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Abstract—This paper addresses agreement problems in 

networks of dynamic agents in presence of invariant nodes. 
The network consists of a set of integrator agents which can 
communicate according to an underlying topology. Invariant 
nodes are nodes whose dynamics are invariant of their 
connection to the network. These nodes can be thought of as 
local leaders, adversaries or intruders trying to break the 
group’s consensus or simply nodes of more importance than 
regular nodes. The convergence of the networks of dynamic 
agents with presence of invariant nodes has been studied and 
it has been shown that determination of the steady sate values 
of regular nodes in presence of invariant nodes results in 
solving a discrete Dirichlet problem with boundary values 
given by the invariant nodes. 

I. INTRODUCTION 
HIS paper addresses agreement problems in networks 
of dynamic agents in presence of invariant nodes. 
Decentralized control of dynamic agents has been 

studied by many researchers in recent years. A very 
interesting branch of research has been dedicated to the 
study of “nearest neighbor rules” for control of a group of 
dynamic agents[1-6]. 

 Inspired by an idea introduced by Reynolds [1] for 
coordinated and decentralized alignment of a flock of 
computer agents, Jadbabaie et. al. [3] have studied a model 
of autonomous agents moving in a plane with the same 
speed but with different headings. Each agent’s heading is 
updated using a local rule based on the average of its own 
heading and the headings of its neighbors. They have 
provided a theoretical explanation of why all agents will 
eventually move in the same direction despite the absence 
of a centralized control scheme. 

Olfati Saber and Murray[4][5] have studied agreement 
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problems in networks of dynamic agents and showed how 
using simple” nearest neighbor rules” in networks of 
integrator agents will result in all nodes’ convergence to a 
consensus. 

The contribution of this work is to introduce invariant 
nodes in the context of aforementioned papers and to show 
how these invariant nodes affect the dynamics of the 
regular nodes. These nodes can be thought of as “local and 
regional leaders”, nodes with more “importance”, or even 
“adversaries” trying to break the group’s consensus. 
By considering proper invariant nodes in the network of 
dynamic agent, one can guide the network to perform a 
specific task in a distributed manner. 

Convergence properties of  networks of dynamic agents 
with presence of invariant nodes has been studied in the 
present work and it has been shown that the determination 
of the steady sate values of regular nodes in presence of 
invariant nodes results in solving a discrete Dirichlet 
problem with boundary values given by the invariant 
nodes. For the foregoing discussion we limit our focus to 
fixed topology. Further study is going on in case of 
changing topology.  

II. PROBLEM SETTING 

 Consider a group of dynamic agents { }| 1,...,ix i N= . 

 Each agent is considered as a node of a graph ( , )G V E . 
There is an edge between any two neighboring nodes. The 
graph is assumed to be connected. The dynamics of each 
node is determined by the value of the node and its 
neighbors. There are two types of nodes:  
Regular nodes with indices coming from a set D, whose 
dynamics is determined by: 

( ( ) ( )) .
i

i j i
j N

x x t x t i D
∈

= − ⇔ ∈∑                                 (1) 

There is also another set of nodes which are called 
invariant nodes. The value of each of these nodes is fixed 
throughout all the time. The set of indices of invariant 
nodes is denoted by D∂ and : 

0 0 ( ) .i i ii D t x x t Rϕ∈∂ ⇔ ∀ ≥ = ⇔ = ∈  (2) 
Without loss of generality we will assume that the nodes 

RNi ,...,2,1=  are regular nodes and the nodes 
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 NNi R ,...,1+= are the invariant nodes i.e. 

 },...,1{ RND = is the set of indices for regular nodes and 

},...,1{ NND R +=∂  is the set of indices for invariant 
nodes. 

III. MATRIX REPRESENTATION 
The system equations (1) can be rewritten as 

∑ ∑
∈
∈

∂∈
∈

−+−=
∈

Dj
Nj

Dj
Nj

ijiji
i i

xxxx
Di

)()(
:

ϕ   (3)   

Also, (3) can be rewritten as:  
 

∑ ∑
∈
∈

∂∈
∈

+−+−=
∈

Dj
Nj

Dj
Nj

jijiii
i i

xxxnx
Di

ϕ)(  (4) 

In which 0≥in denotes number of the invariant nodes 
which are neighbor to 'i th (regular) node. 
Let M be the RR NN × diagonal matrix.   

