b] present characterization and mod-
eling techniques for HDL system components. Lajolo et al. [2002, 2000], on
the other hand, suggest runtime calls to low-level simulations as an alterna-
tive to precharacterization. Component characterization is sometimes assumed
to be an already performed step and is often omitted from work on power-
modeling methodologies. Since validation against real hardware is a key con-
tribution of the work we present, we address stimulus-based characterization
of physical hardware and provide details of the characterization methodology
used.

Key research on system-level power-modeling methodology includes Platune
[Givargis and Vahid 2002], which is targeted at tuning SoC design parameters
by running small synthetic kernels on a number of different system configura-
tions. This allows rapid exploration of large design spaces, albeit using small
programs and parameterized abstractions of the components used. This is a
useful and complementary approach to ours, since we describe a tool that can
run large, extremely realistic workloads on a detailed system model to provide
accurate analysis of both performance and power. The appropriate tool for a
given task will depend on the usage scenario.

A fundamental problem in any power-performance cosimulation is the man-
ner in which information about component behavior and state is conveyed from
the performance to the power models. One approach is trace analysis, in which
a performance-only simulation writes out information to a file, which is then fed
to a power analysis program. Talarico et al. [2005] suggest such an approach, in
which traces from SystemC performance simulation runs are postprocessed to
estimate component activity for modeling. They demonstrate its application to
a simple baud-rate generator, run simulations over a few thousand clock cycles,
and verify against RTL-based estimates. However, such trace-based approaches
have limitations in terms of performance, since system calls and disk I/O are
expensive operations.

An alternative to trace analysis is execution-driven power modeling, in which
power and performance modeling are tightly integrated, and power analysis can
take place efficiently at runtime. Bona et al. [2004] and Caldari et al. [2003]
focus on execution-driven power modeling of certain on-chip buses for use with
SystemC. They run performance simulation for an entire system to accurately
drive a bus power model. Power consumption for other components is not mod-
eled. Bona et al. [2004] run small benchmarks to validate the bus-power model
against HDL, while Caldari et al. [2003] do not present any validation data.
Beltrame et al. [2004] describe a plug-in to the StepNP simulation platform
for enabling power estimation for multiprocessor systems on a chip. However,
they do not quantify modeling accuracy and speed, or perform validation. In
addition to power-modeling large workloads and validating against physical
hardware, we also discuss a more scalable software architecture for power-
performance cosimulation. Compared to previously proposed architectures, we
allow a higher degree of scalability by providing support for power modeling in
hierarchical systems: where subcomponents and subsubcomponents may have
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their own power models that feed information to the power model for a high-
level component.

Bansal et al. [2005] use an execution-driven power-modeling framework and
compare the computational effort of simulating each component with its share
of the power consumption. They suggest that the computational effort involved
in power simulation can be reduced by using different power models for each
component at different points of time. They report simulation speeds 10x faster
than an RTL simulation (which is presumably in the 1–10 KHz range). We differ
from their approach in that we use computationally lightweight power models
at high levels of abstraction throughout, thus achieving very high simulation
speeds (over 1 MIPS), while maintaining a high degree of accuracy.

These studies represent varying approaches to the problem and provide in-
sights into the many issues involved. However, most of studies reported in
literature do not validate their models against hardware—of the studies listed
above, only Benini et al. [1998] and Simunic et al. [1999] have studied real
hardware; the remainder either do not discuss validation at all or compare
their results to HDL. While HDL-based methodologies provide useful insights,
the low speed of HDL simulation has proved to be a significant obstacle to re-
alistic validation with large workloads. Successful application to a real-world
system is crucial both as proof-of-concept and for validation of the underlying
models and methodology. In addition, none of the approaches listed above re-
port runtimes corresponding to full-system simulation speeds over 100 KHz,
and most do not quantify execution speed.

In this paper, we describe a SystemC-based methodology for fast and ac-
curate power-performance cosimulation and integrate it with detailed power
models of the XScale microprocessor, caches, busses and DRAM. Based on
this, we present a case study in which we compare physical measurements
from a hardware platform running realistic applications on top of a Win-
dows CE operating system as a real-world validation of the techniques
applied.

