Scalable Variable and Data Type
Detection in a Binary Rewriter

Khaled EIWazeer Kapil Anand

Aparna Kotha

Matthew Smithson ajeRv Barua

Electrical and Computer Engineering Department, Unitgis Maryland College Park, MD, 20742, USA
{wazeer,kapil,akotha,msmithso,barua} @umd.edu

Abstract

We present scalable static analyses to recover varialdestypes,
and function prototypes from stripped x86 executableshvit
symbol or debug information) and obtain a functional intedin
ate representation (IR) for analysis and rewriting purpo$aur
techniques on average run 352X faster than current tecbsignd
still have the same precision. This enables analyzing ¢ablas as
large as millions of instructions in minutes which is notgibge us-
ing existing techniques. Our techniques can recover iasadd|o-
cated to the floating point stack unlike current techniqWéshave
integrated our techniques to obtain a compiler level IR thartks
correctly if recompiled and produces the same output asniet i
executable. We demonstrate scalability, precision ancectoress
of our proposed techniques by evaluating them on the complet
SPEC2006 benchmarks suite.

Categories and Subject Descriptors D.2.7: Software Engineer-
ing [Distribution, Maintenance, and Enhancement]: Restructuring,
reverse engineering, and reengineering

Keywords reverse engineering; binary rewriting; variable recov-
ery; type recovery;

1. Introduction

Reverse engineering binary executable code is commonptace
day, especially for untrusted code and malware. Agenciedi-as
verse as anti-virus companies, security consultants, favdesics
consultants, law-enforcement agencies and national iseegen-
cies routinely try to understand binary code. Existing $aich as
the IDAPro disassembler and the Hex-Rays decompiler [13,hel
with the latter producing (non-executable) C-like pseudisctext.
However, existing reverse engineering tools do not exisibit
eral desired characteristics. First, previous tools doafot to re-
cover afully-functional high-level code (similar to source code)
from executables. These tools neglect variables allocatethe
floating point stack and generate intermediate representédR)
containing incomplete interprocedural interfaces. Tlevered IR
is suitable for human understanding but does not capturedime
plete functionality of the input executable. Second, theyeither
imprecise |[1] or recover precise information at the cossmla-
bility. For example, DIVINE|[5], the most precise variable iden-

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI13, June 16-19, 2013, Seattle, WA, USA.
Copyright© 2013 ACM 978-1-4503-2014-6/13/06. .. $15.00

tification tool proposed in the literature, spends two howhile
analyzing programs of the order of 55,000 assembly instmst

Recovering a functional IR in a scalable and accurate manner
would be invaluable to security professionals. It wouldi#edhem
to write compiler passes to extract properties of intef@st.recov-
ered IR can be updated with insertion, deletion, or modificat
Running the updated rewritten program enables dynamicseur
level debugging techniques such as judiciously placed ptate-
ments, and many more.

Recovering functional IR is also valuable for legacy biaarfior
which the source code has been lost. It enables users to fiibug
such binaries, modify the functionality, optimize sucharies, or
even port them to new hardware systems.

In this work, we present static analyses that can recovaceou
level variable and type information from x86 binaries agéaas
millions of instructions in a few minutes. The produced mfia-
tion is as accurate as the current state of the art x86 binzal a
ysis systems. The recovered information is representedhigha
level compiler IR that is completely functional and prodsieecor-
rect rewritten executable when recompiled. Our staticrigples
combine functionality, precision and scalability; feasithat col-
lectively do not exist in today’s binary analysis tools.

Our methods also improve the scope of variable analysis and
type recovery in two ways. First, unlike current binary ssi
techniques, our recovery mechanisms are able to recogaize v
ables allocated on the floating point stack. Recognizindy saci-
ables is a hard problem in the presence of unknown indiretdt an
external calls. Recognizing floating-point stack variabeimper-
ative for obtaining a functional IR from executables.

Another way our methods improve the scope of analysis is
by accurately identifying all register allocated variablesed as
arguments and returns from functions. Most x86 binary aealy
will only identify memory allocated arguments| [4], but dotno
identify register allocated ones. This is acceptable wieenvering
pseudocode, but unacceptable when recovering functicods.c
Some methods perform either brute force techniques [22]atea
imprecise, or use dynamic analysis to detect argumentsetnchs
[7] which is precise but produces incomplete information.

This work presents a step towards a system that rewrites ex-
ecutables into a functional high-level program repregentaand
incorporates as much source level information as possitdescal-
able manner. We envision the need for such a system in various
security and binary analysis applications. This work has fti-
lowing contributions:

x It produces a correct and running IR that can be recompiled to
obtain a rewritten executable that works exactly the same wa
as the input executable.

EXISTING LLVM COMPILER

Output
binary

x86
backend

[LLVM Optimized

Cit fro;lt LLVM IR LLVM IR LLVM IR
Fortran en imization |

OUR NEW CODE

Input—{p| Binary reader
binary | | &

Output
C code

Vulnerabilities

Symbolic
Execution

L « Optimizations
LLVM (Parallelization,

Disassembler R Security)

x86 ISA
XML

Figure 1. SecondWrite Flow

x It presents algorithms for solving problems missed whila-an
lyzing executables like resolving floating point stack
and accurately identifying interprocedural interfaces.

x It presents a highly scalable mechanism for identifying-var

3. Decoding the floating point variables

In this section, we describe our technique to decode all tdatifig
point stack operations and represent them in higher levid asing
floating point variables, function arguments and functietums,
instead of the low level stack layout used in the assembly.

We begin by introducing the x86 floating point stack. The float
ing point hardware stack has a maximum height of 8 which means
there are only 8 physical floating point registers that camise
at any time. The names of those registers, as used by the &@dw
instructions, are dynamic and are relative to the currgnifahe
floating point stack. If we assume the fixed physical registenes
are: PST, - PSTr, then the assembly instructions will refer to
another set of nameST, - STr, whereST, always refers to the
register at the top of the stack. For example, if the heighthef
stack is one, the'Ty refers toPSTy. If the stack is full, then
STy refers toPST,. In general ST, is mapped taPST, where
y = TOP(I) — 1 — x whereTOP(I) is the stack height at instruc-
tion I and0 < y < TOP(I). Whenever a function returns a float-
ing point value in a register, it pushes the value on the figgtint
stack. Whenever a function takes floating point values asaegts
in registers, the caller pushes the values on the floating gtack.
Itis assumed thalOP(I) cannot be negative at any instructién

Decoding the floating point stack means mapping every assem-

ables and types which is orders of magnitude faster than cur- bly operand amongT, - ST into a corresponding IR register
rent analysis techniques. Our techniques do not rely onsymb amongP STy - PST. To do so in the IR, we declare the registers

or debug information to be present in binaries.

x It utilizes a compiler’s intermediate representation (IMYin
its internals which opens the domain of running existingseu
level analysis and optimization passes built up over dechgle
hundreds of developers.

PSTy - PSTr as local variables inside each procedure. It turns out
from the previous equations that we only need to identifyefary
instructionl, what is the correspondinBOP(I) in order to decode
the floating point operands successfully. This task is maatrbe-
cause of the existence of indirect and external calls.

