
Scalable Variable and Data Type
Detection in a Binary Rewriter

Khaled ElWazeer Kapil Anand Aparna Kotha Matthew Smithson Rajeev Barua
Electrical and Computer Engineering Department, University of Maryland College Park, MD, 20742, USA

{wazeer,kapil,akotha,msmithso,barua}@umd.edu

Abstract
We present scalable static analyses to recover variables, data types,
and function prototypes from stripped x86 executables (without
symbol or debug information) and obtain a functional intermedi-
ate representation (IR) for analysis and rewriting purposes. Our
techniques on average run 352X faster than current techniques and
still have the same precision. This enables analyzing executables as
large as millions of instructions in minutes which is not possible us-
ing existing techniques. Our techniques can recover variables allo-
cated to the floating point stack unlike current techniques.We have
integrated our techniques to obtain a compiler level IR thatworks
correctly if recompiled and produces the same output as the input
executable. We demonstrate scalability, precision and correctness
of our proposed techniques by evaluating them on the complete
SPEC2006 benchmarks suite.

Categories and Subject Descriptors D.2.7: Software Engineer-
ing [Distribution, Maintenance, and Enhancement]: Restructuring,
reverse engineering, and reengineering

Keywords reverse engineering; binary rewriting; variable recov-
ery; type recovery;

1. Introduction
Reverse engineering binary executable code is commonplaceto-
day, especially for untrusted code and malware. Agencies asdi-
verse as anti-virus companies, security consultants, codeforensics
consultants, law-enforcement agencies and national security agen-
cies routinely try to understand binary code. Existing tools such as
the IDAPro disassembler and the Hex-Rays decompiler [1] help,
with the latter producing (non-executable) C-like pseudocode text.

However, existing reverse engineering tools do not exhibitsev-
eral desired characteristics. First, previous tools do notaim to re-
cover afully-functional high-level code (similar to source code)
from executables. These tools neglect variables allocatedon the
floating point stack and generate intermediate representation (IR)
containing incomplete interprocedural interfaces. The recovered IR
is suitable for human understanding but does not capture thecom-
plete functionality of the input executable. Second, they are either
imprecise [1] or recover precise information at the cost ofscala-
bility. For example, DIVINE [5], the most precise variable iden-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $15.00

tification tool proposed in the literature, spends two hourswhile
analyzing programs of the order of 55,000 assembly instructions.

Recovering a functional IR in a scalable and accurate manner
would be invaluable to security professionals. It would enable them
to write compiler passes to extract properties of interest.The recov-
ered IR can be updated with insertion, deletion, or modification.
Running the updated rewritten program enables dynamic source-
level debugging techniques such as judiciously placed print state-
ments, and many more.

Recovering functional IR is also valuable for legacy binaries for
which the source code has been lost. It enables users to fix bugs in
such binaries, modify the functionality, optimize such binaries, or
even port them to new hardware systems.

In this work, we present static analyses that can recover source
level variable and type information from x86 binaries as large as
millions of instructions in a few minutes. The produced informa-
tion is as accurate as the current state of the art x86 binary anal-
ysis systems. The recovered information is represented in ahigh
level compiler IR that is completely functional and produces a cor-
rect rewritten executable when recompiled. Our static techniques
combine functionality, precision and scalability; features that col-
lectively do not exist in today’s binary analysis tools.

Our methods also improve the scope of variable analysis and
type recovery in two ways. First, unlike current binary analysis
techniques, our recovery mechanisms are able to recognize vari-
ables allocated on the floating point stack. Recognizing such vari-
ables is a hard problem in the presence of unknown indirect and
external calls. Recognizing floating-point stack variables is imper-
ative for obtaining a functional IR from executables.

Another way our methods improve the scope of analysis is
by accurately identifying all register allocated variables used as
arguments and returns from functions. Most x86 binary analyses
will only identify memory allocated arguments [4], but do not
identify register allocated ones. This is acceptable when recovering
pseudocode, but unacceptable when recovering functional code.
Some methods perform either brute force techniques [22] that are
imprecise, or use dynamic analysis to detect arguments and returns
[7] which is precise but produces incomplete information.

This work presents a step towards a system that rewrites ex-
ecutables into a functional high-level program representation and
incorporates as much source level information as possible in a scal-
able manner. We envision the need for such a system in various
security and binary analysis applications. This work has the fol-
lowing contributions:

∗ It produces a correct and running IR that can be recompiled to
obtain a rewritten executable that works exactly the same way
as the input executable.

EXISTING LLVM COMPILER

LLVM
front

end
LLVM IR

optimizations

OUR NEW CODE

Binary reader
&

Disassembler

x86 ISA
XML

•Optimizations

 (Parallelization,

 Security)

LLVM

IR

LLVM IR
Optimized

LLVM IR

x86
backend C

C++

Input

binary

Output

binary

. . .

C backend Output

C code

Symbolic

Execution

Vulnerabilities

Fortran

Figure 1. SecondWrite Flow

∗ It presents algorithms for solving problems missed while ana-
lyzing executables like resolving floating point stack accesses
and accurately identifying interprocedural interfaces.

∗ It presents a highly scalable mechanism for identifying vari-
ables and types which is orders of magnitude faster than cur-
rent analysis techniques. Our techniques do not rely on symbol
or debug information to be present in binaries.

∗ It utilizes a compiler’s intermediate representation (LLVM) in
its internals which opens the domain of running existing source-
level analysis and optimization passes built up over decades by
hundreds of developers.

∗ It is evaluated and shown to recover accurate and precise in-
formation from C, C++, and Fortran binaries obtained from
the SPEC2006 benchmarks suite; compiled using two different
compilers in a reasonable amount of time.

2. Analysis and Rewriting Framework

Figure 1 presents an overview of SecondWrite [6], [3]; our exe-
cutables analysis and rewriting framework. SecondWrite translates
the input x86 binary code to the intermediate format of the LLVM
compiler [2]. The disassembler along with the binary readertrans-
lates every x86 instruction to an equivalent LLVM instruction.

A key challenge in binary frameworks is discovering which por-
tions of the code section in an input executable are definitely code.
Smithson et. al. [20] proposedspeculative disassembly, coupled
with binary characterization, to efficiently address this problem.
SecondWrite speculatively disassembles the unknown portions of
the code segments as if they were code. However, it also retains the
unchanged code segments in the IR to guarantee the correctness of
data references in case the disassembled region was actually data.

SecondWrite employsbinary characterization to limit such un-
known portions of code. It leverages the restriction that anindi-
rect control transfer instruction (CTI) requires an absolute address
operand, and that these address operands must appear withinthe
code and/or data segments. The binary segments are scanned for
values that lie within the range of the code segment. The resulting
values are guaranteed to contain, at a minimum, all of the indirect
CTI targets. More information on how we form functions and func-
tion boundaries using binary characterization is found in [11].

Memory stack analysis is done for every procedure to detect its
corresponding memory arguments as explained in [3]. The tech-
niques presented in [3] along with [4] are used to split the physical
stack into individual abstract stack frames. Global and stack regions
appear as arrays of bytes in the IR.

3. Decoding the floating point variables
In this section, we describe our technique to decode all the floating
point stack operations and represent them in higher level code using
floating point variables, function arguments and function returns,
instead of the low level stack layout used in the assembly.