3. SYSTEMC AND TRANSACTION-LEVEL MODELING

With increasing system complexity, a variety of tools and languages have
evolved to specifically address high-level system-performance modeling. These
include SpecC [Fujita and Ra 2001] and SystemC [Grotker et al. 2002], among
others [Habibi and Tahar 2003, Loo et al. 2002, Rich 2004]. In this section, we
provide a brief overview of SystemC as a system-level performance-modeling
tool.

SystemC has been emerging as a standard open-source system modeling
language and methodology and was recently approved as an IEEE standard.
SystemC implementations provide a C++-based class library for description of
hardware modules and communication channels and a fast event-based (rather
than clock-driven) simulation kernel. The ability to compactly describe a sys-
tem makes it a popular tool for exploration in early design stages as a simulator
for software development and performance analysis, and as a behavioral veri-
fication tool.
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SystemC enables several levels of abstraction, including:

� Functional specification, which has no timing information.
� Register transfer-level implementation, which is both bit and cycle accurate,

and
� Transaction-level modeling (TLM) [Cai and Gajski 2003; Grötker et al. 2002]

represents a range of abstraction levels that have both functional and timing
information at a high level of abstraction.

For this paper, we define transaction-level models as those which interact
through well-defined high-level intermodule interactions (such as a memory
bus read request) that may span multiple clock cycles. Performance modeling
is based on accurate clock cycle counts at the initiation and completion of each
transaction. Events occurring during a transaction need to be modeled only to
the extent that they affect correctness at this level of granularity. This is often
also referred to as cycle-count accurate modeling. This level of abstraction is
leveraged in the described work to achieve compact system descriptions, high
simulation speed, and accurate performance modeling.

4. METHODOLOGY

We divide the methodology into three sections: parameter extraction, in which
the components are characterized, performance modeling, in which a SystemC-
based performance simulation infrastructure is set up, and power model-
ing, where the performance-modeling framework is augmented with power-
modeling capabilities.

4.1 Stimulus-Based Parameter Extraction

In this section, we describe how system components can be characterized so
that the high-level power models reflect accurate information. We use short
assembly programs (stimuli) to characterize various components. A stimulus
sets up the system into a predefined state and runs a large number of instances
of a short instruction sequence in a loop. For example, the energy cost of a
microprocessor instruction can be calculated by running a number of instances
of the instruction in a loop while measuring average power. To study more
complex effects, a sequence of several instructions can be replicated several
times and looped. The loop should be short enough to fit in the instruction
cache (unless out-of-cache effects are being studied) and long enough for the
error because of the branch at the end of the loop to have negligible impact on
measurements [Tiwari et al. 1996]. Similarly, stimuli running repeated cache
misses or memory accesses can be used to easily measure the energy cost of
each bus transaction type. Stimuli for each component are based on its ISA
or external interface, not on its detailed microarchitecture, and so are fairly
straightforward to create.

Using the method described, we ran various stimuli on hardware to ob-
tain the parameters for the power models. However, it must be stressed that
this approach is not limited to postsilicon characterization, but can be used
with any lower-level tool (including RTL and microarchitectural descriptions)
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that can map an energy value to each stimulus. A wide variety of RTL and
microarchitectural power modeling tools exist and stimuli can be run on these
instead of hardware to extract power-model parameters (this approach is taken,
for example, by Givargis et al. for peripheral cores [Givargis et al. 2000a,
2001b]). It must be noted that such tools are not completely accurate and their
inaccuracies will be reflected in the final power estimates when they are used for
characterization, instead of hardware. We directly characterize with hardware
to quantify how much additional inaccuracy is introduced by our methodology
and we find this to be well within 5%.

4.2 Performance Modeling

The platform we model is based on the XScale [Intel 2004], a family of
Intel microprocessors that implement the ARM ISA, use deep pipelines and
microarchitectural optimizations for high performance, and feature a WMMX
(Wireless MMX) SIMD coprocessor. We use Intel’s Xsim, a C-based cycle-count
accurate performance simulator for the XScale family. It models all XScale
instructions, the L1 caches, and the WMMX coprocessor. The fetch and retire
times of each instruction are computed by tracking dependencies and resource
constraints, instead of detailed pipeline modeling. Xsim has been validated to
be cycle-accurate at instruction execution, and accurate within 2% of hardware
on memory accesses. We modified Xsim to enable its reuse as a modular
SystemC component.