If there is no indirect or unknown external call in the pragra

* It is evaluated and shown to recover accurate and precise in-i,q problem is trivial because we can traverse the contral @b
formation from C, C++, and F_ort.ran binaries obtained from o program, tracking the floating point stack height atgypeint,
the SPEC2006 benchmarks suite; compiled using two differen 5,4 set the value OFOP(I) at every instruction/ depending on

compilers in a reasonable amount of time.

2. Analysis and Rewriting Framework

Figure [1 presents an overview of SecondWrile [6], [3]; oue-ex
cutables analysis and rewriting framework. SecondWréedlates
the input x86 binary code to the intermediate format of th&/ ML
compiler [2]. The disassembler along with the binary readers-
lates every x86 instruction to an equivalent LLVM instrocti

A key challenge in binary frameworks is discovering whic-po
tions of the code section in an input executable are definitadie.
Smithson et. al. [20] proposespeculative disassembly, coupled
with binary characterization, to efficiently address this problem.
SecondWrite speculatively disassembles the unknownqusrtbf
the code segments as if they were code. However, it alsmsdtae
unchanged code segments in the IR to guarantee the cossahe
data references in case the disassembled region was pctatll

SecondWrite employbkinary characterization to limit such un-
known portions of code. It leverages the restriction thairetfi-
rect control transfer instruction (CTI) requires an absoaddress
operand, and that these address operands must appear théhin

the floating point operations observed. This analysis vatlwork
in the presence of indirect and external calls because wieehitw
such a call, we will not know what function is being called v
the height of the stack will be affected by this call.

We use a symbolic analysis scheme to solve this problem by
maintaining a symbolic valug; for every indirect and external
call : representing the difference of the floating point stack tieig
before and after the call. Sometimes we refer to that diffese
asSackDiff in the paper. After doing the symbolic analysis, each
TOP(I) will become a symbolic expression in terms of thies. We
build symbolic linear equations to solve faf;s. Once theX;s are
calculated;TOP(I) will be known for every instruction.

It is statically indeterminable to be able to decode the ifhgat
point operations correctly in all cases in the presence diféot
and external calls. In this work, we show that if we lay out som
assumptions, we can actually guarantee a correct and dmadti
representation of the floating point stack operations inasks that
adhere to those assumptions. Our assumptions are:

1. At control-flow join points, the floating point stack heighust
be the same for every predecessor basic block.

code and/or data segments. The binary segments are scanned f 2. At indirect and external calls, the floating point stackghe

values that lie within the range of the code segment. Thdthegu
values are guaranteed to contain, at a minimum, all of thiedod
CTl targets. More information on how we form functions anddu
tion boundaries using binary characterization is foundLil.[

Memory stack analysis is done for every procedure to detect i
corresponding memory arguments as explained.in [3]. Thie-tec
niques presented in/[3] along with [4] are used to split thesptal
stack into individual abstract stack frames. Global andkstegions
appear as arrays of bytes in the IR.

must be zero before the call.

3. Every indirect or external call can return at most a sirfiglat-
ing point value on the floating point stack.

The above assumptions are correct in compiled code in every
case in every compiler we are aware of. They are also true in
most hand written assembly code, but may not be always true in
theory. The justifications for the assumptions are as falof4)

If the stack height is not balanced at join points, any subset

floating point stack access will be indeterminable as it mégicess Unknown Symbolic Values :

different values depending on the path taken at run timeF¢®) X;, whereX; = StackDiff of indirect/external callsite
indirect and external calls, the behavior of their targetasually))

unknown to the compiler, and hence the compiler must assume Helper Variables :

they might use all the floating point stack registers, hendeas Y (F) = SackDiff of function F, whereF is an internal function

to clean the stack before such calls. We can state this asisump TOP(I) = top of the stack after executing instructidn

by saying we assume floating point registers are scratchtezgi I’ = the previous instruction td. At a basic block BB) entry, it is the
Theoretically, a compiler might know in some cases the biehav first instruction ofBB.

of the functions being called and may not clean the floatinigtpo
stack, but practically we are not aware of such a compil@rTf@]]]
last assumption above is coming from the fact that we arewatea Root functions "not called directly anywhere” as well aseingry point
of any calling convention that allows the return of more tloae function have entrfOP(I) = 0 where! is a NOP instruction inserted
floating point stack register from indirect calls and exsdsn atthe entry point of each of those functions.
We translate the above assumptions into the symbolic aralys Data flow rules :

propagation rules present in figure 2, explained as foll&ws.in-
ternal function calls, we use helper variab¥égF') to represent the
symbolic expression representi®tpckDiff of every functionF'.

Initial Conditions :

At every basic block BB) entry:
TOP(I) = TOP(I.), wherel,, are the terminators of the prede-

The executable is traversed in a depth first search mannméngta cessors of BB @

from the entry point function for the binary, and from furcts that For every instruction:

are never called directly in the code. Then we analyze thairgng I=push ..= TOP(I) = TOP(I') + 1

strongly connected components in the call graph. The assumsp I=pop..=

(1) through (3) above represent the symbolic equations@sl{1) i ,

through (3) in figure 2. The actual values &fs can only be zero if (TOP(I') = Xi) X = 1 ———(3)
or one because before the call, the stack height is zerodingao TOP(I) = TOP(I') — 1

assumption (2), and the call can return at most one valuediogp I=cal F =

to assumption (3). The height of the stack cannot go negatide

. if (F' is an external or indirect
hence the actual value of thé;s cannot be negative. ()

The symbolic equations represented by equations (1) throug TOP(I') = zero —————— (2)
(3) in figure 2 along with the symbolic unknowi$;s are trans- TOP(I) = X;
formed into a linear system of equations. To solve thosetens else

we employ our custom linear solver that categorize the éopusmt
into disjoint groups based on the variables used in evergtému

and then solve every group only if the number of equationgusk
to the number of unknowns. We keep propagating calculateesa

TOP(A) = TOP(I') where A is the first NOP instruc-
tionin F
Analyze F' to getY (F) = func(X1, ..., Xn)

to other groups until no more calculated values are presémdt TOP(I) = TOP(I') + Y(F)
of the X;s are usually solved using equation (3) in figure 2. T =return fromF =

The remaining unknowns are assumed to take a value; ot Y (F) = TOP(I') — TOP(A), A is the first NOP instruction
1 conservatively. This will be always correct because from ou in F '

second assumption above, the stack height is zero beforg eve
indirect and external call. In this case, if we declare bytakis that

a particular call modifies the stack height by adding one etgm - - -
this element will never be accessed. In this case, even i the Figure 2. Data flow rules used to decode the floating point stack
subsequent floating point stack operations, they have toyalaes

on the stack before reading them.

The floating point register arguments and returns are datlar
in the IR as follows: a) Whenever a function REQP(I) > 0 at its
entry point instructior?, the function is declared in the IR to take
as many floating point values as the valueT@P(I). They will
be passed as arguments and copied to the correct local legriab
according to the mapping we described earlier. b) Whenéier
or Y(F) are greater than zero at a call site, this call site will be
returning one or more floats in the IR and they will be copiethto
corresponding local variables in the callers accordinged©OP(I)
value at the call site.