We begin by introducing the x86 floating point stack. The float-
ing point hardware stack has a maximum height of 8 which means
there are only 8 physical floating point registers that can beused
at any time. The names of those registers, as used by the hardware
instructions, are dynamic and are relative to the current top of the
floating point stack. If we assume the fixed physical registernames
are:PST0 - PST7, then the assembly instructions will refer to
another set of namesST0 - ST7, whereST0 always refers to the
register at the top of the stack. For example, if the height ofthe
stack is one, thenST0 refers toPST0. If the stack is full, then
ST0 refers toPST7. In general,STx is mapped toPSTy where
y = TOP(I) − 1 − x whereTOP(I) is the stack height at instruc-
tion I and0 ≤ y < TOP(I). Whenever a function returns a float-
ing point value in a register, it pushes the value on the floating point
stack. Whenever a function takes floating point values as arguments
in registers, the caller pushes the values on the floating point stack.
It is assumed thatTOP(I) cannot be negative at any instructionI .

Decoding the floating point stack means mapping every assem-
bly operand amongST0 - ST7 into a corresponding IR register
amongPST0 - PST7. To do so in the IR, we declare the registers
PST0 - PST7 as local variables inside each procedure. It turns out
from the previous equations that we only need to identify forevery
instructionI , what is the correspondingTOP(I) in order to decode
the floating point operands successfully. This task is not trivial be-
cause of the existence of indirect and external calls.

If there is no indirect or unknown external call in the program,
the problem is trivial because we can traverse the control flow of
the program, tracking the floating point stack height at every point,
and set the value ofTOP(I) at every instructionI depending on
the floating point operations observed. This analysis will not work
in the presence of indirect and external calls because when we hit
such a call, we will not know what function is being called andhow
the height of the stack will be affected by this call.

We use a symbolic analysis scheme to solve this problem by
maintaining a symbolic valueXi for every indirect and external
call i representing the difference of the floating point stack height
before and after the call. Sometimes we refer to that difference
asStackDiff in the paper. After doing the symbolic analysis, each
TOP(I) will become a symbolic expression in terms of theXis. We
build symbolic linear equations to solve forXis. Once theXis are
calculated,TOP(I) will be known for every instruction.

It is statically indeterminable to be able to decode the floating
point operations correctly in all cases in the presence of indirect
and external calls. In this work, we show that if we lay out some
assumptions, we can actually guarantee a correct and functional
representation of the floating point stack operations in allcases that
adhere to those assumptions. Our assumptions are:

1. At control-flow join points, the floating point stack height must
be the same for every predecessor basic block.

2. At indirect and external calls, the floating point stack height
must be zero before the call.

3. Every indirect or external call can return at most a singlefloat-
ing point value on the floating point stack.

The above assumptions are correct in compiled code in every
case in every compiler we are aware of. They are also true in
most hand written assembly code, but may not be always true in
theory. The justifications for the assumptions are as follows. (1)
If the stack height is not balanced at join points, any subsequent

floating point stack access will be indeterminable as it might access
different values depending on the path taken at run time. (2)For
indirect and external calls, the behavior of their targets is usually
unknown to the compiler, and hence the compiler must assume
they might use all the floating point stack registers, hence it has
to clean the stack before such calls. We can state this assumption
by saying we assume floating point registers are scratch registers.
Theoretically, a compiler might know in some cases the behavior
of the functions being called and may not clean the floating point
stack, but practically we are not aware of such a compiler. (3) The
last assumption above is coming from the fact that we are not aware
of any calling convention that allows the return of more thanone
floating point stack register from indirect calls and externals.

We translate the above assumptions into the symbolic analysis
propagation rules present in figure 2, explained as follows.For in-
ternal function calls, we use helper variablesY (F) to represent the
symbolic expression representingStackDiff of every functionF .
The executable is traversed in a depth first search manner starting
from the entry point function for the binary, and from functions that
are never called directly in the code. Then we analyze the remaining
strongly connected components in the call graph. The assumptions
(1) through (3) above represent the symbolic equations in lines (1)
through (3) in figure 2. The actual values ofXis can only be zero
or one because before the call, the stack height is zero according to
assumption (2), and the call can return at most one value according
to assumption (3). The height of the stack cannot go negativeand
hence the actual value of theXis cannot be negative.

The symbolic equations represented by equations (1) through
(3) in figure 2 along with the symbolic unknownsXis are trans-
formed into a linear system of equations. To solve those equations,
we employ our custom linear solver that categorize the equations
into disjoint groups based on the variables used in every equation,
and then solve every group only if the number of equations is equal
to the number of unknowns. We keep propagating calculated values
to other groups until no more calculated values are present.Most
of theXis are usually solved using equation (3) in figure 2.

The remaining unknowns are assumed to take a value ofXi =
1 conservatively. This will be always correct because from our
second assumption above, the stack height is zero before every
indirect and external call. In this case, if we declare by mistake that
a particular call modifies the stack height by adding one element;
this element will never be accessed. In this case, even if there are
subsequent floating point stack operations, they have to push values
on the stack before reading them.

The floating point register arguments and returns are declared
in the IR as follows: a) Whenever a function hasTOP(I) > 0 at its
entry point instructionI , the function is declared in the IR to take
as many floating point values as the value ofTOP(I). They will
be passed as arguments and copied to the correct local variables
according to the mapping we described earlier. b) WheneverXi

or Y (F) are greater than zero at a call site, this call site will be
returning one or more floats in the IR and they will be copied tothe
corresponding local variables in the callers according to theTOP(I)
value at the call site.

4. Function Prototypes Recovery
Detecting the complete and accurate set of function arguments
and returns is essential in producing a high quality code that can
run correctly if recompiled. If some arguments are missing,the
code will not work correctly in all cases. If more unnecessary
arguments are identified, the code will run correctly, but will be
less understandable by users.

We show how to accurately identify the register arguments and
returns. Existing techniques show how to identify the exactset of
memory arguments. SecondWrite already uses a variant of thealgo-

Unknown Symbolic Values :

Xi, whereXi = StackDiff of indirect/external callsitei

Helper Variables :

Y (F) = StackDiff of functionF , whereF is an internal function
TOP(I) = top of the stack after executing instructionI
I′ = the previous instruction toI. At a basic block (BB) entry, it is the
first instruction ofBB.

Initial Conditions :

Root functions “not called directly anywhere” as well as theentry point
function have entryTOP(I) = 0 whereI is a NOP instruction inserted
at the entry point of each of those functions.

