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Abstract—Securing multicast communications in 
Mobile Ad Hoc Networks (MANETs) has become one 
of the most challenging research directions in the 
areas of wireless networking and security. MANETs 
are emerging as the desired environment for an 
increasing number of commercial and military 
applications, addressing also an increasing number of 
users. Security on the other hand, is becoming an 
indispensable requirement of our modern life for all 
these applications. However, the limitations of the 
dynamic, infrastructure-less nature of MANETs 
impose major difficulties in establishing a secure 
framework suitable for group communications. The 
design of efficient key management (KM) schemes for 
MANET is of paramount importance, since the 
performance of the KM functions (key generation, 
entity authentication, key distribution/agreement) 
imposes an upper limit on the efficiency and 
scalability of the whole secure group communication 
system. In this work, we contribute towards efficient, 
robust and scalable, secure group communications 
for MANETs, by extending an existing key 
agreement (KA) scheme (where all parties contribute 
equally to group key generation) –Hypercube - to 
tolerate multiple member failures with low cost, 
through its integration with a novel adaptively 
proactive algorithm. We assume that the 
participating users have already been authenticated 
via some underlying mechanism and we focus on the 
design and analysis of a fault-tolerant Hypercube, 
with the aim to contribute to the robustness and 
efficiency of Octopus-based schemes (an efficient 
group of KA protocols for MANETs using 
Hypercube as backbone). We compare our algorithm 
with the existing approach, and we evaluate the 
results of our analysis. Through our analysis and 
simulation results we demonstrate how the new 
Hypercube algorithm enhances the robustness of the 
Octopus schemes maintaining their feasibility in 
MANETs at the same time. 

Index Terms—Key Management, Key Agreement, 
Hypercube Protocol, Fault-Tolerance, Octopus 
Schemes, Elliptic Curves Cryptography

I. INTRODUCTION
Mobile Ad Hoc Network (MANET) is a collection 
of wireless mobile nodes, communicating among 

themselves over possibly multi-hop paths, without the 
help of any infrastructure such as base stations or access 
points. As the development of wireless multicast 
services such as cable TV, secure audio and 
conferencing, visual broadcasts, military command and 
control grows, the research on security for wireless 
multicasting becomes increasingly important. The role of 
key management (KM) is to ensure that only valid 
members have access to a valid group key or can be 
reached and updated with a valid group key at any time. 
It is essential to develop a secure, robust KM scheme for 
multicast communications in MANETs. However, the 
characteristics of MANETs constitute the major 
constraint and challenge for the design of suitable KM 
schemes. We are dealing with dynamic, infrastructure-
less networks of limited bandwidth, unreliable channels 
where topology is changing fast. Nodes within the 
network may have limited capacity, computational and 
transmission power. Connections are temporary 
(mobility changes, battery drainage, poor physical 
protection) and unreliable. These constraints turn most 
of the existing protocols inefficient in MANETs: among 
other requirements, they need to catch up with the 
rapidly changing network topology, and deal with 
failures at any time during group key establishment.  
   Along with the requirement to design secure KM 
schemes that achieve better performance than existing 
ones (either for wire-line or wireless networks), the need 
for the KM schemes to handle successfully and tolerate 
with low impact network dynamics and failures 
(robustness) in a network with large number of nodes 
(scalability) is now equally important. 
   In an attempt to meet all these objectives, two novel 
hybrid KA Octopus schemes have been previously 
introduced and evaluated [6,19] in addition to the 
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original Octopus (O) [1]. Hierarchy is supported through 
the partition of a large key KA group to 2d subgroups of 
smaller size. Initially, each subgroup agrees on its own 
subgroup key, and elects a subgroup leader to handle KA 
locally within its own subgroup. Then, the subgroup 
leaders alone, representing their subgroups, interact 
among themselves and use the previously generated 
subgroup keys to agree on a global group key via 
Hypercube. Finally, the leaders distribute securely the 
group key to their subgroup. The following features of 
Octopus schemes have motivated interest to explore and 
extend them: a) their hierarchical framework through 
which they can tolerate network dynamics and be more 
scalable, b) a subgroup leader handling a relatively small 
subgroup is a feasible option in MANETs, as opposed to 
a single leader in centralized schemes handling a very 
large group, c) disruptions are handled locally at first 
within the subgroup, and then reflected to the whole 
group via low cost re-keying over Hypercube. 
    Hypercube constitutes the backbone or the core of 
Octopus schemes. It provides an orderly way of key 
agreement among nodes, in such a way that 
minimization of the total number of rounds required for 
the agreement, and therefore of the total latency of the 
process, is achieved. The protocols applied within each 
subgroup, even though they are not fault-tolerant overall 
in general, they can be made to tolerate failures with low 
overhead. The latter is also greatly attributed to the 
limited subgroup size and topological proximity of the 
subgroup members [6, 20]. This is not the case however 
with the application of Hypercube, and that is where one 
of the main vulnerabilities of Octopus schemes lies. 
Topological proximity cannot be assumed for the 
Hypercube parties, which could end up connecting any 
two subgroups, even if they are located in different areas 
in the network, possibly through a considerable number 
of relay nodes. Obviously, the underlying routing is 
required for these nodes to agree on a group key, 
resulting in significant extra communication overhead 
every time it is invoked. The basic principles of 
Hypercube mechanism do not exploit topological 
proximity of members for the communication exchanges 
required towards the generation of the group key. 
Rather, a pre-agreed schedule is used, based on some 
attributes of subgroup leaders, like their 
“normalized/hashed” IP addresses, or some simple IDs
that have been allocated dynamically beforehand to them 
in order to facilitate the generation of this schedule. 
Furthermore, for 2d subgroup leaders to agree on a group 
key via Hypercube, d rounds of key exchanges are 
required. In every round each leader selects a different 
peer to perform a key exchange. Thus, since each leader 
is supposed to connect with at least d other leaders, it is 
expected that not all of them can be in relative proximity 

to each other anyway. The dynamic characteristics of the 
network, that bring it up against frequent membership 
and mobility changes, also attest to the later. The current 
Hypercube version, efficient as it may be w.r.t. KM 
messaging and number of rounds, does not anticipate 
disruptions (dynamic changes, failures etc.), that occur 
all too often in MANETs. Upon failure at any point 
during KA, Hypercube must start over (from the 1st

round), burdening the network with significant overhead 
and latency. Extending Hypercube to tolerate failures 
with minimal overhead becomes critical for its own 
feasibility in MANETs, and for the feasibility of 
Octopus schemes in MANETs as well. 
   This paper introduces a novel algorithm towards a 
fault-tolerant Hypercube version included in Octopus-
based schemes, and provides comparative performance 
evaluation with the existing “reactive” approach [1,5]. 
Section 2 gives an overview of related work on robust 
KM. Section 3 gives an overview of the original simple 
scheme, and section 4 discusses how we define fault-
tolerance for our framework. In section 5 we introduce 
and describe our R-Proactive algorithm, and in section 6 
we sketch a proof of how Fault-Tolerance is achieved. In 
section 7 we discuss the significance of the algorithm. In 
section 8 we present the analysis of R-Proactive vs. a 
Basic scheme w.r.t. certain metrics of interest and some 
indicative results of the comparative performance 
evaluation conducted, and in section 9 we present the 
simulations set-up and our results. Finally, in section 10 
we conclude the paper. 