VZ = return fromF = TOP(Z) = TOP(I')

rithm used by Balakrishnan et. al. [4] to identify memorywargents
[3]. Surprisingly, we did not find any related work that renages
correctly and accurately register arguments and returosrédog-
nizing register arguments and returns is acceptable if tla¢ig to
help human understanding of binaries (as for existing nthdut
unacceptable if the goal is to generate correct rewrittele ¢as for
our method.) Typical x86 codes have less register argunteats
memory arguments, but they still have large numbers of fegis
arguments especially for optimized executables.
A brute force algorithm for identifying register argumeatsd
; returns is to define the set of registers read without beiitiglized

4. Function Prototypes Recovery inside a procedure as arguments, and the registers modifatki
Detecting the complete and accurate set of function argtsnen a procedure and then later used at some of the call sitesiainget

and returns is essential in producing a high quality code ¢ha This technique will result in many spurious arguments sialte
run correctly if recompiled. If some arguments are missihg, registers which are saved and then restored back in a fun(stich
code will not work correctly in all cases. If more unnecegsar as callee saves) will be declared as arguments and returtisigo
arguments are identified, the code will run correctly, bull e function, which is not true. Further, this algorithm mighissisome
less understandable by users. arguments if not carefully implemented. For example, a @doce
We show how to accurately identify the register arguments an not accessing any register at all might be declared as taking
returns. Existing techniques show how to identify the exsattof register arguments, which may not be true since it might bimga

memory arguments. SecondWrite already uses a variant afghe a function which is taking a register argument.

We propose below an algorithm which identifies accuratdly al
register arguments and returns. Our algorithm is conseevsince
it will not miss any arguments. It is also accurate sincelngs out
unnecessary extra arguments in many cases.

The main challenge in being accurate and yet conservative is
that the stack locations used to save registers need todiettto
make sure they are only used for this purpose, thus allovioget
registers to be pruned from the arguments or returns. Thesstd
the register values at the beginning of the function shoatdidate
the loads used to restore them back. There should not be ey wr
to those stack locations in between. If those stack locatwe read
in the middle of a function, the corresponding registers tnings
declared as arguments.

Our register arguments and returns detection algorithroris-c
posed of five steps. 1) We assume all registers are argunm@nts t
every function and there are no register returns. 2) We declth
registers written to inside a function or any of its callespaten-
tial return registers. 3) We run our algorithm for detectsayed
locations by detecting the set of stores to the memory stadu&hw
are never loaded back except before the return from theitumct
We call those store instructiofeadStores since they will be even-
tually removed from the code. For each of the detected deaesst
we determine the corresponding saved register and reméneerit
the potential returns set. 4) We run our algorithm to propagfae
register arguments correctly and prune unused ones. 5) W pr
the unused return registers out. Next, we describe eachoggth
steps in details. Step 1 is trivial. We proceed from step two.

The second step in our algorithm is to detect the initial set
of potential return registers. The simple idea is that amyster
which is being written to inside a function is a potentialurat
register from this function. For example, if a functifmo is calling
functionbar , andbar is modifyingeax, thenfoo andbar will
be declared as potentially returniegx despite the fact that there
is no write toeax inside offoo . We do a post-order depth-first
search traversal of the call graph (which visits child nobefore
their parents) and propagate the set of potential returistezg
upwards in the call graph by looking for the written-to regis.
Whenever we find a call to a function, we add its potentialrretu
to the caller function potential returns. We handle reaursising
a work list mechanism such that whenever we detect a call to
a function which has not been analyzed yet, we add the caller
function back to the work list.

After detecting the potential returns, we add them to the IR
in every return statement inside every function. If morentbae
register is returned, we return a structure containing @thlzined
potential return registers.

The third step in our algorithm is to detect the callee saggs r
isters and exclude them from the list of potential returriac&
callee-saves values are saved to the memory stack, we nestha m
ory analysis technique to track the memory stack locationsre
they are saved. Tracking memory in executables is not akttask.
Our saved registers detection does not need a sophisticeed
ory tracking algorithm because it only needs to track staekory.
Neither heap nor global memory need to be tracked.

We modify the Value Set Analysis (VSA) algorithm proposed
by Balakrishnan et. al.[4] by removing global and heap memor
tracking, keeping only stack memory tracking. We also resrtbe
context sensitivity from the algorithm since it is not negde this
application. The resulting algorithm is less powerful fangral
memory tracking but is sufficient for this purpose.

As a quick summary of the VSA algorithm, it derives a con-
servative estimate of the set of addresses and integersvaliesy
memory location and register can contain at any programtpoin
Every set of values is represented as a strided intervalanlibver

Algorithm 1: The callee-saves detection algorithm

Input: A copy of the LLVM IR for a binary
Input: PotArgs: maps functions to their potential register arguments
Input: PotRets : maps functions to their potential return registers
Output: DeadSores : maps functions to the dead register stores
Output: PotRets : The input map after pruning saved registers
foreachreg € PotArgsdo
| Create a dummy registeéummy ; DummyRegs(reg) = dummy

end
ADDRS= ¢
foreach Function F do
foreach Instruction | in F do
if | = storereg, Ptr AND reg € PotArgsthen

if ValueSet(Ptr) = {address} (Singleton) then

| ADDRS=ADDRSU {(reg,address,l)}

end

end

© ® N O U W N R

=
S)

end
foreach (reg,address, I) € ADDRSdo
allocate a dummy pointddummyPtr ((reg, address)) at the
beginning of F
storeDummyRegs(reg) to DummyPtr ((reg, address))
end
foreach Instruction | in F do
if | is Unsafel nstruction(address) where (reg,address,X) €
ADDRSthen
19 | insertavolatile load fronDummyPtr((reg, address))
end
if | = store value, Ptr AND ValueSet(Ptr) D {address}
AND (reg,address, X) € ADDRSthen
22 | insert a storevalue to DummyPtr ((reg, address))
end
if | = load Ptr AND ValueSet(Ptr) O {address} AND
(reg,address,X) € ADDRSthen
insert I' = load DummyPtr ((reg, address))
for every use of | insert a cloned use of I
end

end

Run LLVM Memory to Register Promotion on AbummyPtr
Run LLVM Dead Code Elimination on F

foreach (reg,address, I) € ADDRSdo

if DummyPtr(reg, address) is deleted AND
DummyRegs(reg) has no uses OR only used in return
instructions then

33 | DeadStores(F) = DeadStores(F) U {I}

end

if DummyRegs(reg) has no uses OR DummyRegs(reg) is
used in all return instructions of F then

36 | PotRets(F) = PotRets(F) - {reg}

37 end

38
39

end
end

and upper bounds; and a stride. In our modified implememtatio
VSA, we only keep track of the lower and upper bounds.

Before we run the saved registers detection algorithm, wme co
vert the registers inside of each function into the SSA fofhis is
straight forward; indeed in our implementation LLVM alrgatbes
that. Our algorithm works on a temporary copy of the IR.