Data flow rules :

At every basic block (BB) entry:

TOP(I) = TOP(In), whereIn are the terminators of the prede-
cessors of BB ——————–(1)

For every instructionI:

I = push ...⇒ TOP(I) = TOP(I′) + 1

I = pop ...⇒

if (TOP(I′) = Xi) Xi = 1 ——————–(3)

TOP(I) = TOP(I′) − 1

I = callF ⇒

if (F is an external or indirect)

TOP(I′) = zero ——————– (2)

TOP(I) = Xi

else

TOP(A) = TOP(I′) whereA is the first NOP instruc-
tion in F

AnalyzeF to getY (F) = func(X1, ...,Xn)

TOP(I) = TOP(I′) + Y(F)

I = return fromF ⇒

Y (F) = TOP(I′)−TOP(A), A is the first NOP instruction
in F

∀Z = return fromF ⇒ TOP(Z) = TOP(I′)

Figure 2. Data flow rules used to decode the floating point stack

rithm used by Balakrishnan et. al. [4] to identify memory arguments
[3]. Surprisingly, we did not find any related work that recognizes
correctly and accurately register arguments and returns. Not recog-
nizing register arguments and returns is acceptable if the goal is to
help human understanding of binaries (as for existing methods), but
unacceptable if the goal is to generate correct rewritten code (as for
our method.) Typical x86 codes have less register argumentsthan
memory arguments, but they still have large numbers of register
arguments especially for optimized executables.

A brute force algorithm for identifying register argumentsand
returns is to define the set of registers read without being initialized
inside a procedure as arguments, and the registers modified inside
a procedure and then later used at some of the call sites as returns.
This technique will result in many spurious arguments sinceall
registers which are saved and then restored back in a function (such
as callee saves) will be declared as arguments and returns for this
function, which is not true. Further, this algorithm might miss some
arguments if not carefully implemented. For example, a procedure
not accessing any register at all might be declared as takingno
register arguments, which may not be true since it might be calling
a function which is taking a register argument.

We propose below an algorithm which identifies accurately all
register arguments and returns. Our algorithm is conservative since
it will not miss any arguments. It is also accurate since it prunes out
unnecessary extra arguments in many cases.

The main challenge in being accurate and yet conservative is
that the stack locations used to save registers need to be tracked to
make sure they are only used for this purpose, thus allowing those
registers to be pruned from the arguments or returns. The stores of
the register values at the beginning of the function should dominate
the loads used to restore them back. There should not be any write
to those stack locations in between. If those stack locations are read
in the middle of a function, the corresponding registers must be
declared as arguments.

Our register arguments and returns detection algorithm is com-
posed of five steps. 1) We assume all registers are arguments to
every function and there are no register returns. 2) We declare all
registers written to inside a function or any of its callees as poten-
tial return registers. 3) We run our algorithm for detectingsaved
locations by detecting the set of stores to the memory stack which
are never loaded back except before the return from the function.
We call those store instructionsDeadStores since they will be even-
tually removed from the code. For each of the detected dead stores,
we determine the corresponding saved register and remove itfrom
the potential returns set. 4) We run our algorithm to propagate the
register arguments correctly and prune unused ones. 5) We prune
the unused return registers out. Next, we describe each of those
steps in details. Step 1 is trivial. We proceed from step two.

The second step in our algorithm is to detect the initial set
of potential return registers. The simple idea is that any register
which is being written to inside a function is a potential return
register from this function. For example, if a functionfoo is calling
functionbar , andbar is modifyingeax , thenfoo andbar will
be declared as potentially returningeax despite the fact that there
is no write toeax inside of foo . We do a post-order depth-first
search traversal of the call graph (which visits child nodesbefore
their parents) and propagate the set of potential return registers
upwards in the call graph by looking for the written-to registers.
Whenever we find a call to a function, we add its potential returns
to the caller function potential returns. We handle recursion using
a work list mechanism such that whenever we detect a call to
a function which has not been analyzed yet, we add the caller
function back to the work list.

After detecting the potential returns, we add them to the IR
in every return statement inside every function. If more than one
register is returned, we return a structure containing all combined
potential return registers.

The third step in our algorithm is to detect the callee saves reg-
isters and exclude them from the list of potential returns. Since
callee-saves values are saved to the memory stack, we need a mem-
ory analysis technique to track the memory stack locations where
they are saved. Tracking memory in executables is not a trivial task.
Our saved registers detection does not need a sophisticatedmem-
ory tracking algorithm because it only needs to track stack memory.
Neither heap nor global memory need to be tracked.

We modify the Value Set Analysis (VSA) algorithm proposed
by Balakrishnan et. al. [4] by removing global and heap memory
tracking, keeping only stack memory tracking. We also remove the
context sensitivity from the algorithm since it is not needed in this
application. The resulting algorithm is less powerful for general
memory tracking but is sufficient for this purpose.

As a quick summary of the VSA algorithm, it derives a con-
servative estimate of the set of addresses and integer values every
memory location and register can contain at any program point.
Every set of values is represented as a strided interval witha lower

Algorithm 1: The callee-saves detection algorithm
Input : A copy of the LLVM IR for a binary
Input : PotArgs : maps functions to their potential register arguments
Input : PotRets : maps functions to their potential return registers
Output : DeadStores : maps functions to the dead register stores
Output : PotRets : The input map after pruning saved registers

1 foreach reg ∈ PotArgs do
2 Create a dummy registerdummy ; DummyRegs(reg) = dummy
3 end
4 ADDRS = φ

5 foreach Function F do
6 foreach Instruction I in F do
7 if I = store reg, Ptr AND reg ∈ PotArgs then
8 if ValueSet(Ptr) = {address} (Singleton) then
9 ADDRS = ADDRS ∪ {(reg,address,I)}

10 end
11 end
12 end
13 foreach (reg,address, I) ∈ ADDRS do
14 allocate a dummy pointerDummyPtr((reg, address)) at the

beginning of F
15 storeDummyRegs(reg) to DummyPtr((reg, address))
16 end
17 foreach Instruction I in F do
18 if I is UnsafeInstruction(address) where (reg,address,X) ∈

ADDRS then
19 insert a volatile load fromDummyPtr((reg, address))
20 end
21 if I = store value, Ptr AND ValueSet(Ptr) ⊇ {address}

AND (reg,address,X) ∈ ADDRS then
22 insert a storevalue to DummyPtr((reg, address))
23 end
24 if I = load Ptr AND ValueSet(Ptr) ⊇ {address} AND

(reg,address,X) ∈ ADDRS then
25 insert I’ = loadDummyPtr((reg, address))
26 for every use of I insert a cloned use of I’
27 end
28 end
29 Run LLVM Memory to Register Promotion on AllDummyPtr
30 Run LLVM Dead Code Elimination on F
31 foreach (reg,address, I) ∈ ADDRS do
32 if DummyPtr(reg, address) is deleted AND

DummyRegs(reg) has no uses OR only used in return
instructions then

33 DeadStores(F) = DeadStores(F) ∪ {I}
34 end
35 if DummyRegs(reg) has no uses OR DummyRegs(reg) is

used in all return instructions of F then
36 PotRets(F) = PotRets(F) - {reg}
37 end
38 end
39 end

and upper bounds; and a stride. In our modified implementation of
VSA, we only keep track of the lower and upper bounds.

Before we run the saved registers detection algorithm, we con-
vert the registers inside of each function into the SSA form.This is
straight forward; indeed in our implementation LLVM already does
that. Our algorithm works on a temporary copy of the IR.