II. RELATED WORK

   There exist several KM proposals for secure group 
communications in the literature. Most of them address 
wire-line networks and cannot operate as such in 
MANETs. From the perspective of contributory
protocols (those in which equal member contributions 
are required for the generation of the group key), Becker 
et al. [1], derived lower bounds for contributory key 
generation systems for the gossip problem and proved 
them realistic for Diffie-Hellman (DH) based protocols. 
They used the basic DH distribution extended to groups 
from the work of Steiner et al.[2]. From their work,
GDH.2 is the most efficient representative of group DH 
protocols: it minimizes the total number of message 
exchanges. TGDH by Kim et al. [10], is a hybrid, 
efficient protocol that blends binary key trees with DH 
key exchanges. Becker in [1], introduced Hypercube,
that requires the minimum number of rounds. In [5], 
Asokan et al. added to Hypercube an algorithm by which 
a node that finds that its chosen partner in a given round 
is faulty, selects other partners until a non-faulty one is 
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found. This kind of fault-tolerance, although useful, is
only a subset of our own requirements in terms of
fault-tolerance. Becker introduced Octopus scheme as 
one that requires minimum number of total messages and 
then derived the 2d-Octopus that combined Octopus with 
Hypercube to a very efficient scheme that works for 
arbitrary number of nodes.  
   Centralized (non-contributory) protocols are based on 
a simple key distribution center (single point of failure, 
particularly in a MANET). The simplest and most 
fundamental representative is Group Key Management 
Protocol GKMP [9], in which a group leader shares a 
secret key with each member and uses it to communicate 
the secret group key to the associated member. The 
original Octopus uses a GKMP version within each 
subgroup. Logical Key Hierarchy protocol LKH [8], 
creates a hierarchy of keys for each member. Each group 
member is secretly given one of the keys at the bottom 
of the hierarchy and can decrypt the keys along its path 
from the leaf to the root. Evolution of the latter are: the 
Large-Group Key Distribution protocol ELK [21], 
designed rather for a stationary network, and OFT [7] 
that minimizes the number of bits broadcast to members 
after a membership change. The number of keys 
broadcast in this case, and the computational efforts of 
the members are logarithmic in the number of members.  
    There exist some more recent proposals for wireless 
ad-hoc networks. Even these schemes, do not seem to 
scale well or handle successfully the network dynamics. 
Some of these approaches rely on public key 
cryptography, which is very expensive for resource 
constrained nodes, or on threshold cryptography [14, 15, 
16,22], which results in high communication overhead, 
does not scale well, and presents security vulnerabilities, 
mainly due to the mobility of nodes. A different 
approach is based on probabilistic key pre-distribution 
[17, 18], which is a very lightweight method, designed 
for sensor networks, but has serious security 
vulnerabilities, and requires some basic infrastructure to 
handle mobility and membership changes (revocations). 
Y.Amir et al. [12,13], focus on robust KA, and attempt 
to make GDH protocols fault-tolerant to asynchronous 
network events. However, their scheme is designed for 
the Internet, and also requires an underlying reliable 
group communication service and ordering of messages, 
so that preservation of virtual semantics is guaranteed. 
Poovendran et al. [11], attempt to minimize the 
communication overhead w.r.t. to energy expenditure, 
for secure group communications. They utilize 
centralized tree key distribution schemes. The network 
topology is considered static, and there is no provision 
for adjusting the key tree structure to a dynamically 
changing network. It is shown that the optimal solution 
of their formulation does not scale with group size.  

In [6,19,20], Octopus-based KA protocols have been 
designed to provide robust and efficient KM for group 
communications in MANETs. The primary focus of this 
work has been the analysis and performance evaluation 
of the proposed schemes, in isolation from network 
functions that interact with the protocols (e.g. underlying 
routing). Also, factors that greatly affect the overall 
performance of these schemes, like the poor reaction of 
Hypercube to disruptions, have been ignored. Although 
some of the protocols appear promising, their evaluation 
under these assumptions and simplifications is not 
totally “fair”. Consideration of the above in the analysis 
and re-evaluation of those KA schemes, will shed more 
insight to their actual feasibility in MANETs, and will 
provide more realistic results. 

III. ORIGINAL HYPERCUBE SCHEME (OVERVIEW)
   Even though the Original Hypercube is well 
documented in our references [1,5], we give a more 
detailed and simplified description of its basic operation 
in this section, in order to make it easier for the reader to 
understand the sections that follow. 

Notation_1: Let B(x) = ax be the blinding of value x
(exponentiation of x under base a) and (x) = x mod n.

High level description: Hypercube is designed with the 
objective to minimize the total number of simple rounds 
required for the KA. In general, 2d parties agree upon a 
key within d simple rounds by performing pair-wise 
Diffie-Hellman key exchanges (DHKEs) on the edges of 
a logical d-dimensional cube. Every member is involved 
in exactly one DHKE per round. 2-party DHKEs 
constitute the basic module of Hypercube. Each member 
uses the intermediate secret key Ki-1 generated at the end 
of its 2-party DHKE in round (i-1), in order to compute 
through the current DHKE the intermediate secret key Ki

for round i. For the execution of the 2-party DHKE at 
round i, each member processes Ki-1 and sends its peer in 
the clear the value B( (Ki-1)).

Notation_2: Let SX (j) be the subset X of members that 
obtain the same intermediate secret key KX after round j.

DHKE: The execution of a pair-wise DHKE allows two 
nodes to securely agree on the same secret key at the 
presence of “eavesdroppers” even though they exchange 
contributions in the clear. DH relies cryptographically on 
the assumption that it is computationally infeasible to 
solve the discrete logarithms problem (hardness of 
DLP). A DHKE for parties v, t with secret values rv, rt

respectively includes the following steps: they both blind 
their secret values and exchange them. In the end, party 
v possesses (rv, tra ), and party t possesses values 
(rt, vra ), respectively. Party v raises its own secret to the 
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received value and generates the next secret value as 
follows: Kv =( )t vr ra = v tr ra . Similarly, party t generates 

the secret value Kt = ( ) tvr ra = Kv. Therefore, through a 
DHKE the parties agree on the same secret value.  

Hypercube Function: The 2d participants are identified 
on the d-dimensional space GF(2)d and a basis b1,…, bd

GF(2)d is selected to be used for the direction of 
communications per round. In every round, the parties 
communicate on a maximum number of parallel edges 
(round i, direction bi). For instance, during round j, party 
i could interact with party i 2j-1. During round i, each 
party v selects peer v+bi (different peer in every round) 
to perform a DHKE with. The selection of 2d-1 pairs per 
round, is based on a pre-agreed schedule established 
among parties before the start of Hypercube. As we will 
show next by induction, all parties share a common key 
at the end of the protocol.

1st round: All parties have agreed on the DH parameters 
that will be used (blinding operator a, modulo n). Every 
party v GF(2)d generates a random number rv and 
performs a pair-wise DHKE with peer  t = v+b1 using the 
generated values rv and rt, respectively.  
Any two members A SA(1), B SB(1), agree on the 
same key K(SAB(2)) = DHKE(K(SA(1)), K(SB(1))).
Similarly, members C SC(1), D SD(1),  agree through 
a DHKE on the same key K(SCD(2)) = DHKE(K(SC(1)),
K(SD(1))). So, before round 2, members have teamed in 
subgroups of two, with a common subgroup key. 