)( indiagM =  
Then we can write  

BuxLMx RRR ++−= )(                                            (5) 

where [ ]T
NR R

xxx ,...,1= , RL  is the NR by NR  Laplacian 

matrix corresponding to the graph consisting of regular 
nodes, neglecting the existence of invariant 
nodes, [ ] I

R

NT
NN Ru ∈= + ϕϕ ,...,1 can be regarded as an 

input vector and IR NNRB ×∈ is a matrix whose entries Bij 
are either 1 or 0 depending on whether the i’th regular node 
is connected to the j’th invariant node(i.e. node NR+j )or 
not. 

IV. MAIN RESULTS 
In this section the main results for stability of regular 

nodes are presented and the steady-state behavior of regular 
nodes is investigated. 
 
Theorem 1 

Let G  be a connected graph with fixed topology and 
suppose that the state of each regular node of graph evolves 
as: 

∑
∈

−=
iNj

iji txtxx ))()((                    Ni ,...,1=  

Suppose that there are NI >0 invariant nodes where 
 NI+NR = N is the total number of nodes and for each 
invariant node: 

Dxtx iii ∂∈== ϕ)0()(                     NNi R ,...,1+=  

Then the value of each regular node can be found as a 
solution of the equation (5): 

( )R R Rx M L x Bu= − + +  
In addition the system  

( )R R R

R R

x M L x Bu
y x

= − + +
 =

 

is Lp-stable [ ]∞∈∀ ,1p . Furthermore the state of each 

node will reach a finite steady-state value ∞<∞)(ix . 
 
Proof: 

As shown in the previous section, the dynamic equations 
of the regular nodes can be expressed by the state space 
model 

( )R R Rx M L x Bu= − + +  

Since G is connected RL  is a positive semi-definite matrix 
[4], –LR  is negative semi-definite. M is a diagonal matrix 
with ni ≥0 where at least one of the ni’s is strictly positive. 
So: 

2 2

1
, {0,..., }

( ) ( )

( )
R

R

T T T
R R R R R R R

N

i j i i
i j i
i j N

x x M L x x L x x Mx

x x n x

φ

≈ =
∈

= − − = − − =

− − −∑ ∑  

RNR xxx ==⇒≡ ...0)( 1φ and 0; =∃ ii xx   ⇒  

0...1 ===
RNxx  

So )( RLM +− is negative definite. 
Now consider the state space model: 

( )R R R

R R

x M L x Bu
y x

= − + +
 =

 

The output of this system is given by: 

∫ −+−+− +==
t

tMLtML
RR dBuexetxty RR

0

))((
0

)( )()()( τττ  

Note that uu =)(τ is time-independent. Since 

)( RLM +− is Hurwitz, we have attLM kee R −+− ≤)(   

0≥∀ t   for some positive constants k and a. so 

( )
1 2

0

( ) .
t

at a t
Ry t k e k e d uτ τ− − −≤ + ∫  

Where: 

01 xkk =  and Bkk =2  

It can be shown [7;pp 267-268] since IN
Peu L∈ for all 

[ ]1,p ∈ ∞  

2
1( )

p p
R L L

k
y k u

aτ τρ≤ +  

Where 
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∞=
= ),1[)1(

1
1

p
ap

p
pρ  

So the system is finite gain Lp-stable for each [ ]∞∈ ,1p . 

Furthermore the bias term ρ1k is proportional to 0x . 

Furthermore since  

Budexetx
t

tMLtML
R

RR 







+= ∫ −+−+−

0

))((
0

)()( ττ  

And –(LR+M) is strictly negative-definite the 

0
)( xe tMLR +− term will tend to zero as ∞→t . Also since  

–(LR+M) is negative–definite, as t → ∞  

( )( )

0

R

t
L M te dτ τ− + −∫  will tend to a constant matrix so the 

state of each node will reach a finite value ∞<∞)(ix . 
Remark: 

 Olfati-Saber and Murray [4] have shown that in absence 
of invariant nodes with all nodes regular interacting using 
nearest neighbor rules, the dynamics of the system is 
described by ∑

∈

−=⇔−=
iNj

iji Lxxtxtxx ))()((  

where L is the Laplacian matrix. For a connected network 
since L is positive semi-definite with only one eigen-value 

at 0, they have shown that the value ∑
=

N

i
i tx

1
)(  is time-

invariant and all the nodes will reach the same 
“consensus”. 