Algorithm[d detects the dead stores used to save registdrs an
prunes those saved registers from the potential retursteggiet.
Lines[8 through IR in the algorithm collect the addresseshen t
stack that are used to store register values. For each of s
dresses, a simple memory liveness analysis is being cetiust
ing standard memory-to-register promotion and dead codg-el

nation compiler passes (both these passes are alreadgldwait
LLVM). Lines[13 througHIb create a dummy memory location in
the IR for each pair of address and register identified. Weallyi

Regarding external calls, they are treated correctly byatgo-
rithm in all compiler generated code where the external tianc
has a standard compiler calling convention; adecl, fastcall, this-

store a dummy value we create to each one of those memory loca-call, stdcall and others. Some external functions like standard C and

tions. Lines IF through 28 examine the uses of every addsisg u
VSA. At every possible read of an address, we insert a load fro
the dummy memory location we create. At every possible write
to that address, we insert a store to that dummy memory totati
of the stored value. After that, we run the memory-to-regigto-
motion compiler pass again on those memory locations. lginal
lines[31 through 38 determine the final set of dead storeself t
dummy memory location is promoted successfully to registand
the only use of the dummy value is at the return then it is saned
can safely be removed from the potential return. The coomsp
ing initial register stores are declared to be dead in thée cki the
same previous conditions occur and also there are otheotities
dummy value, then the register is removed from the potergial
turns, but the initial store is not dead and is considerealkuse of
the register; i.e. the register becomes an argument.

The Unsafel nstruction(address) functions appearing in ling_18
in the algorithm is responsible of deciding whether therirgton
may have side effects which can potentially access abdtess.
External calls where any stack address appears in the vatae s

of one of the arguments are considered unsafe as they may do

arithmetic on those addresses and potentially read fromrive w
to ouraddress. An example of this behavior imemcpy, strcpy

and other string manipulating functions from the standalith/@ry.
Some external functions are pre-identified safe and knowriano
do arithmetic on pointer arguments. For example, we parsedo
strings ofprintf , scanf and similar functions and in some cases
we can prove those functions are safe.

After detecting the dead stores used to save registers and pr
ing the callee-saves from the potential returns, we protestep
four which identifies the actual register arguments. Weetrsa the
call graph of the executable in post-order depth-first $etraver-
sal, which ensures child nodes are visited before theimparé&or
each potential register argument inside a function, weadedt as
an argument if and only if we see a “real” use of this regigtehi
function. If a register is used in a store instruction amdrgdead
stores identified by algorithid 1, the store is not consideredal
use. Uses in calls are only considered “real” if the calléesahe
register as an actual identified argument. A work list medmn
is maintained to handle the dependencies between funcritis
nodes that link multiple SSA versions of the same registemai
considered uses and are tracked. Returns are not consideded
uses because if the return is the only use of a register, there
need to pass it as an argument. Propagating the actual reghn
isters (step 5 in our algorithm) is done in a similar way to ¢he
above except that it works on functions in the forward cadipgr
order and looks for uses of return values at call sites.

The correctness of our register arguments and returnsitgor
is guaranteed for internal functions. The reason is that tag s
our algorithm initially by having all registers as argungnand
then remove those which are not really used. For returnstave s
the algorithm by adding all registers that are written tddasof
a function or one of its callees, we then remove the ones which
are unused at call sites. The correctness in the presenndicgat
calls, external calls and call backs is described below.

Our algorithm runs the same way on indirect calls and is cbrre
At every indirect call, SecondWrite inserts a call translditinction
that checks the value of the function pointer and calls theeeo
sponding IR function accordingly. In this case, this cadhslator
is treated the same way as any normal function in this alyorit
under the assumption that the call translator will call a§gible
target functions.

C++ libraries are known to SecondWrite; hence our algorittith
know from the prototypes what registers are needed pasBong.
the unknown prototypes, we pass all registers that formmianof
all the possible known calling conventions, and return afigible
returns from the same union. This is not efficient, but withguice
correct code under the above assumption. We insert assembly
structions before the external call to make sure we passattieat
register values from the IR to the corresponding physigister in
hardware, and copy the physical returns into the correctgfisters
after the call. Only if the external call has a non-standamhgiler
calling convention is when we might not be able to handle it co
rectly. We never experienced any such external call in altested
programs.

5. Variable and Type Recovery

In this section, we present our techniques to recover sdave
variable information from executables, and then presemntivith
meaningful data types in the IR. Our techniques focus only on
memory allocated variables. Register-allocated vargaloien be
handled after detecting register arguments and returms) sy
compiler liveness analysis that detects a variable foryelige
range of a register in the executable.

Variable and type recovery from executables is a hard pnoble
because symbol tables are absent. Every memory-allocatéd v
able access in the source code is represented by a memoey stor
or load in the executable. Those memory accesses are either d
rect accesses to locations represented by constant agfslressn-
direct memory accesses to locations represented by sornstereg
value. Direct memory accesses can be used to infer variafae i
mation by examining the constant memory address being sedes
but indirect memory accesses are unknown accesses and nezd m
advanced memory analysis to reveal the underlying memagylo
tions. That is why pointer analysis is important while remang
variables and data types from executables since it revds ave
the possible memory locations an indirect memory refereace
possibly access.

Researchers in this field know this and the best known variabl
identification technique from executables (DIVINE [5]) esen
advanced memory analysis technique called value set andds
which is a generalized form of alias analysis. DIVINE prdsen
accurate variable identification that detects 88% of the orgm
allocated variables in executables. The problem with DIFIN
that it is not scalable and requires a very long time to amagzn
small programs. Our aim is to present techniques with theesam
accuracy as DIVINE, but run orders of magnitudes faster.

Our key insight that enables scalability is that efficieniatle
detection and type recovery do not require a sound pointdysis.
Unsound pointer analysis usually means incomplete poinsets.

As an example, if variable points toy andz, an unsound pointer
analysis might report points toy only. Usually unsound pointer
analysis is unacceptable, but variable detection fromwtabdes is
a best-effort analysis and no method claims to detect 1008beof
variables. If we are going to miss some variables anywayauss
of the nature of the problem we are solving, then we can seerifi
the soundness of the analysis at the expense of losing sarablea
information — as losing variable in the given example above, but
with the gains of having a practical analysis that scaled foel
large executables.

The correctness of the recovered IR, while missing some vari
ables due to the unsound pointer analysis, comes from thénfac
the relative ordering between variables in the memory laysu

storey, x (store value| V z € ALocs(PtSett)) :
y to locationzx of size PtSetg) U = PtSetf))
S) Variables: UpdateALocs (PtSet(, S)
V z € ALocs(PtSetf)) :
PtSetf)) U = PtSetg)
Variables: UpdateScalar (PtSat], S)
y=x PtSetf)) = PtSetf)
if z is a constanthen
PtSetf)) = PtSetf) >> 2
Variables:
if z is a constanthen
UpdateStructure (PtSed), z)
else ifz has SCEV bounds and stritleen
UpdateArray (PtSet), stride, bounds)

y = loadz (load loca-
tion z of size S to y)

y=x+z, PtSetf) is
not empty

_ VX E L]
A=call foo (argi, ...,arg,)
foo has the known prototype: segype(zrgz, ’f}/pez)
retType foo (typei, ...,typey) setTyped!, retType)
A=BopC
op S {+7 % /7 %7 >>7 <<}
op has typeopType _ z;gzg:){A’ B,C},
A, B, C has empty points-to sets
A=loadB unifyType(4,
storeA, B ALocs(PtSet3)))
op1 = ¢ (op2, ...,0pn) unityType@op1, ...,
op1 = typecasbp, to type opn})

Table 1. Points-to sets propagation and variable detection rules

maintained in the recovered IR. For example, if we detectitwo
teger local variables at offsets 0 and 20 on a stack framezef si
24 bytes, we will lay out those variables in a structure whiels
the following three members: a) An integer in the range [(b3A
generic array of bytes in the range [4-19]. ¢) An integer erdnge
[20-23]. Preserving the layout of the variables in such acstire
maintains the correctness of any indirect memory acce$ssod-
gion. The arrays inserted fill the unknown gaps between biasa
and maintain the memory layout. This representation hehge
standing what variables are detected along with their tyaed at
the same time maintains the functionality of the rewrittesgoam.
We introduce the concept of a best-effort pointer analygiere
the identified points-to set of each pointer may not be cotaphait
we terminate the analysis in a certain amount of time neetgtis
to prevent it from taking too long even before it convergesisT
analysis is not correct given the usual criteria for comess, but
suffices in the way we use it to identify as many discrete Wéem
as possible. Our best-effort pointer analysis is a flow andesa
insensitive data flow analysis that has the following prapsr

x|t limits the cardinality of the points-to sets to a fixed nuanb
x It does not track interprocedural information via indireatls.
x The number of analysis iterations is set to a fixed number.