2nd round: Assume that according to the selected vector 
base b2 member A agrees on a key KAC with member C
and B agrees on another key KBD with D. After the end 
of the DHKEs of the 2nd round, for member A, C we 
obtain the secret key: KAC = DHKE(K(SAB(2)),
K(SCD(2))), for members B, D we obtain the key: KBD = 
DHKE(K(SAB(2)), K(SCD(2))).
Since KAC = KBD, all four members have computed the 
same secret key and belong to the same 2-cube 
subgroup, i.e. SX (4) = SABCD (4). If a similar schedule is 
applied for all the rest of members, 2d-2 subgroups with 
common intermediate secret keys of size four are 
generated. This is the end of the initial inductive step. 
Round i (inductive step i): Assume that after the end of 
round (i-1), 2d-(i-1) subgroups Sj(i-1), 1 j 2d-(i-1)) of size 
2i-1 are formed. Assume that all members in Sj(i-1)
acquire a common intermediate subgroup key generated 
after the end of DHKEs at round (i-1). The new pairs for 
round i will be selected in such a way that: x Sj(i-1),
a peer y St(i-1), 1 j, t 2d-(i-1)), must be selected. At 
the end of round i, after the DHKEs between all pairs 
from the two different subgroups, a new subgroup of 
double size is generated, denoted as  Sb(i), 1 b 2d-(i-2)).

Now, all members z Sb(i) (or z (Sj(i-1) St(i-1))
equivalently) obtain a new common subgroup key 
K(Sb(i)) = DHKE(K(Sj(i-1)), K(St(i-1))). Therefore, at 
round i, members of one subgroup j must communicate 
each with a different peer from another common logical 
(i-1)-cube t. In other words, members that acquire a 
common key from the previous round should use the 
same “logical” direction of communications during the 
following round. In order to coordinate communication 
direction for all i-subgroups or i-cubes for all rounds i,
so that all subgroups are engaged into communication 
exchanges at every round and no subgroup is selected 
simultaneously by two or more different subgroups 
during the same round, the need to select a basis in 
GF(2)d , as stated earlier, arises. This step completes our 
induction, and hence we have shown that after round d
all members agree on the same group key.

Scheme1: Hypercube with d=3

IV. REQUIREMENTS FOR FAULT-TOLERANT
HYPERCUBE

   Our objective is to achieve fault-tolerance for 
Hypercube when it is run in the dynamic infrastructure-
less environment of interest. Member disruptions and 
failures during group key establishment in Hypercube 
occur often in our studied framework. As already 
discussed, the impact of such failures on Hypercube is 
quite significant, particularly because topological 
proximity cannot be assumed for its participating 
members: the underlying routing protocol invoked and 
relays required increase the overall overhead incurred to 
the network even further. In the original Hypercube, 
member failures during group key establishment have 
not been anticipated neither from the perspective of the 
schedule of communication among members nor from 
the perspective of the security of the key generation 
algorithm as such. Whenever a failure occurs, almost 
everything must be re-configured and Hypercube starts 
from scratch (1st round). Even a relatively low failure 
rate increases considerably the number of rounds it takes 
the protocol to terminate (and consequently its latency), 
and offsets the total overhead incurred in the network. 
We would like to extend Hypercube to anticipate and 
handle member failures efficiently, in such a way that a)
the extra communication, computation cost and latency 
incurred in the network is maintained as low as possible, 
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and b) the minimum amount of the information that has 
been gathered up to the point of failure is lost.

   At the same time we want to preserve the following 
fundamental security properties with respect to the group 
key, that escort all secure KM protocols: Forward,
Backward and Group key secrecy.

Forward Secrecy: a passive adversary who knows a 
contiguous subset of old group keys cannot discover 
subsequent group keys.  
Backward Secrecy: a passive adversary who knows a 
contiguous subset of group keys cannot discover 
preceding group keys.  
Group key Secrecy: it is computationally infeasible for 
a passive adversary to discover any group key. 

   From this perspective, a member k that is no longer 
considered legitimate according to the group policy 
(misbehaving, evicted, faulty, disconnected) at any 
round during group key establishment must become 
unable to compute the final group key, even if it still 
receives all the blinded values of the rest of the parties 
(resumes from failure, re-connects to the group).  

  To better illustrate this with an example of eight nodes 
(scheme 1), assume that member B is evicted, and thus 
should be excluded from the final group key K =

ef ghab cda a a aa aa . The elements: , ,
ef ghcd a aa a aa a a are

exchanged in the clear among parties, and any member, 
including B may get hold of them. It is then easy to see 
that B that has contributed the initial secret value b could 
compute K via successive exponentiations. We want to 
alter K in such a way that B is unable to reconstruct it, 
while all the other members still contribute to it and most 
of the information already exchanged still remains useful

(setting K’ =
cd ef gha aa aa could be a solution - it 

excludes however member A as well). 
   The extreme approach to exclude member k from the 
final group key is to start over Hypercube from scratch. 
A more improved version is to freeze Hypercube in 
round t during which the failure was observed, and 
restart Hypercube only among the “polluted parties”, 
namely those that have so far interacted with member k
in any of the previous rounds. That way, a 2t-cube within 
the 2d-cube is restored first, and then the normal 2d-cube
execution resumes at round t. However, this reactive 
algorithm, denoted as Basic, results still in significant 
extra communication cost and number of rounds, 
particularly in cases where the node failure occurs near 
the final execution rounds.R-Proactive Fault-Tolerant 
Hypercube. 

A. Properties and Objectives. 

So far, Hypercube has been mainly used within the 
Octopus     framework in previous work. Membership 
changes (additions, evictions), failures and disruptions 
were always handled within the Octopus subgroups (1st,
3d steps in Octopus), and the changes were just securely 
propagated through Hypercube. It was either assumed 
that no failures occur during the execution of 
Hypercube, because the participants (subgroup leaders) 
were assumed to be powerful, trusted members with 
special capabilities (not generally true for the framework 
we consider), or if failures were assumed, Hypercube 
would start from scratch, or a version of Basic algorithm 
would be applied, with considerable overhead however 
(reactive approach). The R-Proactive Hypercube 
constitutes a hybrid adaptively proactive approach to 
anticipating and handling member failures in Hypercube 
at any time during group key establishment.  
   From the security perspective, our main concern is to 
maintain the property of Group Key Secrecy at the 
presence of disruptions. The properties of Forward/ 
Backward Secrecy bound to the membership changes are 
ensured by Octopus, that handles membership changes 
very efficiently. Hence, we want to ensure that after a 
Hypercube member is excluded from the protocol for 
any reason at any time during group key establishment, 
it is unable to compute the group key, even if it knows a 
contiguous subset of intermediate Hypercube keys and it 
has become a passive adversary. We want to avoid the 
expensive solution of starting over Hypercube with new 
initial information, in order to maintain its security. 
  In terms of efficiency, we want to explore ways to 
maintain the security of our scheme, without the need to 
start over the protocol from the 1st round whenever 
failures occur. Starting over the protocol, results in 
considerable routing and communication overhead, as 
well as considerable latency. Limiting the total number 
of rounds required for Hypercube to terminate at the 
presence of failures and reducing the combined routing 
and communication costs are our main objectives, since 
we decrease both the latency of the protocol and the 
corresponding routing and communication costs further. 
The less the number of rounds, the less often the 
underlying routing must be invoked, and the less the 
side-effects of routing on the standard communication of 
Hypercube (i.e. number of relays involved, discovery of 
new routing paths and maintenance of existing ones). 

B. Overview.

R-Proactive is a hybrid proactive algorithm that consists 
of two different stages, the proactive (1st stage), and the 
normal (2nd stage). The protocol still takes d rounds to 
terminate if no failures occur. The 1st stage extends until 
round R<d. The parameter R represents the level of 
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“proactive-ness” incorporated. It is dynamically adaptive 
and depends on the metrics we want to improve, and on 
the rate of failures observed in the network. The higher 
the rate, the higher R should be set.