Algorithm 1 detects the dead stores used to save registers and
prunes those saved registers from the potential return register set.
Lines 6 through 12 in the algorithm collect the addresses on the
stack that are used to store register values. For each of those ad-
dresses, a simple memory liveness analysis is being conducted us-
ing standard memory-to-register promotion and dead code elimi-

nation compiler passes (both these passes are already available in
LLVM). Lines 13 through 16 create a dummy memory location in
the IR for each pair of address and register identified. We initially
store a dummy value we create to each one of those memory loca-
tions. Lines 17 through 28 examine the uses of every address using
VSA. At every possible read of an address, we insert a load from
the dummy memory location we create. At every possible write
to that address, we insert a store to that dummy memory location
of the stored value. After that, we run the memory-to-register pro-
motion compiler pass again on those memory locations. Finally,
lines 31 through 38 determine the final set of dead stores. If the
dummy memory location is promoted successfully to registers, and
the only use of the dummy value is at the return then it is savedand
can safely be removed from the potential return. The correspond-
ing initial register stores are declared to be dead in this case. If the
same previous conditions occur and also there are other usesof the
dummy value, then the register is removed from the potentialre-
turns, but the initial store is not dead and is considered a real use of
the register; i.e. the register becomes an argument.

The UnsafeInstruction(address) functions appearing in line 18
in the algorithm is responsible of deciding whether the instruction
may have side effects which can potentially access thataddress.
External calls where any stack address appears in the value sets
of one of the arguments are considered unsafe as they may do
arithmetic on those addresses and potentially read from or write
to ouraddress. An example of this behavior ismemcpy, strcpy
and other string manipulating functions from the standard Clibrary.
Some external functions are pre-identified safe and known not to
do arithmetic on pointer arguments. For example, we parse format
strings ofprintf , scanf and similar functions and in some cases
we can prove those functions are safe.

After detecting the dead stores used to save registers and prun-
ing the callee-saves from the potential returns, we proceedto step
four which identifies the actual register arguments. We traverse the
call graph of the executable in post-order depth-first search traver-
sal, which ensures child nodes are visited before their parents. For
each potential register argument inside a function, we declare it as
an argument if and only if we see a “real” use of this register in the
function. If a register is used in a store instruction among the dead
stores identified by algorithm 1, the store is not considereda real
use. Uses in calls are only considered “real” if the callee takes the
register as an actual identified argument. A work list mechanism
is maintained to handle the dependencies between functions. PHI
nodes that link multiple SSA versions of the same register are not
considered uses and are tracked. Returns are not consideredreal
uses because if the return is the only use of a register, thereis no
need to pass it as an argument. Propagating the actual returnreg-
isters (step 5 in our algorithm) is done in a similar way to theone
above except that it works on functions in the forward call graph
order and looks for uses of return values at call sites.

The correctness of our register arguments and returns algorithm
is guaranteed for internal functions. The reason is that we start
our algorithm initially by having all registers as arguments, and
then remove those which are not really used. For returns, we start
the algorithm by adding all registers that are written to inside of
a function or one of its callees, we then remove the ones which
are unused at call sites. The correctness in the presence of indirect
calls, external calls and call backs is described below.

Our algorithm runs the same way on indirect calls and is correct.
At every indirect call, SecondWrite inserts a call translator function
that checks the value of the function pointer and calls the corre-
sponding IR function accordingly. In this case, this call translator
is treated the same way as any normal function in this algorithm
under the assumption that the call translator will call all possible
target functions.

Regarding external calls, they are treated correctly by ouralgo-
rithm in all compiler generated code where the external function
has a standard compiler calling convention; ex;cdecl, fastcall, this-
call, stdcall and others. Some external functions like standard C and
C++ libraries are known to SecondWrite; hence our algorithmwill
know from the prototypes what registers are needed passing.For
the unknown prototypes, we pass all registers that form the union of
all the possible known calling conventions, and return all possible
returns from the same union. This is not efficient, but will produce
correct code under the above assumption. We insert assemblyin-
structions before the external call to make sure we pass the correct
register values from the IR to the corresponding physical register in
hardware, and copy the physical returns into the correct IR registers
after the call. Only if the external call has a non-standard compiler
calling convention is when we might not be able to handle it cor-
rectly. We never experienced any such external call in all our tested
programs.

5. Variable and Type Recovery

In this section, we present our techniques to recover source-level
variable information from executables, and then present them with
meaningful data types in the IR. Our techniques focus only on
memory allocated variables. Register-allocated variables can be
handled after detecting register arguments and returns using any
compiler liveness analysis that detects a variable for every live
range of a register in the executable.

Variable and type recovery from executables is a hard problem
because symbol tables are absent. Every memory-allocated vari-
able access in the source code is represented by a memory store
or load in the executable. Those memory accesses are either di-
rect accesses to locations represented by constant addresses, or in-
direct memory accesses to locations represented by some register
value. Direct memory accesses can be used to infer variable infor-
mation by examining the constant memory address being accessed,
but indirect memory accesses are unknown accesses and need more
advanced memory analysis to reveal the underlying memory loca-
tions. That is why pointer analysis is important while recovering
variables and data types from executables since it reveals what are
the possible memory locations an indirect memory referencecan
possibly access.

Researchers in this field know this and the best known variable
identification technique from executables (DIVINE [5]) uses an
advanced memory analysis technique called value set analysis [4],
which is a generalized form of alias analysis. DIVINE presents
accurate variable identification that detects 88% of the memory-
allocated variables in executables. The problem with DIVINE is
that it is not scalable and requires a very long time to analyze even
small programs. Our aim is to present techniques with the same
accuracy as DIVINE, but run orders of magnitudes faster.

Our key insight that enables scalability is that efficient variable
detection and type recovery do not require a sound pointer analysis.
Unsound pointer analysis usually means incomplete points-to sets.
As an example, if variablex points toy andz , an unsound pointer
analysis might reportx points toy only. Usually unsound pointer
analysis is unacceptable, but variable detection from executables is
a best-effort analysis and no method claims to detect 100% ofthe
variables. If we are going to miss some variables anyways because
of the nature of the problem we are solving, then we can sacrifice
the soundness of the analysis at the expense of losing some variable
information – as losing variablez in the given example above, but
with the gains of having a practical analysis that scales well for
large executables.

The correctness of the recovered IR, while missing some vari-
ables due to the unsound pointer analysis, comes from the fact that
the relative ordering between variables in the memory layout is

storey, x (store value
y to locationx of size
S)

∀ z ∈ ALocs(PtSet(x)) :
PtSet(z) ∪ = PtSet(y)

Variables: UpdateALocs (PtSet(x), S)

y = loadx (load loca-
tion x of sizeS to y)

∀ z∈ ALocs(PtSet(x)) :
PtSet(y) ∪ = PtSet(z)

Variables: UpdateScalar (PtSet(x), S)
y = x PtSet(y) = PtSet(x)

y = x + z , PtSet(x) is
not empty

if z is a constantthen
PtSet(y) = PtSet(x) >> z

Variables:
if z is a constantthen

UpdateStructure (PtSet(x), z)
else ifz has SCEV bounds and stridethen

UpdateArray (PtSet(y), stride, bounds)

Table 1. Points-to sets propagation and variable detection rules

maintained in the recovered IR. For example, if we detect twoin-
teger local variables at offsets 0 and 20 on a stack frame of size
24 bytes, we will lay out those variables in a structure whichhas
the following three members: a) An integer in the range [0-3]. b) A
generic array of bytes in the range [4-19]. c) An integer in the range
[20-23]. Preserving the layout of the variables in such a structure
maintains the correctness of any indirect memory access to this re-
gion. The arrays inserted fill the unknown gaps between variables
and maintain the memory layout. This representation helps under-
standing what variables are detected along with their types, and at
the same time maintains the functionality of the rewritten program.