Having the above relaxations makes our analysis much faster
an extremely small loss in precision. The intuition behihis s
as follows: a) A flow and context sensitive pointer analysisidt
needed since the variables usually have the same size amdhtyp
all flows and contexts of a program. Some exceptions to thighmi
happen which is not common in the programs. b) Limiting the ca
dinality of points-to sets does not affect the precisiort thaich
since only few variables will have large points-to sets. QpRa-
gating interprocedural information through indirect sallill only
affect functions which are only called indirectly. Thosedtions
are still analyzed, but their arguments will have unknowimtssto
sets. Given that there are relatively few such functionsceceta-
bles, skipping their arguments propagation is not a big ksisim-
iting the total number of iterations will only affect longehains
of pointers. For example, the first iteration will alwayseal/some
pointers. The second will reveal two-level (double) paist&ubse-
quent iterations reveal more pointer levels. Usually mastables
do not have more than four level pointers, which means suleseq
iterations will only reveal very little information.

5.1 Best Effort Static Variable Recovery

We show in this section how a simple best-effort pointer wsial
can be used for identifying variables. This pointer analgs$iould
be suitable to run on executables where no variables yetifiden

Table 2. Typing rules

ecutables like' |4] to fit our needs, but we show a simpler aigly
with similar precision and much better scalability.

Before we begin the analysis, we identify all base memory re-
gions in the executable. An executable has three base memory
gions. 1) The global memory region where global variables ar
located. 2) The stack memory region where local variablsilén
functions are located. Stack regions are allocated at thimhieg
of a function and deallocated at the end of the function. Be&co
Write already represents those as large arrays in everyifun@)
The heap memory region where dynamically allocated vaetahte
usually located. Those are identified by detecting callsibzfions
like malloc andnew in the executable.

Every detected memory-allocated variable is representeahb
abstraction called\Loc which stands for Abstract Location. The
name is similar to the name used by DIVINE [5]. Ahoc contains
an offset inside a base memory region and a size represehtng
variable size. Variables allocated to registers are repites by IR
symbols which represent the SSA form of those registers.

Our pointer analysis conservatively assumes that evepctiat
variable can be a pointer. We assign points-to sets to ewry |
symbol and detected ALoc. When the analysis is done, thalactu
pointers are identified by tracking if the correspondingnpsito
sets are not empty.

We implement the points-to sets using the efficient LLVM
sparse bit vector data structure. For every base memorgrregi
we assign it a series of unique bits where the number of bitalsq
the size of the region in bytes. If the size of the base memery r
gion is not known (usually in heap allocated arrays), we mgsu
an arbitrary size. This allows us to detect variables wifeeif up
to that size. Whenever an access is detected beyond thataybi
size, we do not track it. This is an important part of our heffdt
analysis that allows us to recover a subset of the varialsiase
sized base memory regions instead of totally giving up omthse
the case in DIVINE[[5]. Whenever a symbol or an ALoc points to
some variable in a certain memory region, the bit corresipgnit
the starting address of the variable will be set to one. Thebar
of bits set to one equals the number of variables pointed ta by
symbol or an ALoc.

Table[d shows our detailed propagation rules for the bésttef
pointer analysis as well as for detecting the variables.educe
the following definitions to ease the understanding. 1) RiSe
takes an ALoc or an IR symbat and retrieves its points-to set
‘bit-vector'. 2) ALocs(r): takes a bit-vectox and retrieves the set
of ALocs starting at the addresses that correspond to thkitset
in the bit vectorz. 3) UpdateALocst,y): takes a bit-vector and
a sizey and creates ALocs starting at the addresses corresponding
to the set-bits in the bit-vectar with the given sizey. If existing
ALocs overlap the new ALocs, the new and old ALocs will betspli

We could have modified current memory analysis schemes on ex-into smaller ALocs to avoid the overlap. 4) UpdateStrudtuyg):

takes a bit-vector: and a numbey. It defines a set of structures
starting at the addresses corresponding to the set-bitseirbit-
vectorz. Each structure has its last member at offséta structure
already starts at one of the starting addresses, its lasbereffset
will be updated with the maximum of the existing offset and th
new one {). 5) UpdateArrayt,y,z): takes a bit-vectog, a number

y representing a stride, and another numberepresenting the
upper bound of the array. It defines arrays starting at theeadds
corresponding to the set-bits in the bit-veciorEach array has a
maximum sizez. The arrays will be declared to have an element
sizey. Existing arrays will be merged with the new declared ones
and the element size will be set to one if overlapping arrayseh
conflicting element sizes.

Here we describe briefly the propagation rules in téble 1. For
a store instruction, the points-to sets of the ALocs poiritetly
the pointer operand will be unioned with the points-to sethef
value stored. This is called a weak update in the domain afteoi
analysis. A load will set the loaded value points-to set tatster
is pointed to by the pointer operand. Stores and loads vathter
ALocs as they are resolved using the UpdateALocs functien de
scribed earlier. For pointer arithmetic, the points-tossetll be
shifted right according to the positive constant addedhéf ton-
stant is negative, the shift will become to the left. Addingam-
stant to a pointer is a hint about the existence of a structiiere
the pointer address is the start address, and the conspaaseats
one field offset inside the structure. We use this hint andadec
a structure identified by the starting address and the lastbrae
offset. The structure’s last member offset might be updatesdib-
sequent pointer arithmetic operations that start from dnessbase.
The structure’s last member offset will eventually be theximaim
observed constant that was added to the pointer in the progra
Adding a non-constant value is an indication that an arragtex
An array will be declared in this case. We use the Scalar Ehdoiu
(SCEV) analysis by LLVM to deduce the bounds and the stride of
the arithmetic and use this information to describe theyalfauch
information is not present, we do not declare an array.

The more pointer analysis rounds done, the more ALocs,-struc
tures and arrays are identified in all base memory regionseMo
pointer analysis rounds help identifying multi-level pirs since
the first round will always reveal single level pointers. Haeond
round will propagate the points-to sets for those ALocs dediify
their points-to sets leading to the identification of twodkepoint-
ers. More rounds will reveal more levels.

After all iterations are done, collected information abatrays
gets resolved. For every base memory region, we fill in the bap
tween ALocs using arrays. The bounds and stride informatien
available from our earlier propagation. If no bounds arelabke,
previously defined ALocs are used as bounds. If no stridernimde
tion is available, a stride of one is used which means theyasra
an array of bytes. Overlapping arrays are combined into aygeb
array as described earlier.