1st stage: Participants relay additional shares for the 
DHKEs that result in each member executing more than 
one DHKE with its peer per round, for the first R
rounds. If one or multiple failures occur at this stage, 
Hypercube does not stall, and does not start over, but 
proceeds normally to the termination of this stage at 
round R. The multiple intermediate DH values that are 
computed by all members during this stage will be 
processed after round R. Members use the collected 
values to proactively compute multiple intermediate 
secret keys at this stage, each of which excludes one or 
more other members they have interacted with during 
the previous rounds. Thus, if any of a member’s peers 
fails, the member will select this key at round R from the 
available key pool it has computed, that excludes the 
faulty peers from the subgroup key computations so far. 
Peers that fail before round R have not effect on the R-
Proactive protocol other than determining which 
intermediate keys from the key pool formed at round R
will be used and by which members for the subsequent 
rounds. For peers that fail after round R, the protocol 
resumes from round R instead of round 1, after the 
designated members select the appropriate keys from the 
key pool, and use them for the subsequent rounds.  

2nd stage: The algorithm switches to the original 
Hypercube. After members select the designated keys 
from the key pool, they use them for the subsequent 
rounds, and perform a single DHKE with their peers for 
the rest of the rounds.

Next, we describe our algorithm in detail, we show that 
a) it correctly terminates at the presence of failures (all 
participants until the final round and only they compute 
the same secure group key), and b) it satisfies the 
expected security and fault-tolerance properties.   

 C. Detailed Description.

In this section we are going to describe in detail the R-
Proactive algorithm for a general Hypercube of size d.
Because of the symmetry of members’ participation to 
the algorithm (as already seen from the description of the 
original protocol), it suffices to focus on the DHKEs and 
computations of members that belong to a particular i-
cube for each round i. For the schedule of 
communications, we allocate to each member a unique 
successive integer id from Z*, i.e. (A, B, C, D, E,…) = 

(0,1,2,3,4,..). Furthermore, we select this base from the 
vector space GF(2)d s.t. member j communicates with 
peer k = 1( 2 )ij at round i. For example, member A
communicates with peer B at round 1, with peer C at 
round 2, with E at round 3, with I at round 4, etc.

Notation_1: A party A that will initiate Hypercube on its 
part with the secret value a is denoted as A(a). In the 
following analysis, the modular reduction of a secret 
generated value x, namely (x), prior to its blinding, 
B( (x)) is implicitly assumed, but not reflected to our 
equations, for ease of the notation. Furthermore, we 
denote the operation of raising each base value included 
in the vector T

nX = (x1, x2, .., xn) to each exponent value 

included in the vector T
mY = (y1, y2,…, ym) as: 

T
n mX Y =

1 2

1 2

1 2

1 1 1

2 2 2

...

...
... ... ... ...

...

m

m

m

yy y

yy y

yy y
n n n

x x x
x x x

x x x

.

A. Stage 1 (Proactive) 

Round 1.

  Parties execute one DHKE and store all values either 
generated or just received via their peer party, in order to 
relay them all to the party they contact at the following 
round. At the end of this round parties A – B, and C – D
for example store the following values:   

A(a) <-> B(b): T
ABX  = (aab, aa, ab),   1

T
AX  = (aab, a),

1
T
BX  = (aab, b).

C(c)<->D(d): T
CDX  = (acd, ac, ad),  1

T
CX  = (acd, c),

1
T
DX = (acd, d).

Notation_2: We denote the global vector comprising all
blinded initial secrets of all nodes generated at the 
beginning of round 1 as T

INITBX = (aa, ab, ac, ad, ae, af,

ag, ah,…). Let vector ( , )T
INITBX i j include those 

elements of T
INITBX that become available to member j at

the end of round i. For example, (0, )T
INITBX A =(aa),

(1, )T
INITBX A = (aa, ab), (2, )T

INITBX A = (aa, ab, ac, ad),
etc. as we will see shortly. 

Round 2.
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A party communicates the following values to its peer:  
i) the blinded DH value computed at the end of the 
previous round (normal execution), and ii) the blinded 
secret values computed and/or received at the beginning 
of the previous round. The following exchanges and 
computations take place for members A, B, C, D:

A. Message exchanges during round 2. 

C(acd, c) -> A(aab, a): T

CD
XB = (

CDaa , ac, ad).

A(aab, a) -> C(acd, c): T

AB
XB = (

ABaa , aa, ab).

D(acd, d) -> B(aab, b): T

CD
XB  = (

CDaa , ac, ad).

B(aab, b) -> D(acd, d): T

AB
XB  = (

ABaa , aa, ab).

B. Computations during round 2. 

A executes: 2
T

AX  =
CD

XB 1
T
AX = (

CDaa , ac, ad) (aab,

a) = (
ab cda aa ,

abc aa ,
abd aa ,

cdaa , caa , daa ).

C executes: 2
T
CX =

AB
XB 1

T
CX = (

ABaa , aa, ab) (acd,

c) = (
ab cda aa ,

cdaaa ,
cdb aa ,

abc aa , caa , bca ).

B executes: 2
T

BX =
CD

XB 1
T
BX = (

CDaa , ac, ad) (aab,

b) = (
ab cda aa ,

abc aa ,
abd aa ,

cdb aa , cba , dba ).

D executes: 2
T

DX =
AB

XB 1
T
DX = (

ABaa , aa, ab) (acd,

d) = (
ab cda aa ,

cdaaa ,
cdb aa ,

abd aa , daa , bda ).

Similar is the process for parties E, F, G, and H.
Notation_3: For ease of the notation, we denote:

K =
ab cda aa , L =

ef gha aa , K(A) = 
cdb aa (i.e. the 

contribution of all members towards K, except for this of 
member A), K(B) = 

cdaa , K(C) = 
abd aa , …., L(E)

=
ghf aa , L(F) =

ghe aa  (i.e. the contribution of all 
members towards L, except for this of member F),
K(BC) = daa , K(AC) = dba , and so on and so forth. 

Round 3 - Round R.

Round3: A similar process is performed as in round 2, 
with the exception that only a limited number of the 
newly generated DH secrets are stored in the 
resulting vector 3

TX . Each member i blinds the values 

contained in the stored 3
T
iX  to generate the vector 3

T
iXB

that will be communicated to the designated peer 
member, namely member i 2j-1, where j represents the 
current round number. We denote vector TSX as one 

containing a subset of those keys that are comprised in 
vector TX . Also, let T

iK denote the vector of values 
associated with the single value K, held by member i,
and let T

jL  denote the vector of values associated with the 
single value L, held by member j (K, L, as well as K(AB),
L(GH) etc. computed during round 2). 
  Depending on the level and nature of fault-tolerance we 
wish the extended Hypercube protocol to achieve, we 
can control and limit the number of blinded keys a 
member is going to communicate to its peer during any 
given round. The maximum number of available 
blinded keys that can be sent from member E to A for
example is provided below: 

E->A: T
EXB  = B( 2

T
EX 1

T
EX 0

T
EX ) =

((BL, BL(H), BL(G), BL(F), BL(FH), BL(FG))

(
efaa ,

ghaa , ag, ah) (ae, af)).

 If member A combines all these blinded keys with its 
own secrets from the previous rounds, i.e. 2

T
AX 1

T
AX , - 

and all the rest of members act similarly - , the newly 
generated number of keys provides Hypercube with the 
capability to go around any subset of simultaneous 
member failures instantly, without any extra processing 
cost. The trade-off for this capability however, is a 
vastly growing number of keys (secret or blinded), 
computed or received by each member during every 
round, and the algorithm becomes impractical and 
infeasible after the first few rounds. 

In this work, we will show how members can tolerate
any number of failures per round, proactively, using 
a relatively low number of keys per round.

 The exchanges and computations for a number of 
members in this round are demonstrated below: 

A. Message Exchanges during round 3. 

E ->A: T
ESXB  = SB 2

T
EX = (BL, BL(H), BL(G), BL(F),

BL(FH), BL(FG),
efaa = BL(GH),

ghaa = BL(EF)).