We use transaction-level SystemC models of SDRAM, SRAM and other
system modules. We create a transaction-level bus model to reflect the off-
chip system bus. The various memories (SDRAM, SRAM, and Flash) are
bound to identical address ranges on the simulated platform and on actual
hardware.

A complete SystemC-based platform simulation consistently reached execu-
tion speeds between 1 and 1.2 MIPS, allowing us to complete a Windows CE
boot and application run in under 20 min. No appreciable slowdown was ob-
served (at a measurement accuracy of 2%) when power-modeling capabilities
were added.3 This is to be expected, since the computational overhead of the
kind of high-level power modeling performed in this case is typically very small
(a member function invocation and a counter update each time a component
power model is invoked) compared to the computation involved in decoding
and executing a single processor instruction (which involves multiple nested
switch statements, bit manipulation, a variety of function calls, checks for spe-
cial conditions, register file and cache updates, checks for stalls and hazards,
updating pipeline state, managing timing information, and, possibly, TLB and
branch predictor lookups). The overall execution speed is thus determined by
the performance, and power modeling, and if done at a sufficiently high level
of abstraction, is not a bottleneck.

3Measured on a 2.8 GHz Pentium 4 HT with 1 GB of 400 MHz DDR RAM. Disabling power modeling

at compile time changed the average execution time over 10 runs of a 1.25 billion instruction run

from 1068 to 1059 s (0.8%). The variation of individual runs from the mean (because of random

lantencies, background processes, etc.) was 21 s, in each case (1.87%).
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Fig. 1. Proposed software structures for SystemC power modeling. The hooks for communication

between performance and power models are component-specific, while the power-model interface

is standardized.

It must be noted that the high accuracy in terms of power consumption is
the result of the detailed nature of the power models used, including the most
detailed instruction-level XScale/ARM power model to date. However, the gains
in speed result from the high transaction-level abstraction at which both power
and performance were modeled.

4.3 Software Architecture for Power Models

At the most fundamental level, the purpose of a component’s power model is to
monitor component activity in order to track its energy consumption. We sep-
arate out activity monitoring, which is highly component-specific, from energy
accounting and reporting, which can be standardized across all power models.

While the implementation of this is not complex, we found that the
robustness and reuse achieved through this approach considerably simplified
both the creation of power models and the top-down data gathering required
for power analysis. No changes in the SystemC kernel were required and the
power-enabled components fit directly into the existing framework. In addition,
the fact that the power model of each component exposes a standard interface to
the rest of the system simplifies component-independent power analysis oper-
ations (such as sorting all components by average power consumption, finding
components with the maximum variation in power, etc.). We outline some of
salient details, which will show its general applicability.

4.3.1 Interfaces. Each performance model uses a component-specific inter-
face (the component power hooks) to transfer power- specific information to the
corresponding power model, which computes the energy involved based on this
information. However, rather than having a separate energy accounting and re-
porting scheme for each component, a generic power-model interface provides
a standard definition and implementation of these. This is seen in Figure 1.

4.3.1.1. Component Power Hooks. These are a small set of functions ex-
posed by the power model and called by the component (the performance
model) when it has power-relevant information (such as information about
the current transaction). The XScale power model exposes functions, such as
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Table I. Using the Power-Model Interfacea

Get power model of a component component.getPM()

Get total energy consumed by a component component.getPM (). getEnergy()

Get read energy consumed by SDRAM sdram.getPM().getEnergy(“read”)

Add 32 nJ to SDRAM read energy sdram.getPM().

(can only be called by a power model) incrementEnergy(“read”, 32E-9)

Find out if the given contributor is a mem.getPM().isComponent(“sdram1”)

subcomponent.