At the end of this process, a structure hierarchy is creaasdd
on the structure information calculated for every base nmgnmes
gion. Using the starting and ending offsets previouslywdaked for
every structure, we construct nested hierarchy structWeslefine
inner and outer structures such that any outer structuré have
its starting address less than any starting address of atgdchan-
ner structure, and its ending address larger than any eadishgss
of any nested inner structure. A straight forward algoritisrem-
ployed to produce this hierarchy.

5.2 Data Type Recovery

Data type recovery aims at representing every symbol in khe |
with a meaningful type. It declares a map between every symbo
the IR and the corresponding detected data type. It usesdpgo

rewrite the complete IR such that the instructions use thectied
types instead of the generic types that are used by SecoteWri

Without integrating type recovery with some pointer analys
detected types will be less accurate because of two readpns:
Instructions like memory loads and stores will usually béypad
since there is no memory tracking possible. 2) Multi-leveingper
types will not be detected because there is no way to traagk the
without having some sort of pointer analysis.

To achieve the goal of typing memory accesses and IR symbols;
and detecting multi-level pointer types, we integrate astkeffort
pointer analysis and variable recovery techniques dest@ove
with our type recovery system. Any other pointer analydis [£]
can be theoretically used, but will be orders of magnitudevet
which makes it less practical in large executables. Thahés t
disadvantage of TIE_[14] which is the state of the art bingpet
recovery technique.

Integrating our variable identification system with typeaeery
makes the type recovery simpler because it will need onlgverc
scalar types like integers, floats and doubles. Structurésigays
are detected as part of the variable identification. A poiigtele-
tected if the points-to set of the corresponding ALoc or IRbyl is
not empty. In this case, we get the ALocs pointed to by thattpoi
and type them according to our rules. We keep doing this faydo
pointer chains as needed.

Tablg[5.1 shows the most important typing rules we have.& her
are two main type sources. a) Known external function cétks |
standard C/C++ library calls. For those, we set the typesinfah
arguments passed to be the same as the known argument types fr
the prototypes and we do the same thing for the return value. b
Arithmetic operations with non-pointers: in this case tipetis
deduced from the semantics of the operation itself — whetiean
integer or a floating point operation —. We use the funcseifiype
to update the type of the symbol or the ALoc in the type map we
declare. For pointer types, we type the ALocs representeithdy
points-to sets of the corresponding variables.

For the other operations in the table, we propagate the types
using the functiorunifyType. This function attempts to set the data
type of all the given symbols and ALocs to be the same. At least
of the symbols or the ALocs given to that function should heety.
Whenever this function finds conflicting types, it gives ugd does
not update any types. It is used for copy operations like bgms
and phi nodes. Itis also used to propagate types through nyeaeo
shown in the rules for stores and loads. Interproceduratinftion
is propagated by unifying the formal and actual argumerngsgyat
acallinstruction. The return value data type at the calisitinified
with all the data types of all return values appearing in gteim
statements inside the called function body.

IR Correctness We are able to produce a correct and functional
IR even if we do not detect some variables and data types. To be
able to do that, we rewrite the IR using the following restoigs:

1. We use generic types for the symbols we could not deteestyp
for. The generic types will be wide enough to handle the lstrge
possible variable size that can be allocated to a physigadtes
in the hardware. Type casts are used as needed to convert the
generic type to actual types used in different operations.

2. We never assign a type to an IR symbol that conflicts with its
use. For example, if we see a 4 byte load, we will never type
the pointer as a pointer to short (2 bytes) even if our anglysi
detects it this way. Otherwise, the load will be wrong.

3. All variables identified for a certain memory allocatioiil\lwe
surrounded by a structure data type. The order of the vasabl
inside that structure is the same as the order they appear in
the original executable. The memory regions with no vaesbl
declared will be declared as arrays of bytes and will be plate

Application || Lang | # Inst # Proc | Time(s)
mcf C 3,357 36 0.15
Ibm C 7,740 30 0.11
astar C++ | 12,677 111 0.39
libquantum || C 13,800 73 0.41
bwaves F 19,002 22 0.87
bzip2 C 21,408 51 1.14
sjeng C 32,238 121 2.86
milc C 34,183 172 2.38
sphinx C 41,669 210 6.68
leslie3d F 43,432 32 2.78
hmmer C 85,981 242 5.29
namd C++ | 103,365 193 11.71
soplex C++ | 116,743 1523 20.09
zeusmp F 118,429 68 5.44
omnetpp C++ | 148,453 3980 59.58
h264 C 170,684 462 19.78
gobmk C 196,230 4188 35.34
cactus C 218,896 962 25.57
povray C++ | 288,957 3678 72.49
perlbench C 313,036 2183 67.89
gromacs C/IF 396,450 674 38.14
calculix CIF 506,725 771 54.79
dealll C++ | 766,555 15619 | 815.05
gcc C 934,292 6426 354.68
tonto F 1,303,359 | 2878 342.99

Figure 3. Benchmarks Table

the correct offsets inside those structures. This guagartteat
every unresolved pointer arithmetic will still point to tberrect
variable in the rewritten executable.

6. Results

In this section, we present the results showing the effectigs of
our schemes to identify variables and data types. We firsvsho
results on the overall variable and data type detection ga®c
and then we show specific in-depth results for floating poant-v
ables and function prototypes. We evaluate our technignebe
SPEC2006 benchmark suite which represents C, C++ and Rortra
executables using different optimization levels and céeabis-

ing two different compilers (GCC 4.3 for Linux, and VisualuSt
dio 2010 for Windows). We use a machine with an Intel Core i7
3.33GHz processor with 24 GB of RAM.

All the recovered code in all the experiments was recompiled
using LLVM 3.0, linked using GCC (Linux) and MinGW (Win-
dows), and then tested on the ref and test inputs providedhdoy t
SPEC2006 test suite. All rewritten executables workedesssfally
and produced the correct answer as provided in the test buitee
following sections, we show our detailed analysis results.

6.1 Variable and data types detection

In this section, we show the accuracy, scalability and ¢afithe
recovered variables and types and compare them to the $téie o
art. We compile C benchmarks from SPEC2006 with all debug-
ging information present and only use them for comparisoa. W
currently do not support reading complete debugging inédiom

for C++ and Fortran, yet we collected results on those beacksn
without comparing with source code.

The first experiment shows the quality of the recovered et
using the same metrics DIVINE|[5] used for comparison puegos
DIVINE [5] compares recovered variables in the binary toreer
sponding variables in the source code of those binaries ter-de
mine how well it did. It defines four variable categories assuit:

1) a matched variable is a recovered variable whose exactsid
position matches the variable from the source code. 2) An@se
fined variable is when the source code variable is dividemrimbre

recovered variables; for example, an integer identifiedasdhar-
acters. 3) Under refined variables which are recovered aopar
larger source code variable ; for example, an un-identifiedtgire
member. 4) An unknown variable is a variable which is not ohe o
those mentioned categories.

As shown from figuré 4, an average of 86% of the variables
are matched to the debugging information. We run this erpent
on programs ranging from 2,149 instructions (mcf) to 932,29
instructions (gcc). DIVINEL[5] reports an average of 88% chatd
variables on programs ranging between 252 to 5,371 ingingt
This shows that our schemes has comparable precision taNEVI
[5] but on much bigger benchmarks. The largest benchmark the
report variables results on deltablue with 5,371 instructions.