A->E: T
ASXB = SB 2

T
AX = (BK, BK(D), BK(C), BK(B),

BK(BD), BK(BC),
abaa = BK(CD),

cdaa = BK(AB)).

F->B: T
FSXB  = SB 2

T
FX = (BL, BL(H), BL(G), BL(E),

BL(EH), BL(EG),
efaa = BL(GH),

ghaa = BL(EF)).

B->F: T
BSXB = SB 2

T
BX = (BK, BK(D), BK(C), BK(A),

BK(AD), BK(AC),
abaa = BK(CD),

cdaa = BK(AB)).
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G->C: T
GSXB = SB 2

T
GX = (BL, BL(F), BL(E), BL(H),

BL(FH), BL(EH),
efaa = BL(GH),

ghaa = BL(EF)).

C->G: T
CSXB = SB 2

T
CX = (BK, BK(B), BK(A), BK(D),

BK(BD), BK(AD),
abaa = BK(CD),

cdaa = BK(AB)),
and so on and so forth.
  Furthermore, the two peers may communicate to each 
other, the vector of blinded initial secrets available to 
them so far. For example, A may also communicate to E
vector (2, )T

INITBX A = (aa, ab, ac, ad) and vice versa. As 
we will see later, if more than one failure occurs after 
round R, then for each additional failure, the rest of the 
members need to obtain this among all elements of 
vector ( , )T

INITBX R that R-Proactive designates. Vector 

( , )T
INITBX R  may be constructed proactively, by 

having each member k communicating to its peer party 
the vector ( 1, )T

INITBX j k during every round j. This 
option burdens the communication exchanges per 
member per round j with 2j-1 additional keys. The great 
benefit of this option is that in the event of member 
failures after round R, all the rest of the members already 
acquire the desired element from ( , )T

INITBX R , and 
process it right away, issuing no extra latency to the 
network. On the other hand, the second option is to 
distribute the designated element to the Hypercube 
members on a need to know basis, after the failure of a 
member. As we will see, there are always members 
(among those that have not become “faulty”) that do 
acquire the designated element and are able to distribute 
it to the rest. This option spares the communication of a 
considerable number of keys. Any of these two options 
may be adopted, depending on our network requirements 
and on which metrics we are mostly interested in 
improving. We consider both to evaluate our algorithm. 

B. Computations during round 3. 

After a party receives the vector of the blinded keys, it 
computes the DH values of the current round: 

A executes: 3
T
AX =S( ESXB 2

T
ASX ) = S [S(BL T

AK ),

S(B T
EL K), S( B T

EL T
AK )]. 

From these three vectors, member A only needs to 
include the following resulting keys in 3

T
AX :

3
T
AX = (BL K, BL K(B), BL K(C), BL K(D),

BL(F) K, BL(G) K, BL(H) K ,
efaba aa ,

ghaba aa ).

Working in a similar fashion we get for member E:

3
T
EX = (BK L, BK L(F), BK L(G), BK L(H),

BK(B) L, BK(C) L, BK(D) L,
efaba aa ,

efcda aa ).

The following equality holds for any party J:
BL K(J) = BK(J) L                                          (1).
This can be instantly proven since ( ) ( )( ) ( )K J K JL La a .

Considering (1), it is easy to see that vectors 3
T
AX

and 3
T
EX differ only in the last element. The first element 

is actually the DH key produced at the end of the 3d

round if the original, typical Hypercube is applied. If 
d=3, then all members agree upon this key at the end of 
the 3d round, which contains equal contributions from all 
members. Observing the following six elements in both 
vectors, it can be seen that each one excludes the 
contribution of only one other member. The 
contributions (a, e) of members A and E respectively, are 
naturally contained in all six elements (since if not, 
members A and E could always add their own secret 
contributions (a, e) themselves through one or more 
exponentiations to an element that contains neither of 
them). Members A and E interact at round 3 to compute 
secret keys that either contain the contributions of all 
parties so far, or exclude the contribution of one only 
party (other than themselves) per element (secret key).  

Notation_4: Let Y = BL K =
ef ghab cda a a aa aa , and let 

Y(B) = BL K(B) = 
ef ghcda a aa aaa , etc.

We combine the first seven elements of vectors 3
T
AX and

3
T
EX  in the vector ,

T
A EY , so that element t ,

T
A EY  => t = 

Y(j), j { 0 , B, C, D, F, G, H}. So, we use the following 
notation for the computed keys of the 3d round:

3
T
AX = ( ,

T
A EY ,

efaba aa ,
ghaba aa ),

3
T
EX = ( ,

T
A EY ,

efaba aa ,
efcda aa ).

If on the other hand, we prefer to construct the vector 
that contains the participants initial blinded secrets 

( , )T
INITBX R proactively, then the vectors 3

T
AX , 3

T
EX

contain a part of ( , )T
INITBX R  as well. Therefore: 

{ (3, )T
INITBX A , (3, )T

INITBX E }= (2, )T
INITBX A + (2, )T

INITBX E
As a consequence, the newly computed vectors for 
members A, E at the end of the 3d round become:

3
T
AX = ( ,

T
A EY , (3, )T

INITBX A ,
efaba aa ,

ghaba aa ),

3
T
EX = ( ,

T
A EY , (3, )T

INITBX E ,
efaba aa ,

efcda aa ).
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Processing the blinded and secret keys for the rest of 
the members in a similar fashion, we get the following 
results for the rest of the parties during the 3d round: 

A. Reactive (on demand) Option 

Scheme 2: Resulting DH keys for 8 parties at round j=3

To sum up, at round j = 3, each party computes 2j+1=9
keys as a result of 2j+1 DHKEs with its peer party, as 
shown in scheme 2. The last two elements in the vectors 
are somehow redundant. They are used to handle certain 
cases of simultaneous failures instantly, at no extra cost. 
The same can be achieved with vector , 4

T
i iY alone as 

well, with some extra processing however: one blinding 
and/or a multiplication as we will see next. Again, this 
extra functionality is another flexibility of the algorithm. 

B. Proactive Option 

Scheme 3: Resulting DH keys for 8 parties at round j=3

To sum up, at round j=3, each party computes 2j+1=9
keys as a result of 2j+1 DHKEs with its peer party, as 
shown in scheme 3, and also includes in the secret vector 
generated at the end of the round, 2j = 8 additional 
elements, that correspond to a subset of the blinded 
initial members’ contributions contained in the 
vector T

INITBX . Therefore, vector 3
T
iX comprises 2j+1+1 = 

17 elements in total, in this case. The last two elements 
serve the same purpose as this mentioned previously. 

Round 4 – Round R: 

The process is exactly similar to this of round 3, and we 
may skip its description. At the end of round j = 4 for 
example, vector 4

T
iX contains:

a) , 8
T

i iY  with cardinality | , 8
T

i iY | = (2j+1-2)= 2j-1, (one 
key that corresponds to the original Hypercube DH 
key, and 2j-2 keys, each of which excludes the 
contribution of one only among all members , except 
for the two ones generating , 8

T
i iY ),

b) vector (4, )T
INITBX i  that contains a subset of the initial 

blinded members contributions, with cardinality 2j,
only in the proactive option, otherwise this vector is 
not a subset of 4

T
iX  for the reactive option, and

c)   two additional DH keys that 1) discriminate member 
i from its peer member, and 2) contribute to the 
instant generation of a common key among all 
parties, at no extra cost, for some cases of 
simultaneous member failures.  