Get the power model of a subcomponent mem.getPM().getPM(“sdram1”)

aThis table illustrates common operations, such as obtaining a reference to a component’s power model,

obtaining the total energy consumed, getting the energy consumed for particular operations, updating

the energy consumed, and manipulating the power models of subcomponents, if any.

gotInstruction(), and gotCacheAccess(). The information needed by the power
model is passed as parameters to these functions. For example, the perfor-
mance model passes the cache access type and number of bytes accessed as
parameters to gotCacheAccess(), which causes the power model to calculate the
incremental energy consumed and update its state accordingly. The component
power hooks are tightly coupled to functionality and each component can have
a different set of these.

4.3.1.2. Power-Model Interface. This is a common interface implemented
by all power models. We implement this as a generic power-model class, which
defines default implementations of all functions and data structures required. It
provides a set of public functions to allow system-wide power data gathering and
analysis (Table I). In addition, it also implements a set of protected functions
and fields that maintain internal data structures and energy accounting infor-
mation. Power models extend this class and do not have to duplicate common
functionality, thus creating a unified energy accounting structure and freeing
power models from having to implement individual energy-accounting schemes.

4.3.2 Internal Data Structure. The total energy consumed by a compo-
nent can often be further broken down into various categories. SDRAM energy,
for example, comprises read, write, activate, and power down energy. A sin-
gle lumped ”energy” counter would discard the fine-grained information that a
power model can provide.

To address this, we break down each component’s energy consumption into
various contributors. Each contributor in a component is identified by a name
and has its own energy counter. The data for each component’s contributors
is kept in an internal hash table for fast lookup by name. The class that im-
plements the generic power-model interface performs all housekeeping and
energy-accounting tasks.

In hierarchical systems, subcomponents can be mapped as contributors and
their power models are queried for energy values, when needed. This hierar-
chical structuring enables system scalability, since it allows a top-level system
power analysis or trace generation scheme to study the system at various levels
of granularity without having to be aware of the details of each modeled compo-
nent. Thus, low-level modules can be added, subtracted, or substituted without
having to rewrite the top-level power data gathering procedures (which only
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need to know about top-level modules). This is contrast to schemes where each
power model for each component in the system under study must be considered
separately, since there is no hierarchical structure associated with the power
models [Bona et al. 2004].

All of these are implemented in the generic power-model class, which man-
ages these data structures and exposes only simple function calls to the outside
world (Table I). Note that in a hierarchical system (such as a memory subsys-
tem), a contributor may itself be a component and have its own power model.

5. POWER MODELS

We now describe the power models used for the XScale microprocessor, its
WMMX SIMD coprocessor, off-chip address and data buses, caches, SRAM, and
SDRAM.

5.1 The XScale Microprocessor

To model the Xscale processor, we use an instruction/event-based processor
power model, partly drawn from earlier studies of microprocessor power con-
sumption [Russell and Jacome 1998; Sinha and Chandrakasan 2001; Tiwari
et al. 1996; Varma et al. 2005]. Our stimulus programs characterize the follow-
ing energy effects:

� Leakage Power and Voltage-Frequency Scaling: The XScale processor pro-
vides a large number of voltage/frequency settings. We run a given stimu-
lus at a fixed voltage and vary the frequency, obtaining a linear plot. Static
power dissipation, which is largely leakage power, is estimated by extend-
ing this curve to obtain power consumption at zero frequency [Sinha and
Chandrakasan 2001]. Power is then given by:

P = Pstatic + Pdynamic = VIstatic + 1

2
CL f V 2dd (1)

where Pstatic and Pdynamic are the static and dynamic power consumption,
respectively, Istatic is the static current consumed, CL is the load capacitance
of the system, f is the switching frequency, and Vdd is power supply voltage.

� Low-Power States: We also characterize power consumption of the processor
in various low-power modes such as idle, deep idle, standby, sleep, and deep
sleep [Intel 2004].

� Instruction Op-code: Based on functionality, we divided the instructions
divided into 11 different types (add, load, etc.), similar to Sinha and
Chandrakasan [2001]. Each energy cost was measured using straightforward
stimuli running the same instruction repeatedly with zero operands and built
into the power model.