The scalability of the variables and type detection is shown
in figure[d. Our analysis scales linearly with program size fo
larger binaries. The detailed benchmarks sizes and andiys are
shown in tablé 3. The analysis takes around 6 minutes to zaaly
tonto which is a Fortran benchmark whose size is 1.3 million
instructions. The average analysis speed is 1.7 secondkdpen
instructions compared to 10 minutes per 10000 instructions
DIVINE. Thus our method is 352X faster than DIVINE on average
As mentioned before, the underlying reason for our muctefas
analysis is using an underlying best-effort pointer analyfsat is
not guaranteed to have complete points-to sets. We congieer
while recovering the IR to maintain correctness as we dismlis
earlier in sectiofi]5. dealll is the only program (out of 253ttHid
not scale well. dealll has very large number of procedurshasn
in table[3. The interprocedural data flow propagation toolstnod
the time in dealll. Still, it is finishing in around 13 minutgs/en
that it has 766,555 instructions.

In order to evaluate our type analysis techniques, we cleul
the same metrics that TIE [14] uses. TIE defines a type range fo
every variable recovered from the executable. An orderetg/ben
basic types is specified by a type lattice shown in their paper
The first metric they define is thdistance which is the difference
between the lattice heights of the upper and lower boundipgst
for each type range. The smaller tistance, the more accurate the
identified types are. The maximum distance is 4. They alsoelefi
their detected type range to loenservative if the actual source
code type falls inside the detected range.

In order to compare with TIE [14], we define a range of types
for every variable we detect where the lower bound is thelsing
detected type by our analysis and the upper bound is theigener
reg32_t type they define in their lattice. Based on that range, we
calculate our distances and conservativeness rates.

In addition to the distance and conservativeness, we define o
own metric that measures the precision of multi-level paist
detection. TIE metrics do not show how multi-level pointare
precisely typed since all pointer types have the same heigtiteir
lattice [14]. Our precision metric is defined as the rationssn
the correctly recovered pointer levels to the source lewitpr
levels. For example, if a variable has a double pointer teget
type (nt **) in the source code and we identified it as a single
pointer to an integeririt *), then we identified one level only out
of the three levels in source, which gu@inter to pointer to integer.

Our precision in this example will be 33%.

Figure[® shows the conservativeness as well as the precision
our detected types. The conservativeness rate is 96% ongaver
which is slightly higher than 90% that TIE reports. Our psémn
metric shows that we detect 73% of the pointer levels on geera
The average distance detected for our type recovery systdnT i
which is slightly better than the distance of 2 that TIE [1€ports.

Some of the larger binaries have lower type precision thaerot
smaller ones. This is expected since larger programs tehdue
more higher level pointers than smaller ones and those agdlys

100% - i3
kv Ew H B = H H B
g 80%
8 70% -
L 60% -
& 50%
L 40% -
5 30%
< 20% -
:\2 10%
0% T T T T
X
&}& § Q,b“é\ & ¢ & & &S .@QQ
Ny (\6‘ @Q S
B Matched m Over Refined Under Refined ~ m Unknown

R
100"
80
60
40

20

3 < X < & W\ Q &
\(;'\,\Q & Q)b((z ((\e QO(Q Q’bo &S F ‘_’@0
W Type Precision M Conservativeness

Figure 4. Accuracy of variable detection

hard to detect since they rely on the effectiveness of thenyidg
pointer analysis. The conservativeness and distance nesassed
by TIE do not capture this fact as it is clear from fighte 5.

It is worth mentioning that our variable and type recovery ar
integrated together in our system. The scalability showfigiare
[@ as well as the detailed analysis time results shown in Bible
capturing both the variable recovery and the type analysis.

6.2 Decoding the floating point stack

In this section, we show the effectiveness of our techniquien-
tifying floating point stack variables. We show the percgataf the
symbolic values that were not solved using our linear sohret
required the conservative assumptionXf = 1. As mentioned
in sectior_8, the main challenge while decoding the floatioigtp
stack is to identify whether an indirect or an external calniod-
ifying the floating point stack height. According to our asgi
tions, whenever we are not sure about an indirect or an exteafi
site, we decide conservatively that it is modifying the fiogtoint
stack by pushing a single value. We show how often we took that
conservative decision in different binaries.

All register allocated floating point stack variables wezeav-
ered correctly and all the rewritten benchmarks ran cdyreotd
produced correct answers. The conservative decision tid@&nnot
affect correctness as we explained in sedfibn 3. It only acttis
return values to some indirect and external calls and thightmie-
flect adding more return values to internal functions as .\Wigie
next results section quantifies this effect.

On average, we took the conservative decision 28% of the time
for non-optimized executables and 25% of the time for oéedi
ones. This means we are able to identify the exact floatingt poi
arguments and returns for more than 72% of the indirect atat-ex
nal calls on average. We are not aware of any work that idestifi
such information. Optimized binaries often have less wemthan
non-optimized binaries which translates to less floatingtsiack
usage and less number of times when the conservative deéssio
taken. The conservative decision is usually taken more aft€++
binaries because they have more indirect calls with moeggstr
line code and smaller functions than C and Fortran binawbsh
translates into smaller number of equations.

6.3 Register Arguments and Returns

In this section we show the accuracy of the detected register
ments and returns. We run our algorithm only for the C and C++

Figure 5. Accuracy of type detection

As shown from the figurigl 6, the average number of false pesitiv
arguments is 0.2 per function. The average number of falsigiy®
returns is 0.44 registers per function. These results decthe con-
servative floating point returns we declare in our analysisich
explains why the average number of returns is higher. C++ exe
cutables tend to have more indirect calls than C executaiésh
explains why they have more false positives.

In contrast to the work if {7], our method has three advarstage
(i) itis guaranteed to discover all arguments; (i) it hasfbdemon-
strated on a much larger programs; and (iii) it is orders ofjmia
tude faster. First, their method cannot guarantee full amye of
arguments and returns because of being a dynamic analygys. A
unused argument or return during an execution trace candsenhi
Missing arguments or returns is acceptable for human utedets
ing of binaries, but unacceptable for rewriting binariesc@d,
although our method produces slightly more false positihes
their method (0.2 vs. 0.15 false positive arguments pertiomy
it has been evaluated on far more functions (48,854 funstfon
our method, vs. just 13 functions for theirs.) Third, ourlgs@ is
much faster: for example, it takes only 30 seconds to anaywe-
gram like soplex which has 116,743 instructions containing 1,523
procedures and produces prototypes for all of them. In tese,
they need the same 30 seconds to only extéiab_Final which
is a single function of 67 instructions. This shows that cualgsis
is two to three orders of magnitude faster than their methothe
expense of a small loss in precision.

7. Related Work

Throughout the paper, we compared our work with the mosntece
work done in the areas of variable and type recovery [5, 14] an
function prototypes identification[7]. In this section, w&scuss
other work that is relevant to our techniques.