B. Stage 2 (Normal) - Rounds [R, d].  

Members switch to the original Hypercube, using the 
designated values from the subsets (vectors T

RX )
generated in round R as secret values for the DHKE 
during round R+1. Every party is involved in exactly
one DHKE per round. If no member failure occurs 
while in stage 2, then all members agree on the same key 
at the end of round d. Upon failure(s), those members 
among the rest that have interacted directly or indirectly 
with the “faulty” member in any of the previous rounds 
and contain its contribution in their secret keys, (i.e. 
have been “polluted”), must restart stage 2, by “going 
back” to round R and selecting (and processing) this 
element of T

RX that correspond to the particular failure.

V. FAULT TOLERANCE WITH R-PROACTIVE
HYPERCUBE

R-Proactive algorithm theoretically attains a very high 
level of fault-tolerance, i.e. number of (simultaneous) 
member failures at any point during execution.  

Scheme 4: R-Proactive Hypercube Algorithm 

If i {A, B}=> 3
T
iX = ( , 4

T
i iY ,

efaba aa ,
ghaba aa ),

If i {C, D}=> 3
T
iX = ( , 4

T
i iY ,

efcda aa ,
ghcda aa ),

If i {E, F}=> 3
T
iX = ( , 4

T
i iY ,

efaba aa ,
efcda aa ),

If i {G, H}=> 3
T
iX = ( , 4

T
i iY ,

ghcda aa ,
ghaba aa ).

If i {A, B}=> 3
T
iX = ( , 4

T
i iY , (3, )T

INIT
BX i ,

efaba aa ,
ghaba aa )

If i {C, D}=> 3
T
iX = ( , 4

T
i iY , (3, )T

INIT
BX i ,

efcda aa ,
ghcda aa )

If i {E, F}=> 3
T
iX = ( , 4

T
i iY , (3, )T

INIT
BX i ,

efaba aa ,
efcda aa )

If i {G, H}=> 3
T
iX = ( , 4

T
i iY , (3, )T

INIT
BX i ,

ghcda aa ,
ghaba aa )

Proactive Stage

Round j<=R: Compute 2j+1 
keys per member, j++;

j=0;

j<=R & No Failures
j==R

Normal Stage:

Original h-Cube, j>R

j<=R & Failures

j--; Go back to R, pick 
another key from the 
key pool that excludes 
the “faulty” member

Failure? j=R;
j<=d, No 
Failures

j++;
j==d;

Terminate KA

j++;

j++;

Proactive Stage

Round j<=R: Compute 2j+1 
keys per member, j++;

j=0;

j<=R & No Failures
j==R

Normal Stage:

Original h-Cube, j>R

j<=R & Failures

j--; Go back to R, pick 
another key from the 
key pool that excludes 
the “faulty” member

Failure? j=R;
j<=d, No 
Failures

j++;
j==d;

Terminate KA

j++;

j++;
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We distinguish among the following scenarios and 
issues of Fault-Tolerance: 

A. Member(s) Failure prior to Round R. 
 Assume that member B fails during round k, while 
engaged in communication with party T = B 2k-1. If T
has received the blinded vector from B, it processes it 
exactly as indicated by R-Proactive, else it requests from 
party W=B 2k-2 (the party that communicated with B at 
the previous round, i.e. if T=F then W=D) its own 
blinded vector. Upon receiving a blinded vector either 
from member B or W, member T processes it exactly as 
described in the R-Proactive algorithm. During the 
following rounds, all parties that would normally 
communicate with B, are now reconfigured to 
communicate with T (if T actually received the blinded 
vector from B, and B failed afterwards) or W (if B failed 
prior to sending its blinded vector to T, or if T fails as 
well) respectively, thereon. Should T and W also fail 
during the same round k or a subsequent one, the 
members that were supposed to contact them from this 
point and on, backtrack in terms of rounds, and are 
configured to communicate thereon with the party that 
was last in contact (most recent round) with any of these 
parties. This, actually, is the only effect that the failure 
of any member during stage 1 causes to the normal 
execution of R-Proactive, as we are going to show now.

   To illustrate the latter with an example, let T = F, and 
W = D referring to the 3-cube placement example of 
eight nodes (scheme 1). Assume that B fails prior to 
communication with F. Then, F will get 2

T
DSBX instead

of 2
T

BSBX  from D. Member D has communicated with 
member B during the previous round, so that it generates 
a blinded key with elements equal to those that B has 
generated and would pass on to member F during the 
current round. Therefore, the only difference observed is 
the following: in the end, member F will compute 
vector 3

T
FX , which differs from what it would compute 

otherwise (if B had not failed) only in that it includes 

,
T
D FY  instead of ,

T
B FY . That means that member F will 

have paired with D, which is correct, and anticipated by 
the algorithm anyway. Also, it means that in the vector 

,
T
D FY (held by member F) there exists among all 

elements one that excludes member B, (i.e. L K(B)),
but there is not an element excluding D in the case that 
D also fails at some later point. Similarly, all members 
that will be redirected to D instead of B, during the 
following rounds, will end up with legitimate (according 
to R-Proactive) final key vectors. Since at the final stage, 

no vector ,
T
B FY  is computed by any member, if B is the 

only “faulty” member, then member B is excluded 
instantly from the final key, if the rest of the members 
pick the element L K(B) as their final key, that is 
present in all other vectors, as discussed.

   Similarly, the failure of any additional member(s) i
prior to round R, is (are) also reflected to the 
computations, and in the end of round R, no vector of the 
form ,

T
i jY , for any of the remaining members j is created. 

Therefore, all the remaining members contain an element 
in their vectors that excludes member B, an element that 
excludes member i (i.e. L K(i) or L(i) K), and in 
general, an element excluding one failed member at a 
time. All the elements that correspond to the failed 
members are multiplied to construct the final key. This 
way, faulty members are excluded from the final key 
altogether with a single action, and furthermore, each of 
the remaining members can instantly compute the 
desired product, as soon as round R is over. In the latter 
case, members compute:  
K = (L K(B)) (L(i) K).

B. One or Multiple Failures during round R.
Assume that member B has failed prior to round R. The 
remaining members select the key L K(B) from their 
vector TY , as discussed. All members but B possess this 
key now (the failure of B has been accommodated so 
that no vector ,

T
B IY exists to deprive party I from 

L K(B)). Now, if member G fails as well, its 
contribution must also be excluded from the key that 
will be picked up after round R. Again, the failure of G
is accommodated during round R so that no vector ,

T
G IY

is computed by another party I. In that case, the key 
computed from all members but B and G is:
K = (L K(B)) (K L(G)), as in the previous case. 

C. Member Failures after Round R. 
Upon failure of any member(s), Hypercube is stalled at 

the current round k. The “polluted” members 
corresponding to round R pick the appropriate new 
key(s) from TY and use it (them) instantly, or process it 
(them) via modular exponentiations and multiplications 
as we will see right next. Starting from round R+1, only 
the members that initially “polluted” the other half of the 
members at any given round (pollution propagation), in 
the sense that they communicated to those members 
values that included the contribution of the “faulty” 
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member, need to update those parties with the new 
values (Hypercube is executed in one direction only), 
until round k is reached, and the original Hypercube 
protocol is executed once again from round k. The same 
process is repeated upon subsequent member failures.  
   Assume now that member C fails in our example. If 
the new key becomes L K(C), then member G that 
holds the vector ,

T
C GY  will not be able to compute the 

final group key, since the element L K(C) is not 
included in the vector ,

T
C GY . In this case, the final key at 

round R is not computed instantly as in the previous 
cases, but members need to execute one extra operation 
(modular exponentiation) to compute it. The final key at 
round R now becomes: K = ( ( ))g L K Ca .
 The blinded value ag has been either already relayed to 
all members (if the proactive option is used for the 
computation and propagation of the initial vector of 
blinded keys), or it will be communicated to the 
members that request through unicast messages (2R-4 in 
the worst case) or broadcasts from member G or from 
members that have obtained this value from the first two 
rounds, if the reactive option has been adopted. 
Furthermore, any member (probably one that is in 
topological proximity to member G) can communicate 
the requested value ( )L K Ca  to G.