We introduce the concept of a best-effort pointer analysis;where
the identified points-to set of each pointer may not be complete, but
we terminate the analysis in a certain amount of time nevertheless
to prevent it from taking too long even before it converges. This
analysis is not correct given the usual criteria for correctness, but
suffices in the way we use it to identify as many discrete variables
as possible. Our best-effort pointer analysis is a flow and context
insensitive data flow analysis that has the following properties:

∗ It limits the cardinality of the points-to sets to a fixed number.

∗ It does not track interprocedural information via indirectcalls.

∗ The number of analysis iterations is set to a fixed number.

Having the above relaxations makes our analysis much fasterat
an extremely small loss in precision. The intuition behind this is
as follows: a) A flow and context sensitive pointer analysis is not
needed since the variables usually have the same size and type in
all flows and contexts of a program. Some exceptions to this might
happen which is not common in the programs. b) Limiting the car-
dinality of points-to sets does not affect the precision that much
since only few variables will have large points-to sets. c) Propa-
gating interprocedural information through indirect calls will only
affect functions which are only called indirectly. Those functions
are still analyzed, but their arguments will have unknown points-to
sets. Given that there are relatively few such functions in executa-
bles, skipping their arguments propagation is not a big loss. d) Lim-
iting the total number of iterations will only affect longerchains
of pointers. For example, the first iteration will always reveal some
pointers. The second will reveal two-level (double) pointers. Subse-
quent iterations reveal more pointer levels. Usually most variables
do not have more than four level pointers, which means subsequent
iterations will only reveal very little information.

5.1 Best Effort Static Variable Recovery

We show in this section how a simple best-effort pointer analysis
can be used for identifying variables. This pointer analysis should
be suitable to run on executables where no variables yet identified.
We could have modified current memory analysis schemes on ex-

A = call foo (arg1, ...,argn)
foo has the known prototype:
retType foo (type1, ...,typen)

∀ x ∈ [1,n]
setType(argx, typex)
setType(A, retType)

A = B opC
op ∈ {+,−, ∗, /,%, >>,<<}
op has type:opType
A, B, C has empty points-to sets

setType({A,B,C},
opType)

A = loadB
storeA, B

unifyType(A,
ALocs(PtSet(B)))

op1 = φ (op2, ...,opn)
op1 = typecastop2 to type

unifyType({op1, ...,
opn})

Table 2. Typing rules

ecutables like [4] to fit our needs, but we show a simpler analysis
with similar precision and much better scalability.

Before we begin the analysis, we identify all base memory re-
gions in the executable. An executable has three base memoryre-
gions. 1) The global memory region where global variables are
located. 2) The stack memory region where local variables inside
functions are located. Stack regions are allocated at the beginning
of a function and deallocated at the end of the function. Second-
Write already represents those as large arrays in every function. 3)
The heap memory region where dynamically allocated variables are
usually located. Those are identified by detecting calls to functions
like malloc andnew in the executable.

Every detected memory-allocated variable is represented by an
abstraction calledALoc which stands for Abstract Location. The
name is similar to the name used by DIVINE [5]. AnALoc contains
an offset inside a base memory region and a size representingthe
variable size. Variables allocated to registers are represented by IR
symbols which represent the SSA form of those registers.

Our pointer analysis conservatively assumes that every detected
variable can be a pointer. We assign points-to sets to every IR
symbol and detected ALoc. When the analysis is done, the actual
pointers are identified by tracking if the corresponding points-to
sets are not empty.

We implement the points-to sets using the efficient LLVM
sparse bit vector data structure. For every base memory region,
we assign it a series of unique bits where the number of bits equals
the size of the region in bytes. If the size of the base memory re-
gion is not known (usually in heap allocated arrays), we assume
an arbitrary size. This allows us to detect variables with offsets up
to that size. Whenever an access is detected beyond that arbitrary
size, we do not track it. This is an important part of our best-effort
analysis that allows us to recover a subset of the variables on un-
sized base memory regions instead of totally giving up on them as
the case in DIVINE [5]. Whenever a symbol or an ALoc points to
some variable in a certain memory region, the bit corresponding to
the starting address of the variable will be set to one. The number
of bits set to one equals the number of variables pointed to bya
symbol or an ALoc.

Table 1 shows our detailed propagation rules for the best-effort
pointer analysis as well as for detecting the variables. We introduce
the following definitions to ease the understanding. 1) PtSet(x):
takes an ALoc or an IR symbolx and retrieves its points-to set
‘bit-vector’. 2) ALocs(x): takes a bit-vectorx and retrieves the set
of ALocs starting at the addresses that correspond to the set-bits
in the bit vectorx. 3) UpdateALocs(x,y): takes a bit-vectorx and
a sizey and creates ALocs starting at the addresses corresponding
to the set-bits in the bit-vectorx with the given sizey. If existing
ALocs overlap the new ALocs, the new and old ALocs will be split
into smaller ALocs to avoid the overlap. 4) UpdateStructure(x,y):

takes a bit-vectorx and a numbery. It defines a set of structures
starting at the addresses corresponding to the set-bits in the bit-
vectorx. Each structure has its last member at offsety. If a structure
already starts at one of the starting addresses, its last member offset
will be updated with the maximum of the existing offset and the
new one (y). 5) UpdateArray(x,y,z): takes a bit-vectorx, a number
y representing a stride, and another numberz representing the
upper bound of the array. It defines arrays starting at the addresses
corresponding to the set-bits in the bit-vectorx. Each array has a
maximum sizez. The arrays will be declared to have an element
sizey. Existing arrays will be merged with the new declared ones
and the element size will be set to one if overlapping arrays have
conflicting element sizes.

Here we describe briefly the propagation rules in table 1. For
a store instruction, the points-to sets of the ALocs pointedto by
the pointer operand will be unioned with the points-to set ofthe
value stored. This is called a weak update in the domain of pointer
analysis. A load will set the loaded value points-to set to whatever
is pointed to by the pointer operand. Stores and loads will create
ALocs as they are resolved using the UpdateALocs function de-
scribed earlier. For pointer arithmetic, the points-to sets will be
shifted right according to the positive constant added. If the con-
stant is negative, the shift will become to the left. Adding acon-
stant to a pointer is a hint about the existence of a structurewhere
the pointer address is the start address, and the constant represents
one field offset inside the structure. We use this hint and declare
a structure identified by the starting address and the last member
offset. The structure’s last member offset might be updatedin sub-
sequent pointer arithmetic operations that start from the same base.
The structure’s last member offset will eventually be the maximum
observed constant that was added to the pointer in the program.
Adding a non-constant value is an indication that an array exists.
An array will be declared in this case. We use the Scalar EVolution
(SCEV) analysis by LLVM to deduce the bounds and the stride of
the arithmetic and use this information to describe the array. If such
information is not present, we do not declare an array.