Binary rewriting has been considered by a number of re-
searchers. There are two main categories when talking abary
rewriters, dynamic binary rewriters and static binary iigsvs. Dy-
namic binary rewriters rewrite the binary during its exéonit Ex-
amples are PIN[16], BIRO [18] and others. None of the dynamic
binary rewriters found produce high-level compiler IR. Eyaes
of existing static binary rewriters include ATOM [13], PLT[2d]
and UQBT [8]. None of those binary rewriters employ a compile
level intermediate format, like LLVM IR or similar; rathehey
define their own low-level custom intermediate format. Tliey
not detect high level features such as floating point stadkbies,

benchmarks shown in tabfé 3 and present the average number ofegister arguments to functions and data types.

added register arguments and returns (false positives)néVer
had any false negatives in any of the binaries we tested. \el co
not compare Fortran binaries since currently, we do not atipp
reading Fortran prototypes from debugging information.

Boomerangl[12] is an open source decompiler. It has very lim-
ited capabilities and cannot handle large binaries. Regetgu-
ments has to be specified manually. It does not detect any float
ing point stack operations. Zhang et al. present a techriigue-

12 - M Arguments B Returns

i

o

< 1

o

5]

EO'S

E

206

wv

<

504

3

a 0.2

o

o

e 0

w
LN = 9w s 2 %5 O B oa T > w X
E.QEUEQECQTEQESCQ
wNwmﬂ'EegEEm‘q"JQ>ﬂ_{Q_
© a9 o g E <3 c c g v 9

c < 2 g o

Time Elapsed (seconds)

800 ».
700
600 -
500

400
300 T i

% *
0 M * ‘
0 500000 1000000 1500000
Assembly Instructions

Figure 6. Accuracy of register arguments and returns

cover function arguments and returns from executable [PRéir
technique is similar the brute force technique describeskition
[4 which leads to imprecise results. Another technique rexoy
function prototypes is presented In [9]. It defines a langutt
can be used to specify machine independent calling comrentlt
depends on ABI standards to recover the calling conventions

REWARDS [15] presents a dynamic type recovery technique;
TIE [14] shows better precision than REWARDS. We already-com

pared to TIEI[14] in our results. A technique to automaticad-
construct data types from binaries is presented in [103. Uisied in

a tool that aims to produce C code from binaries; however Ro ac
tual C code generation is demonstrated. One main disadyairia
their work is they do not track memory. As we have shown, track

ing memory is very important in identifying accurate typ&se
analysis they produce is intraprocedural which limits iswuacy.
Their algorithm is used by Torshina et. al.|[21] in anothéerapt

to reverse engineer data types in a tool named TyDec for anogr

decompilation. An early work on type construction from biea
is by Mycroft [17]. It tries to construct C code from binarieth
correct type information. However, it does not actuallywgiesults

producing C code. The algorithm does not track memory lonati

and it is not clear if it can produce valid IR or C output code.

Figure 7. Scalability of variable and type detection

[6] R. Barua and M. Smithson. Binary rewriting without reddion infor-
mation, May 24 2010. US Patent App. 12/785,923.

[7] J. Caballero, N. M. Johnson, S. McCamant, and D. Song. afgin
code extraction and interface identification for securippliations.
In NDSS 2010.

[8] C. Cifuentes and M. V. Emmerik. UQBT: Adaptable Binaryafsla-
tion at Low Cost.Computer, 33(3):60-66, Mar. 2000.

[9] C. Cifuentes and D. Simon. Procedure abstraction regofrem
binary code. IrSoftware Maintenance and Reengineering, 2000.

[10] E. Dolgova et al. Automatic reconstruction of data typa the
decompilation problem.Programming and Computer Software, 35:
105-119, 2009.

[11] K. Elwazeer, K. Anand, M. Smithson, A. Kotha, and R. Baru
Recovering function boundaries from executables. Teelnic
report, 2013. URL http://www.ece.umd.edu/ ~ barua/
function-boundaries.pdf

[12] M. Emmerik and T. Waddington. Using a decompiler forlvearld
source recovery. IMbrking Conference on Reverse Engineering,
2004.

[13] A. Eustace and A. Srivastava. ATOM: a flexible interfécebuilding
high performance program analysis tools. Pnoceedings of the
USENIX 1995 Technical Conference Proceedings, TCON'95, 1995.

We are not aware of any work done to recover floating point [14] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principledeese engi-

stack variables except Hex-Rays [1]. Hex-Rays producéseials-
sembly in case it cannot resolve the variables which is no¢ate
able for our goal. As far as we know, their work is not publshe

8. Conclusion

This paper shows how an executable can be represented by-a com

piler IR with source code level variables, data types andtfan
prototypes. The analysis we present in this paper is sealaldrge
executables which makes it more practical than currentigokes.
The obtained high level IR is guaranteed to work correcthcfam-

piled executables. The schemes are shown to work on exéesitab

containing up to million instructions.

References

[1] Idapro, Hexrayshttp://www.hex-rays.com/idapro/
[2] The LLVM Compiler Infrastructure. URLhttp://www.llvm.
org .

[3] K. Anand, M. Smithson, K. ElWazeer, A. Kotha, J. Gruen,®lles,
and R. Barua. A compiler-level intermediate representabased
binary analysis and rewriting system. EaroSys, 2013.

[4] G. Balakrishnan and T. Reps. Analyzing memory accesses36
executables. II€C, 2004.

[5] G. Balakrishnan and T. Reps. DIVINE: Discovering vateb in
executables. IWMCAI, 2007.

neering of types in binary programs. NDSS, 2011.

[15] Z. Lin, X. Zhang, and D. Xu. Automatic reverse enginagrof data
structures from binary execution. NDSS 2010.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loey S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building custordipeo-
gram analysis tools with dynamic instrumentatioSlGPLAN Not.,
40:190-200, June 2005.

[17] A. Mycroft. Type-based decompilation. IRroceedings of the 8th
European Symposium on Programming, 1999.

[18] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh. BIRD: Bigdnterpre-
tation using Runtime Disassembly. @GO, 2006.

[19] B. Schwarz et al. PLTO: A Link-Time Optimizer for the &itlA-32
Architecture. Inin Proc. 2001 Workshop on Binary Trandlation, 2001.

[20] M. Smithson, K. Anand, A. Kotha, K. Elwazeer, N. Gilespda
R. Barua. Binary rewriting without relocation informatiorfechni-
cal report, 2010. URIhttp://www.ece.umd.edu/ ~ barua/
without-relocation-technical-report10.pdf |

[21] K. Troshina, Y. Derevenets, and A. Chernov. Reconsitsncof com-
posite types for decompilation. Bource Code Analysis and Manipu-
lation (SCAM), 2010.

[22] J. Zhang, R. Zhao, and J. Pang. Parameter and retuie-eaalysis
of binary executables. IBOMPSAC, 2007.

http://www.hex-rays.com/idapro/
http://www.llvm.org
http://www.llvm.org
http://www.ece.umd.edu/~barua/function-boundaries.pdf
http://www.ece.umd.edu/~barua/function-boundaries.pdf
http://www.ece.umd.edu/~barua/without-relocation-technical-report10.pdf
http://www.ece.umd.edu/~barua/without-relocation-technical-report10.pdf

	Introduction
	Analysis and Rewriting Framework
	Decoding the floating point variables
	Function Prototypes Recovery
	Variable and Type Recovery
	Best Effort Static Variable Recovery
	Data Type Recovery

	Results
	Variable and data types detection
	Decoding the floating point stack
	Register Arguments and Returns

	Related Work
	Conclusion