� Operand Value: The value of the operands affects the energy consumed to
execute an instruction. Energy tends to increase roughly linearly with the
operand value and the number of “1”s in the operand [Contreras et al. 2004;
Sinevriotis et al. 2000].
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� Bypass Paths: A rather interesting pattern of bypass path behavior was ob-
served, with three different cases:

(i) The base case is when there are no interinstruction dependencies and
all source operands are obtained through register file reads.

(ii) When all source registers for an instruction are the destination registers
for a previous instruction, the source operands are obtained from bypass
paths and 4% less energy than the base case is used.

(iii) When both the bypass paths and the register file are used to get source
operands, 5% more energy than the base case is used.

To the best of our knowledge, we are the first to characterize this effect.

� Sign Update and Conditional Flags: Instructions that updated or used the
conditional flags consumed more energy than instructions that did not. This
increase was under 0.5% and so it has not been made part of the power
model.

� Register Switching: When two consecutive instructions use different source
or destination registers, an energy overhead is incurred, depending upon the
number of registers switched. This can exceed 10% of the total instruction
energy and can be expected to be incurred often. To the best of our knowledge,
we are the first to characterize this effect.

� Cache Accesses: Caches are modeled as on-chip SRAM. From the instruction-
set point of view, the energy cost of a load or store depends on the number
of bytes accessed. We characterize and model this.

� Shifts: The ARM instruction set allows the last operand of an instruction
to be bit-shifted by an immediate or a register value. This shift causes an
additional result latency of one cycle. Incremental energy costs for all shift
types are modeled.

� Stalls: Stalls can be divided into instruction stalls, which are the result of
interinstruction data dependencies, event stalls, such as stalls on a double-
word load, branch stalls, or the pipeline flush penalty, and memory stalls on
accesses to external memory. Energy costs of all stall types were character-
ized and modeled.

5.2 The WMMX Coprocessor

The XScale processor family has an on-die ISA-mapped Wireless MMX copro-
cessor [Paver et al. 2004] for fast SIMD processing. We divided the WMMX
instructions into 17 types based on functionality, in a manner similar to that
for the main processor. Base costs for WMMX instructions were characterized
separately and built into the power model.

5.3 Address and Data Buses

An off-chip system bus connects the processor to Flash ROM, SDRAM, and var-
ious peripherals. We characterize the power requirements of both the address
and data bus by using stimuli to drive specific sequences of values onto them.
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Bus energy consumption in the nth bus clock cycle can be expressed as:

En = C1 × H(Dn,Dn−1) + Co (2)

where C1 is a constant depending on bus capacitance, C0 is the energy cost of
turning on the bus driver I/O circuits, D is the data on the bus (including control
bits), and H represents the Hamming distance between two binary numbers.

For each type of memory transaction (write, burst write, read line, etc.),
the exact sequence of low-level operations involved is defined by the memory
protocol and the memory controller configuration. For example, for an eight-
word read from a particular memory address (a typical cache miss), the exact
timings of row address and column address strobe assertions as well as the
row address, column address, activation time, etc., are known. The SystemC
bus power model simply calculates these and assigns an energy consumption
to each incoming transaction rather than running a cycle-by-cycle simulation,
which would drastically affect simulation speed.

Note that the bus is driven by multiple power sources: the processor drives
both address and data buses, while the SDRAM consumes I/O power when it
drives data onto the data bus. We account for these appropriately.

5.4 Caches and SRAM

We use an SRAM power model similar to Beltrame et al. [2004], Coumeri and
Thomas [1998], and Itoh et al. [1995] to model caches and on-chip memory-
mapped SRAM. Energy consumption is modeled as:

E = Nread Eread + Nwrite Ewrite + Nidle Eidle (3)

where N is the number of times each operation is performed and E is the energy
cost of that operation. The cache energy consumption is modeled in the XScale
instruction-level power model, with each kind of cache access (load or store,
byte, half-word, word or double-word) characterized and modeled separately.

5.5 SDRAM

SDRAM power consumption can be divided into core power consumption (for the
memory elements) [Micron 2003], and I/O power consumption (for driving data
onto the data bus). We characterize these using stimuli. We use the data bus
power model to calculate SDRAM I/O power consumption. The main elements
of SDRAM core power are:

� Base Power Consumption (Pb): The average power consumed by SDRAM
when not accessed is the sum of the standby and average refresh power.