The more pointer analysis rounds done, the more ALocs, struc-
tures and arrays are identified in all base memory regions. More
pointer analysis rounds help identifying multi-level pointers since
the first round will always reveal single level pointers. Thesecond
round will propagate the points-to sets for those ALocs and identify
their points-to sets leading to the identification of two level point-
ers. More rounds will reveal more levels.

After all iterations are done, collected information aboutarrays
gets resolved. For every base memory region, we fill in the gaps be-
tween ALocs using arrays. The bounds and stride informationare
available from our earlier propagation. If no bounds are available,
previously defined ALocs are used as bounds. If no stride informa-
tion is available, a stride of one is used which means the array is
an array of bytes. Overlapping arrays are combined into one bigger
array as described earlier.

At the end of this process, a structure hierarchy is created based
on the structure information calculated for every base memory re-
gion. Using the starting and ending offsets previously calculated for
every structure, we construct nested hierarchy structures. We define
inner and outer structures such that any outer structure must have
its starting address less than any starting address of any nested in-
ner structure, and its ending address larger than any endingaddress
of any nested inner structure. A straight forward algorithmis em-
ployed to produce this hierarchy.

5.2 Data Type Recovery

Data type recovery aims at representing every symbol in the IR
with a meaningful type. It declares a map between every symbol in
the IR and the corresponding detected data type. It uses thismap to

rewrite the complete IR such that the instructions use the detected
types instead of the generic types that are used by SecondWrite.

Without integrating type recovery with some pointer analysis,
detected types will be less accurate because of two reasons:1)
Instructions like memory loads and stores will usually be untyped
since there is no memory tracking possible. 2) Multi-level pointer
types will not be detected because there is no way to track them
without having some sort of pointer analysis.

To achieve the goal of typing memory accesses and IR symbols;
and detecting multi-level pointer types, we integrate our best-effort
pointer analysis and variable recovery techniques described above
with our type recovery system. Any other pointer analysis like [4]
can be theoretically used, but will be orders of magnitude slower
which makes it less practical in large executables. That is the
disadvantage of TIE [14] which is the state of the art binary type
recovery technique.

Integrating our variable identification system with type recovery
makes the type recovery simpler because it will need only recover
scalar types like integers, floats and doubles. Structures and arrays
are detected as part of the variable identification. A pointer is de-
tected if the points-to set of the corresponding ALoc or IR symbol is
not empty. In this case, we get the ALocs pointed to by that pointer
and type them according to our rules. We keep doing this for longer
pointer chains as needed.

Table 5.1 shows the most important typing rules we have. There
are two main type sources. a) Known external function calls like
standard C/C++ library calls. For those, we set the types of actual
arguments passed to be the same as the known argument types from
the prototypes and we do the same thing for the return value. b)
Arithmetic operations with non-pointers: in this case the type is
deduced from the semantics of the operation itself – whetherit is an
integer or a floating point operation –. We use the functionsetType
to update the type of the symbol or the ALoc in the type map we
declare. For pointer types, we type the ALocs represented bythe
points-to sets of the corresponding variables.

For the other operations in the table, we propagate the types
using the functionunifyType. This function attempts to set the data
type of all the given symbols and ALocs to be the same. At leastone
of the symbols or the ALocs given to that function should be typed.
Whenever this function finds conflicting types, it gives up and does
not update any types. It is used for copy operations like typecasts
and phi nodes. It is also used to propagate types through memory as
shown in the rules for stores and loads. Interprocedural information
is propagated by unifying the formal and actual arguments types at
a call instruction. The return value data type at the call site is unified
with all the data types of all return values appearing in the return
statements inside the called function body.

IR Correctness. We are able to produce a correct and functional
IR even if we do not detect some variables and data types. To be
able to do that, we rewrite the IR using the following restrictions:

1. We use generic types for the symbols we could not detect types
for. The generic types will be wide enough to handle the largest
possible variable size that can be allocated to a physical register
in the hardware. Type casts are used as needed to convert the
generic type to actual types used in different operations.

2. We never assign a type to an IR symbol that conflicts with its
use. For example, if we see a 4 byte load, we will never type
the pointer as a pointer to short (2 bytes) even if our analysis
detects it this way. Otherwise, the load will be wrong.

3. All variables identified for a certain memory allocation will be
surrounded by a structure data type. The order of the variables
inside that structure is the same as the order they appear in
the original executable. The memory regions with no variables
declared will be declared as arrays of bytes and will be placed at

Application Lang # Inst # Proc Time(s)

mcf C 3,357 36 0.15
lbm C 7,740 30 0.11
astar C++ 12,677 111 0.39
libquantum C 13,800 73 0.41
bwaves F 19,002 22 0.87
bzip2 C 21,408 51 1.14
sjeng C 32,238 121 2.86
milc C 34,183 172 2.38
sphinx C 41,669 210 6.68
leslie3d F 43,432 32 2.78
hmmer C 85,981 242 5.29
namd C++ 103,365 193 11.71
soplex C++ 116,743 1523 20.09
zeusmp F 118,429 68 5.44
omnetpp C++ 148,453 3980 59.58
h264 C 170,684 462 19.78
gobmk C 196,230 4188 35.34
cactus C 218,896 962 25.57
povray C++ 288,957 3678 72.49
perlbench C 313,036 2183 67.89
gromacs C/F 396,450 674 38.14
calculix C/F 506,725 771 54.79
dealII C++ 766,555 15619 815.05
gcc C 934,292 6426 354.68
tonto F 1,303,359 2878 342.99

Figure 3. Benchmarks Table

the correct offsets inside those structures. This guarantees that
every unresolved pointer arithmetic will still point to thecorrect
variable in the rewritten executable.

6. Results
In this section, we present the results showing the effectiveness of
our schemes to identify variables and data types. We first show
results on the overall variable and data type detection process
and then we show specific in-depth results for floating point vari-
ables and function prototypes. We evaluate our techniques on the
SPEC2006 benchmark suite which represents C, C++ and Fortran
executables using different optimization levels and compiled us-
ing two different compilers (GCC 4.3 for Linux, and Visual Stu-
dio 2010 for Windows). We use a machine with an Intel Core i7
3.33GHz processor with 24 GB of RAM.

All the recovered code in all the experiments was recompiled
using LLVM 3.0, linked using GCC (Linux) and MinGW (Win-
dows), and then tested on the ref and test inputs provided by the
SPEC2006 test suite. All rewritten executables worked successfully
and produced the correct answer as provided in the test suite. In the
following sections, we show our detailed analysis results.

6.1 Variable and data types detection

In this section, we show the accuracy, scalability and quality of the
recovered variables and types and compare them to the state of the
art. We compile C benchmarks from SPEC2006 with all debug-
ging information present and only use them for comparison. We
currently do not support reading complete debugging information
for C++ and Fortran, yet we collected results on those benchmarks
without comparing with source code.

The first experiment shows the quality of the recovered variables
using the same metrics DIVINE [5] used for comparison purposes.
DIVINE [5] compares recovered variables in the binary to corre-
sponding variables in the source code of those binaries to deter-
mine how well it did. It defines four variable categories as a result:
1) a matched variable is a recovered variable whose exact size and
position matches the variable from the source code. 2) An over re-
fined variable is when the source code variable is divided into more

recovered variables; for example, an integer identified as four char-
acters. 3) Under refined variables which are recovered as part of a
larger source code variable ; for example, an un-identified structure
member. 4) An unknown variable is a variable which is not one of
those mentioned categories.