 Upon failure of another member e.g. D, the designated 
key selected by all the remaining members this time, is: 
K = ( ( ( ))g L K Ca ) ( ( ( ))h L K Da ).

   Through this analysis, we have explored all possible 
cases of failure during the execution of the Hypercube. 
We have discussed and sketched how R-Proactive
algorithm handles and remedies all the above cases of 
failure. We have shown that the intermediate keys 
computed after each failure, always exclude the “faulty” 
members without need to start over the execution of 
Hypercube protocol from scratch.

VI. DISCUSSION

The R-Proactive algorithm provides a hybrid proactive 
approach towards handling failures at any round of the 
Hypercube execution. Considering that the Hypercube 
parties in our case are most probably not directly 
connected, and are also subject to abrupt dynamic 
changes, it is easy to see that the impact of extra rounds 
in this framework is very significant: the underlying 
routing protocol that is invoked, increases the total 
communication cost of the KM framework, excessive 
relay nodes may be required, and the overall 
performance degrades (i.e. QoS deteriorates due to more 

collisions at the MAC layer, the bandwidth usage 
becomes higher and the same is the case for the 
consumption of node/network resources). Therefore, 
reducing the extra communication cost and the total 
number of rounds in the extended Fault-Tolerant scheme 
becomes our most important priority, even at the 
expense of extra computation and storage cost, which 
still need to be kept low however.
  The R-Proactive algorithm is designed with these 
requirements in mind, and is also very flexible since we 
can adjust the level of “proactive-ness”, by adaptively 
selecting the round R at which we switch from the 
“proactive mode” to the “normal mode” of execution. 
This “proactive-ness” translates to the trade-off between 
the number of the total rounds in the presence of 
failures (or equally the  overall latency, and extra 
routing costs) on one hand, and the extra KM
Communication and Computation costs incurred to 
the network, due to the multiple keys that must be 
computed per round, on the other hand. 
  The R-Proactive algorithm can tolerate any number of 
failures, and this is a very useful feature for any 
framework upon which it is applied. As far as its 
application on the Octopus-based schemes, the 
probability of a large number of failures during a typical 
Hypercube execution varies depending on the 
characteristics of the selected subgroup leaders. 
Assuming that robust, powerful leaders, with extra 
capabilities, can be guaranteed at all times for any given 
subgroup is not very realistic in a dynamic 
infrastructure-less network. It is quite likely that simple, 
resource-constrained members undertake more often 
than not the role of subgroup leaders, increasing the 
probability of failures significantly, and consequently 
the probability that the Hypercube is stalled multiple 
times. In this case, an algorithm such as R-Proactive that 
handles failures with low cost, and more particularly, 
keeps the overall number of rounds in the presence of 
failures very low, becomes if paramount importance.   
   Moreover, in this work we assume that we are dealing 
with a KM group of size O(100) - O(1000) at maximum. 
In the case that we are interested in applying the 
Hypercube protocol over all group members, typical 
values for the Hypercube parameter d do not exceed the 
number 15 (since 215 = 32768).  In the case that we wish 
to apply Hypercube over the subgroup leaders of a KM 
group, typical values for d are even lower, and we 
assume they do not exceed the number 10. The value of 
d sets an upper limit to the value R of R-Proactive.

VII. ANALYTICAL EVALUATION OF BASIC VS. R-
PROACTIVE HYPERCUBE SCHEMES

i) Analysis and Comparative Analytical Evaluation:
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In this section, we derive and present a number of 
significant analytical formulae of the metrics of interest 
for both Basic and the R-Proactive algorithms (i.e. 
overall Communication, Computation, Storage Costs and 
number of rounds). We also conduct a comparative 
performance evaluation of the two schemes, assuming 
that up to M failures occur during one execution 
(M<2d). We evaluate the schemes for various 
distributions of these M failures over the d rounds of the 
typical Hypercube execution (examine the worst, best, 
average, and random case scenarios that correspond to 
particular distributions of M over the Hypercube 
rounds), and for multiple values of parameters R and d.
The worst case scenario occurs if all M failures take 
place during the last round for both algorithms. 

Notation: Let K be the number of bits per message, and 
let parameter CE represent the computation cost of a 
modular exponentiation in bits approximately. 

A. Basic. 
A failure before round j pollutes a 2j-1-cube. It takes j-1

rounds to update it. During each round, half of the 
parties are only senders and half only receive the 
updated values. All members however, carry out two 
exponentiations per round, one to compute the current 
secret, and one to blind it for the subsequent round. 
Hence, upon a failure during round j, the total KM 
Communication cost (in bits) is: 

Comm(Basic):= 1

1
2

J
J

i

K = 2J K.

Similarly, the Computation cost (in bits) upon a 
member failure during round j is:

Comp(Basic):=2J+1 CE,

The Storage cost per member, if the member stores the 
blinded values computed at all d rounds becomes: 

Store(Basic):=d K.

The total communication cost without failures is: 
CommNF(Basic):=2d d K.

In the presence of failures, the total communication 
cost, until the protocol terminates by successfully 
computing the final key becomes:  

CommF(Basic)=
1

(2 ( ))
d

d

i

F i K +
( _ _ )

1

2
M any round J

J

Failure

K.

B. R-Proactive. 

Stage 1: During this stage, each member blinds 2t-1 +2 
shares from round t-1, computes 2t+2 new DH keys, and 

transmits 2t blinded keys, under the proactive option 
assumption, at round t. The total computation and 
communication costs until round R, in the presence of 
failures become: 

Comp(RProact1):= 1

1
(2 ( )) (3 2 2)

R
d i

E
i

F i C ,

and Comm(RProact1): = 
1

(2 ( )) (2 1)
R

d i

i

F i K ,

Here the parameter F(i) represents the number of 
members that have failed up to round i. It has to be noted 
that failure of a member during this 1st stage affects 
insignificantly the previous costs. The maximum per 
member storage cost becomes: 

Store(RProact1):= 2R+1 K.

Stage 2: Upon failure at round j>R, the “polluted” 
members execute Basic starting from round R, after 
selecting another key from their vector pool (1-2 
exponentiations per member are required at max. to 
process the new key). The KM Communication cost is: 

Comm(RProact2):= 1

1
2

J
J

i R

K = (2J -2R) K,

and the KM Computation cost working in a similar 
fashion becomes for the worst case scenario:  

Comp(RProact2):=(2J+1-2R+1) CE + 2R CE .
Single
Failure

Basic R-Proactive , Round j

Stage1
comm/tion 

2J K

1
(2 ( )) (2 1)

R
d i

i

F i K

Stage1
Comp/tion 2J+1 CE

1

1
(2 ( )) (3 2 2)

R
d i

E
i

F i C

Stage2
comm/tion 

2J K (2J -2R) K

Stage2
Comp/tion 

2J+1 CE (2J+1-2R+1) CE + 2R CE

Storage d K 2R+1 K

Table 1: Indicative Complexities of R-Proactive vs. Basic 

Basic vs. RProactive Failures Communication
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Graph1:Communication due to Failures Basic vs. R-Proactive
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Graph2: Total Number of Rounds for 30 Failures: Basic vs. 
RProactive for d=6, R=4 