� Activation Power (Pact): The average power consumed when an SDRAM page
is active.

� Read or Write Power (Prw): The power consumed during each SDRAM
read/write operation. The values of read and write current for SDRAM are
equal [Micron 2003].

SDRAM power is modeled in a manner similar to the bus transactions. The low-
level operations in each transaction are defined by the bus protocol and memory
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Fig. 2. The reference platform used for physical experiments. The XScale processor, the WMMX

unit, and the L1 caches are on the PXA271 SoC. The logic analyzer connections allow bus signals

and timing to be observed, while an array of power instrumentation resistors allows the power

supply of each component to be separately studied.

controller. The SDRAM power simply uses these to calculate the energy cost of
each incoming transaction without having to run a cycle-by-cycle simulation.
For a given transaction, energy consumption is given by:

Etransaction = PbTb + PactTact + PrwTrw (4)

Representing the power model at the transaction level, rather than at the cy-
cle level, lowers the computational overhead of power modeling, and contributes
to simulation speedup.

6. EXPERIMENTAL SETUP

For validation, we use a reference platform (Figure 2) featuring an XScale-based
PXA271 SoC, which contains an XScale processor, its WMMX coprocessor, L1
instruction and data caches (32KB each), and other system components [Intel
2004]. The platform also has 64 MB on-board SDRAM, 32 MB synchronous
Flash, and a variety of peripherals. The main board is instrumented with 100
mW resistors in series with the power supply on each module, which enable
power measurements of individual components at a granularity similar to that
at which power is modeled.

We measure the power consumption over multiple channels simultaneously
using an NI-DaQ data acquisition card, sampling at up to 20 KHz with a post-
calibration accuracy of mV. The voltage drop across each resistor is of the order
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of millivolts to tens of millivolts. The instrumentation resistors used are 1%
accurate. Postprocessing of acquired data is done using LabView virtual in-
struments.

The major contributors to power consumption are the XScale-based PXA271
SoC, the SDRAM memory, and the off-chip buses. The three power domains we
measure for validation are:

� Core Power: The 1.3 V main power supply to the XScale- based PXA271 SoC.
In our configuration, it powers the XScale microprocessor core, L1 caches,
WMMX unit, clocks, and on-chip interconnect.

� I/O Power: The 3.3 V supply to the PXA271. It powers the on-chip memory
controller and I/O pads, including all off-chip buses. It also provides standby
power for on-chip components.

� SDRAM Power: The 3.3 V power supply common to the SDRAM (both
SDRAM core and I/O pads).

We compare the predicted and measured power for each domain separately.
Processor frequency is varied, while the memory controller runs the off-chip
bus at 91 MHz.

7. RESULTS

For validation, we measure average power over long benchmark runs and com-
pare it with the power estimates obtained from simulation. We use Windows
CE as the operating system, and run identical benchmarks on the hardware
and the simulator. The simulator runs a complete OS boot routine followed by
the application. Each benchmark is run in a loop, with average power mea-
sured physically on hardware over a period of one second and compared with
the estimate obtained from the simulator.

To validate our results, we use the following benchmarks:

� Autocorrelation and Huffman decoding benchmarks from the EEMBC
benchmark suite.

� The Motion Estimation kernel from an h.264 video encoder.
� A video filter (vidsp) from an h.264 video decoder. We evaluate three ver-

sions of this filter: plain C, hand- optimized assembly, and hand-optimized
assembly with additional WMMX optimizations.

� FFT (for 10,000 samples), JPEG Forward DCT (JFDCT), and Matrix Mul-
tiply (MatMul) benchmarks from SNU-RT benchmark suite from Seoul Na-
tional University.

Figure 3a shows microprocessor core power consumption. We see excellent
agreement between the measured and estimated power, with a worst-case er-
ror of 3.9% (for vidsp C). As in earlier studies [Russell and Jacome 1998; Sinha
and Chandrakasan 2001], we observe a low variation in processor power at a
constant speed.