As shown from figure 4, an average of 86% of the variables
are matched to the debugging information. We run this experiment
on programs ranging from 2,149 instructions (mcf) to 934,292
instructions (gcc). DIVINE [5] reports an average of 88% matched
variables on programs ranging between 252 to 5,371 instructions.
This shows that our schemes has comparable precision to DIVINE
[5] but on much bigger benchmarks. The largest benchmark they
report variables results on isdeltablue with 5,371 instructions.

The scalability of the variables and type detection is shown
in figure 7. Our analysis scales linearly with program size for
larger binaries. The detailed benchmarks sizes and analysis time are
shown in table 3. The analysis takes around 6 minutes to analyze
tonto which is a Fortran benchmark whose size is 1.3 million
instructions. The average analysis speed is 1.7 seconds per10000
instructions compared to 10 minutes per 10000 instructionsin
DIVINE. Thus our method is 352X faster than DIVINE on average.
As mentioned before, the underlying reason for our much-faster
analysis is using an underlying best-effort pointer analysis that is
not guaranteed to have complete points-to sets. We considerthat
while recovering the IR to maintain correctness as we discussed
earlier in section 5. dealII is the only program (out of 25) that did
not scale well. dealII has very large number of procedures asshown
in table 3. The interprocedural data flow propagation took most of
the time in dealII. Still, it is finishing in around 13 minutesgiven
that it has 766,555 instructions.

In order to evaluate our type analysis techniques, we calculate
the same metrics that TIE [14] uses. TIE defines a type range for
every variable recovered from the executable. An ordering between
basic types is specified by a type lattice shown in their paper.
The first metric they define is thedistance which is the difference
between the lattice heights of the upper and lower bounding types
for each type range. The smaller thedistance, the more accurate the
identified types are. The maximum distance is 4. They also define
their detected type range to beconservative if the actual source
code type falls inside the detected range.

In order to compare with TIE [14], we define a range of types
for every variable we detect where the lower bound is the single
detected type by our analysis and the upper bound is the generic
reg32_t type they define in their lattice. Based on that range, we
calculate our distances and conservativeness rates.

In addition to the distance and conservativeness, we define our
own metric that measures the precision of multi-level pointers
detection. TIE metrics do not show how multi-level pointersare
precisely typed since all pointer types have the same heighton their
lattice [14]. Our precision metric is defined as the ratio between
the correctly recovered pointer levels to the source level pointer
levels. For example, if a variable has a double pointer to integer
type (int **) in the source code and we identified it as a single
pointer to an integer (int *), then we identified one level only out
of the three levels in source, which arepointer to pointer to integer.
Our precision in this example will be 33%.

Figure 5 shows the conservativeness as well as the precisionof
our detected types. The conservativeness rate is 96% on average
which is slightly higher than 90% that TIE reports. Our precision
metric shows that we detect 73% of the pointer levels on average.
The average distance detected for our type recovery system is 1.7
which is slightly better than the distance of 2 that TIE [14] reports.

Some of the larger binaries have lower type precision than other
smaller ones. This is expected since larger programs tend tohave
more higher level pointers than smaller ones and those are usually

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 o

f
v
a

r
ia

b
le

s
 r

e
c
o

v
e

re
d

Matched Over Refined Under Refined Unknown

Figure 4. Accuracy of variable detection

0

20

40

60

80

100

%

Type Precision Conservativeness

Figure 5. Accuracy of type detection

hard to detect since they rely on the effectiveness of the underlying
pointer analysis. The conservativeness and distance measures used
by TIE do not capture this fact as it is clear from figure 5.

It is worth mentioning that our variable and type recovery are
integrated together in our system. The scalability shown infigure
7 as well as the detailed analysis time results shown in table3 are
capturing both the variable recovery and the type analysis.

6.2 Decoding the floating point stack

In this section, we show the effectiveness of our techniquesin iden-
tifying floating point stack variables. We show the percentage of the
symbolic values that were not solved using our linear solverand
required the conservative assumption ofXi = 1. As mentioned
in section 3, the main challenge while decoding the floating point
stack is to identify whether an indirect or an external call is mod-
ifying the floating point stack height. According to our assump-
tions, whenever we are not sure about an indirect or an external call
site, we decide conservatively that it is modifying the floating point
stack by pushing a single value. We show how often we took that
conservative decision in different binaries.

All register allocated floating point stack variables were recov-
ered correctly and all the rewritten benchmarks ran correctly and
produced correct answers. The conservative decision takendoes not
affect correctness as we explained in section 3. It only addsextra
return values to some indirect and external calls and this might re-
flect adding more return values to internal functions as well. The
next results section quantifies this effect.

On average, we took the conservative decision 28% of the time
for non-optimized executables and 25% of the time for optimized
ones. This means we are able to identify the exact floating point
arguments and returns for more than 72% of the indirect and exter-
nal calls on average. We are not aware of any work that identifies
such information. Optimized binaries often have less variables than
non-optimized binaries which translates to less floating point stack
usage and less number of times when the conservative decision is
taken. The conservative decision is usually taken more often in C++
binaries because they have more indirect calls with more straight
line code and smaller functions than C and Fortran binaries,which
translates into smaller number of equations.

6.3 Register Arguments and Returns

In this section we show the accuracy of the detected registerargu-
ments and returns. We run our algorithm only for the C and C++
benchmarks shown in table 3 and present the average number of
added register arguments and returns (false positives). Wenever
had any false negatives in any of the binaries we tested. We could
not compare Fortran binaries since currently, we do not support
reading Fortran prototypes from debugging information.

As shown from the figure 6, the average number of false positive
arguments is 0.2 per function. The average number of false positive
returns is 0.44 registers per function. These results include the con-
servative floating point returns we declare in our analysis,which
explains why the average number of returns is higher. C++ exe-
cutables tend to have more indirect calls than C executableswhich
explains why they have more false positives.

In contrast to the work in [7], our method has three advantages:
(i) it is guaranteed to discover all arguments; (ii) it has been demon-
strated on a much larger programs; and (iii) it is orders of magni-
tude faster. First, their method cannot guarantee full coverage of
arguments and returns because of being a dynamic analysis. Any
unused argument or return during an execution trace can be missed.
Missing arguments or returns is acceptable for human understand-
ing of binaries, but unacceptable for rewriting binaries. Second,
although our method produces slightly more false positivesthen
their method (0.2 vs. 0.15 false positive arguments per function),
it has been evaluated on far more functions (48,854 functions for
our method, vs. just 13 functions for theirs.) Third, our analysis is
much faster: for example, it takes only 30 seconds to analyzea pro-
gram likesoplex which has 116,743 instructions containing 1,523
procedures and produces prototypes for all of them. In theircase,
they need the same 30 seconds to only extractMD5_Final which
is a single function of 67 instructions. This shows that our analysis
is two to three orders of magnitude faster than their method,at the
expense of a small loss in precision.

7. Related Work
Throughout the paper, we compared our work with the most recent
work done in the areas of variable and type recovery [5, 14] and
function prototypes identification [7]. In this section, wediscuss
other work that is relevant to our techniques.