Basic vs. RPRoactive Total Communications with ECDH
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Graph3: Total Communication Basic vs. R-Proactive
implemented with ECDH, varying the Proactive-ness Level R

From these results, it is obvious that the R-Proactive
algorithm succeeds in reducing substantially the total 
number of rounds of the Hypercube execution in the 
presence of failures, as well as the communication cost 
due to failures. The total number of rounds of the 
protocol can be translated to the total latency, since the 
original Hypercube stalls, and waits for the appropriate 
number of rounds, to go around a failure. The novelty in 
our algorithm is that Hypercube never has to stall for a 
failure that occurs during the 1st stage, and as far as the 
2nd stage, the number of rounds to remedy the failure is 
much less, since members only need to go back to round 
R. However, the total communication and computation 
cost is higher in general for R-Proactive, if the total 
number of transmitted bits is considered. This happens 
because the higher the proactive-ness level R, the higher 
the number of elements that must be exchanged among 
the communicating peers to construct the framework of 
the 1st stage. However, as we will see next, if we 
implement Hypercube (Basic, R-Proactive) with EC-DH, 
we achieve a substantial reduction in the total 
communication cost in our scheme, and it becomes even 
lower than the corresponding costs of Basic for most 
cases (if the costs are measured w.r.t. the number of 
packets transmitted). Nevertheless, the amount of rounds 
R-Proactive algorithm takes to execute (successfully 

terminate) in the presence of failures is dramatically 
reduced compared to the original Basic scheme. 

ii) Elliptic Curves Cryptography (ECC) Implementation 
of Hypercube and Performance Improvement

ECC is known to offer a security level comparable to 
that of other cryptographic systems of larger key sizes. If 
we substitute the DHKEs with EC-DHKEs we can 
achieve an obvious reduction in the Communication and 
Storage Costs (i.e. DH K=1024 bits vs. ECDH m=169
bits key sizes). Detailed description of the EC-based R-
Proactive algorithm can be found in [20], where we also 
show that the overall computation cost is reduced as 
well. We illustrate the significance of using ECs for R-
Proactive with an arithmetic example. Consider an IP 
packet of 1500 bits, with a (head-tail) label of 128 bits, 
and available payload of 1372 bits. If we apply the R-
Proactive algorithm, setting R=4, a member must 
transmit a maximum of 18 elements to its peer during 
round R. If DH is used, then only 1 element fits in the IP 
packet, and therefore 18 packets will be sent from a node 
to its peer. If ECDH is used, then 1372

169 = 8 elements fit 
in one IP packet, meaning that partners need to exchange 
only 3 packets. Hence, R-Proactive becomes more 
powerful through the use of ECs [20, 23, 24]. 

VIII. BASIC VS. R-PROACTIVE SIMULATION RESULTS

i) Simulation Set-Up and Discussion:
We have conducted a simulation analysis in order to 

compare the routing cost and the combined 
routing/communication costs incurred to the network 
from the execution of R-Proactive vs. Basic Hypercube 
to gain a realistic view of the actual performance of both 
schemes over an ad-hoc multi-hop network. We use 
different graphs to generate the secure group and analyze 
the performance of the two algorithms. A number of 
nodes from this graph are randomly selected as subgroup 
leaders. Through the underlying routing, each leader 
obtains the routing path(s) to the rest of the leaders it is 
originally scheduled to communicate with.  We assume a 
generic Dijkstra-based underlying routing protocol that 
finds the shortest paths between leaders (w.r.t. number of 
hops).
For our evaluation, we have generated various random 

graphs of different network sizes S [100, 500] for each 
initial input of the number of members n = 2d, and for 
the same graph we have varied the Hypercube parameter 
d, s.t. 2< d 8. For the same graph and the same input, 
we have varied the group configuration, i.e., we have 
selected the n members in a different (random) manner 
in every repetition. For the R-Proactive we have 
additionally varied the “proactive-ness” parameter R s.t. 
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1 <R d, for each graph and subgroup configuration, 
and for each given d. Members’ failures have been 
simulated by the use of a probability failure parameter p,
where 0.01 p 0.04 for each member that is alive 
during every round. The probability of member’ failures 
is uniformly distributed w.r.t. the Hypercube rounds.  
   For each given input <S, d, R, p>, we have run both 
algorithms with and without failures assumption, for 100 
different Hypercube group configurations within the 
network graph and we have averaged the results. We 
have evaluated a) the total routing cost w.r.t. number of 
hops, b) the total number of rounds required until 
successful termination, and c) the combined overhead 
incurred from the exchanged key generation messages 
over all network nodes involved (members and their 
relays), for both R-Proactive and Basic schemes. 

ii) Simulation Results:

Below we illustrate in the following graphs some 
indicative results on the combined communication/ 
routing overhead and number of rounds produced by 
both Basic and R-Proactive protocols. From careful 
inspection of our simulation results, we can see that they 
actually confirm our analytical results for all cases. 

  Graph4, shows in 3-D a comparison of Basic and R-
Proactive for R=4, w.r.t. the total number of packets 
transmitted under increasing failure rates [0.01,…, 0.04] 
and increasing group size [16,…,64]. We can see that R-
Proactive prevails for almost all cases. Notice that at 
some point when the failure rate increases significantly, 
i.e. p>0.03, the total packet transmissions in Basic
decreases.  This occurs because whenever the number of 
failed members is halved, we re-adjust the schedule of 
members in Basic and decrease the current number of 
rounds required for termination of the original scheme 
without failures by one. Still, it can be seen that R-
Proactive demonstrates a superior behavior for almost all 
the scenarios reflected in this graph. Furthermore, in a 
real case scenario, it is not so simple to carry out the re-
adjustment we suggest in Basic for the Hypercube 
members. They must be allocated new ids and co-
ordinate to propagate this information and apply a new 
transmission schedule, which is not simple in practice.  
    Graph 5, shows a comparison w.r.t. the total packets 
transmission of Basic and R-Proactive (for R in [1..7]) 
when no failures are assumed in the network. We can see 
that without failures always the Basic scheme prevails, 
which is expected, because R-Proactive consumes extra 
overhead to build the proactive framework and is not 
compensated if no member failures occur. For example, 
when R=7, d=7, the packet transmission overhead is 

offset a great deal. 
  Graph 6 shows a comparison of Basic vs. R-Proactive
(for R in [3..7]), for a network of size S=200, and d=7,
w.r.t. the total number of rounds under the presence of 
failures, for two failure rates p = 0.01, 0.02. We can see 
that R-Proactive achieves a significant reduction in the 
total number of rounds, particularly as R increases, and 
this is a significant achievement of this algorithm. 
Again, we see that for p=0.02, the number of rounds for 
Basic is quite low. As in the case of graph 4, this is due 
to the round re-adjustment we have done on the scheme. 
Even in this case, for R>4, R-Proactive achieves an even 
great reduction in the total round number. 
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Required Protocol Rounds
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IX. CONCLUSION

This paper focuses on the design of a Fault-Tolerant 
Hypercube protocol when it used as the core scheme to 
connect subgroup leaders for Octopus-based schemes in 
a MANET. We describe a hybrid proactive approach for 
extending Hypercube protocol to tolerate failures 
suitable for the dynamic environment and for the 
application of interest. We present comparisons of two 
different schemes: the original Hypercube as presented 
in [1,5] denoted as Basic, and our own Fault-Tolerant 
adaptively proactive extension, denoted as R-Proactive,
w.r.t. communication, computation, storage cost, and 
total number of rounds. By exploring the features and 
evaluating the performance of the two algorithms, we 
show how we can achieve better performance with our 
scheme in the presence of failures. Furthermore, we 
illustrate how the incorporation of ECC favors our 
proactive design and improves its overall performance. 
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