The power consumed by the I/O power supply is illustrated in Figure 3b. The
base power consumption when there is no I/O activity is 62 mW. Activity such as
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Fig. 3. Power consumed by various power domains at 403 MHz. Note that Huffman decoding and

FFT generate the highest bus activity, thus consuming the most SDRAM and I/O power.

bus transactions consume additional power. Large benchmarks with frequent
memory accesses, such as Huffman decoding or FFT, stress the memory hier-
archy, leading to increased bus power consumption. Of the other benchmarks,
only MatMul is cache-bound. However, the large (32 KB) cache size ensures
that benchmarks with sufficient cache locality display very sporadic bus traffic,
hence consuming little bus power. For example, the motion estimation bench-
mark uses an 800 KB data set. However, it performs significant computation
on each block before fetching the next one, thus having low average bus power
dissipation. Figure 3c shows the power consumed by the on-board SDRAM.
The patterns observed are similar to those observed for XScale I/O, since the
bulk of bus transactions map to an SDRAM access. The SDRAM standby power
is 28 mW, which corresponds closely to the sum of power-down active standby
power and average self-refresh power calculated from the component datasheet
(31 mW).

It is interesting to note that while physical hardware measurements can only
reveal the total power consumed by each component, detailed power modeling
can expose a much finer degree of detail. For example, Figure 4 shows the
various components of core power, while running Huffman decoding and FFT
at 403 MHz. Direct physical measurements cannot resolve net power into these
components.

We also study power variation with core frequency. Figure 5 shows system
power consumption while running Huffman decoding and FFT at various core
speeds, with bus frequency kept at 91 MHz. Note that nonlinearities in I/O
and SDRAM power are correctly tracked (Figure 5a). These nonlinearities arise
because Huffman decoding generates a very large amount of memory traffic. At
high core speeds, the traffic is so high that the SDRAM clock on the bus is almost
always on. As core speed falls, the bus traffic falls linearly. Below a certain point,
the time between transactions is sufficient for the SDRAM clock on the bus to
be turned off for significant amounts of time, leading to the further lowering
of power consumption at 91 MHz. FFT (Figure 5b) does not display such high
memory traffic, leading to a more linear plot. For other benchmarks, the bus
traffic is low and power consumption is mostly the base power consumption,
which does not decrease significantly as core speed is lowered.
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Fig. 4. Contributors to core power consumption while running Huffman decoding at 403 MHz. In

contrast to the fine detail visible here, hardware measurements can only measure the total power

consumption.

Fig. 5. System power consumption at various core speeds. Bus speed is kept at 91 MHz. Note that

nonlinearities in I/O and SDRAM power for Huffman decoding are correctly modeled.

For all benchmarks, the power estimates obtained were in excellent agree-
ment with physical measurements. While power consumption for each compo-
nent varied by over a factor of two over this frequency range, we tracked this
accurately and obtained average errors under 5% and worst-case errors under
10% for each component at all speeds.

8. CONCLUSIONS AND FUTURE WORK

Modeling at high levels of abstraction enables component reuse, top-down de-
sign, and rapid design space exploration. While languages such as SystemC
provide valuable and widely accepted tools for high-speed high-level system
performance modeling, there still exists no standard strategy for high-speed
system power modeling. We define a simulation-based methodology for extend-
ing system performance modeling frameworks to also include power modeling.
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We demonstrate the use of this methodology with a case study of a real, com-
plex embedded system, comprising the Intel XScale embedded microprocessor,
its WMMX SIMD coprocessor, L1 caches, SDRAM, and the on-board address
and data buses. We describe detailed power models for each of these components
and validate the system power estimates against physical measurements from
hardware, demonstrating that such frameworks enable designers to model both
power and performance at high speeds without sacrificing accuracy.

The power-enabled system simulator described predicts power accurately
across a variety of applications, with the the worst-case difference between
estimated and measured power being under 10%, and average error under
5%. Since the power models are implemented at a high level of abstraction,
they are extremely lightweight in terms of computation, and adding them to
existing performance models did appreciably affect simulation speed. The sim-
ulation proceeded at speeds in excess of 1 MIPS, enabling us to run complete
applications on a real-world operating system. Our current work is focused on
modeling peripheral components and extending our methodology to pre-silicon
systems using stimulus-based power characterization of microarchitectural de-
scriptions instead of hardware.
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