Binary rewriting has been considered by a number of re-
searchers. There are two main categories when talking aboutbinary
rewriters, dynamic binary rewriters and static binary rewriters. Dy-
namic binary rewriters rewrite the binary during its execution. Ex-
amples are PIN [16], BIRD [18] and others. None of the dynamic
binary rewriters found produce high-level compiler IR. Examples
of existing static binary rewriters include ATOM [13], PLTO[19]
and UQBT [8]. None of those binary rewriters employ a compiler
level intermediate format, like LLVM IR or similar; rather they
define their own low-level custom intermediate format. Theydo
not detect high level features such as floating point stack variables,
register arguments to functions and data types.

Boomerang [12] is an open source decompiler. It has very lim-
ited capabilities and cannot handle large binaries. Register argu-
ments has to be specified manually. It does not detect any float-
ing point stack operations. Zhang et al. present a techniqueto re-

0

0.2

0.4

0.6

0.8

1

1.2

a
st

a
r

b
zi

p
2

d
e

a
lI

I

g
cc

h
2

6
4

re
f

h
m

m
e

r

lb
m

li
b

q
u

a
n

t

m
cf

m
il

c

n
a

m
d

o
m

n
e

tp
p

p
e

rl

p
o

v
ra

y

sj
e

n
g

so
p

le
x

F
a

ls
e

 P
o

si
ti

v
e

s
(N

u
m

.
o

f
R

e
g

s)

Arguments Returns

Figure 6. Accuracy of register arguments and returns

0

100

200

300

400

500

600

700

800

0 500000 1000000 1500000

T
im

e
 E

la
p

se
d

 (
se

co
n

d
s)

Assembly Instructions

Figure 7. Scalability of variable and type detection

cover function arguments and returns from executable [22].Their
technique is similar the brute force technique described insection
4 which leads to imprecise results. Another technique recovering
function prototypes is presented in [9]. It defines a language that
can be used to specify machine independent calling conventions. It
depends on ABI standards to recover the calling conventions.

REWARDS [15] presents a dynamic type recovery technique;
TIE [14] shows better precision than REWARDS. We already com-
pared to TIE [14] in our results. A technique to automatically re-
construct data types from binaries is presented in [10]. It is used in
a tool that aims to produce C code from binaries; however no ac-
tual C code generation is demonstrated. One main disadvantage in
their work is they do not track memory. As we have shown, track-
ing memory is very important in identifying accurate types.The
analysis they produce is intraprocedural which limits its accuracy.
Their algorithm is used by Torshina et. al. [21] in another attempt
to reverse engineer data types in a tool named TyDec for program
decompilation. An early work on type construction from binaries
is by Mycroft [17]. It tries to construct C code from binarieswith
correct type information. However, it does not actually show results
producing C code. The algorithm does not track memory locations
and it is not clear if it can produce valid IR or C output code.

We are not aware of any work done to recover floating point
stack variables except Hex-Rays [1]. Hex-Rays produces inline as-
sembly in case it cannot resolve the variables which is not accept-
able for our goal. As far as we know, their work is not published.

8. Conclusion
This paper shows how an executable can be represented by a com-
piler IR with source code level variables, data types and function
prototypes. The analysis we present in this paper is scalable to large
executables which makes it more practical than current techniques.
The obtained high level IR is guaranteed to work correctly for com-
piled executables. The schemes are shown to work on executables
containing up to million instructions.

References
[1] Idapro, Hexrays.http://www.hex-rays.com/idapro/ .

[2] The LLVM Compiler Infrastructure. URLhttp://www.llvm.
org .

[3] K. Anand, M. Smithson, K. ElWazeer, A. Kotha, J. Gruen, N.Giles,
and R. Barua. A compiler-level intermediate representation based
binary analysis and rewriting system. InEuroSys, 2013.

[4] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86
executables. InCC, 2004.

[5] G. Balakrishnan and T. Reps. DIVINE: Discovering variables in
executables. InVMCAI, 2007.

[6] R. Barua and M. Smithson. Binary rewriting without relocation infor-
mation, May 24 2010. US Patent App. 12/785,923.

[7] J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary
code extraction and interface identification for security applications.
In NDSS, 2010.

[8] C. Cifuentes and M. V. Emmerik. UQBT: Adaptable Binary Transla-
tion at Low Cost.Computer, 33(3):60–66, Mar. 2000.

[9] C. Cifuentes and D. Simon. Procedure abstraction recovery from
binary code. InSoftware Maintenance and Reengineering, 2000.

[10] E. Dolgova et al. Automatic reconstruction of data types in the
decompilation problem.Programming and Computer Software, 35:
105–119, 2009.

[11] K. Elwazeer, K. Anand, M. Smithson, A. Kotha, and R. Barua.
Recovering function boundaries from executables. Technical
report, 2013. URL http://www.ece.umd.edu/ ˜ barua/
function-boundaries.pdf .

[12] M. Emmerik and T. Waddington. Using a decompiler for real-world
source recovery. InWorking Conference on Reverse Engineering,
2004.

[13] A. Eustace and A. Srivastava. ATOM: a flexible interfacefor building
high performance program analysis tools. InProceedings of the
USENIX 1995 Technical Conference Proceedings, TCON’95, 1995.

[14] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled reverse engi-
neering of types in binary programs. InNDSS, 2011.

[15] Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data
structures from binary execution. InNDSS, 2010.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation.SIGPLAN Not.,
40:190–200, June 2005.

[17] A. Mycroft. Type-based decompilation. InProceedings of the 8th
European Symposium on Programming, 1999.

[18] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh. BIRD: Binary Interpre-
tation using Runtime Disassembly. InCGO, 2006.

[19] B. Schwarz et al. PLTO: A Link-Time Optimizer for the Intel IA-32
Architecture. InIn Proc. 2001 Workshop on Binary Translation, 2001.

[20] M. Smithson, K. Anand, A. Kotha, K. Elwazeer, N. Giles, and
R. Barua. Binary rewriting without relocation information. Techni-
cal report, 2010. URLhttp://www.ece.umd.edu/ ˜ barua/
without-relocation-technical-report10.pdf .

[21] K. Troshina, Y. Derevenets, and A. Chernov. Reconstruction of com-
posite types for decompilation. InSource Code Analysis and Manipu-
lation (SCAM), 2010.

[22] J. Zhang, R. Zhao, and J. Pang. Parameter and return-value analysis
of binary executables. InCOMPSAC, 2007.

http://www.hex-rays.com/idapro/
http://www.llvm.org
http://www.llvm.org
http://www.ece.umd.edu/~barua/function-boundaries.pdf
http://www.ece.umd.edu/~barua/function-boundaries.pdf
http://www.ece.umd.edu/~barua/without-relocation-technical-report10.pdf
http://www.ece.umd.edu/~barua/without-relocation-technical-report10.pdf

	Introduction
	Analysis and Rewriting Framework
	Decoding the floating point variables
	Function Prototypes Recovery
	Variable and Type Recovery
	Best Effort Static Variable Recovery
	Data Type Recovery

	Results
	Variable and data types detection
	Decoding the floating point stack
	Register Arguments and Returns

	Related Work
	Conclusion