In theorem 1 it was shown that in the presence of 
invariant nodes the value of regular nodes will converge to 
steady-state limits. Now, the objective is to determine these 
limits. 
At steady state the following equations should hold: 
For regular nodes: 

∑
∈

=−
iNj

ji xx 0)(                (6) 

For invariant nodes:  

iix ϕ=            (7)  
If the Laplacian Matrix of the whole set of nodes (including 
invariant nodes) is denoted by L (which is different from 
LR), then: 
 
For RNi ,...,1=  

0)( =iLx                            (8) 

Equation (8) means that the first RN  elements of the 

vector Lx  will be equal to zero. (The remaining IN entries 
are not important and we discard them.) 
Similarly if  the whole number of nodes (regular and 
invariant) which are neighbor to the thi regular node is 

denoted by 0* ≥in , equation (6) can be rewritten as  

∑
∈

∗ =
iNj

jii xxn ⇒+=+⇒ ∑
∈

∗

Nij
jiii xxxn )1(          

1 1,...,
1i i j R

j Nii

x x x i N
n∗

∈

 
= + =  +  

∑          (9) 

Now, let )()(: 1 DADIP ++= − , where A is the 
adjacency matrix of the graph G and D is the diagonal 
matrix with i’th diagonal element equal to the degree of 
node i  (number of its neighbors). Equation (9) can be 
rewritten as: 

[ ]{ }
Rii

ii

NiPxx
xDADIx

,...2,1)(
)()( 1

==
⇒++= −

(10)  

Note that P is a stochastic matrix and the equation is valid 
for the first NR components of x. 
Let { } 0≥nnZ  be a homogeneous Markov chain with state 

space 

 {1,2,..., ,..., }RV N N= . Let },...2,1{ RND =  be the 

sub-graph of regular nodes, and denote by D∂  the 

complement of D  inV , i.e. },....{ 1 NND R+=∂ . Let 

R→∂D:ϕ be a function defined by ii ϕϕ =)( . Let T  

be the hitting time of D∂ . For each state i V∈ define: 

( ) { } 01 |i T Th E Z Z iϕ <∞ = =     (11) 

It will be shown that the function : Nh V R→  is finite. 
Since the underlying graph G  is connected, P  is 
irreducible. Also 0iii V p∀ ∈ >  which means the 
chain is aperiodic. The number of states is finite and 
therefore the chain is positive recurrent 
and 1)|( 0 ==∞< iZTP . The following theorem 
describes the steady state behavior of the nodes. 
 
Theorem 2 

 Let Nh R∈  be defined by equation (11). Then ∞<ix  
can be determined uniquely; Furthermore, 

},...,1{)()( Niihxi ∈∀=∞ . 
Proof: 

It was shown that 



 
 

 





+=
=

=
NNi

NiPx
x

Ri

Ri
i ,...,1

,...2,1)(
ϕ

 

x  can be represented as: 





∂
=

Don
DonPx

x
ϕ

  (12) 

By definition, ϕ=h on D∂  and  ϕ=x  on D∂ . 
By first step analysis: 

)()( jhpih
Vj

ij∑
∈

=  on D. 

So: 





∂
=

Don
DonPh

h
ϕ

 (13) 

So xh =  on DD ∂∪ . 
It can be shown that since:  

0( | ) 1i V P T Z i∀ ∈ < ∞ = = ,  
(12) has at most one bounded solution. 
If there is another solution u to (12) then: 

 ∑
−

=

−−−=
1

0
0 )()()()(

n

k
knn ZuIPZuZuM is a Levy 

Martingale with respect to 0}{ ≥nnZ . 

Let kTM ∧ denote process kM  stopped at T. Then by 

optional sampling theorem for all integers 0≥K : 
[ ] [ ]iZMEiZME KT ===∧ 000 || =0, and therefore: 

[ ]

[ ]

1

0 0
0

0

( ) ( ) | ( ) ( ) |

( ) |

T K

T K k
k

T K

u i E u Z Z i E P I u Z Z i

E u Z Z i

∧ −

∧
=

∧

 
= = − − = 

 
= =

∑  

because: 
 0)( =− uPI  on D.  
Also: 

1)|)( 0 ==∞< iZTP   
and  

[ ] [ ]iZZuEiZZuE TKTK
===∧∞↑ 00 |)(|)(lim   

by dominated convergence. Therefore : 
[ ] )(|)()( 0 ∞=== iT xiZZEiu ϕ . 

So for all Di ∈ : 
  [ ]iZZEx Ti ==∞ 0|)()( ϕ  (14) 
So sinceϕ  is bounded the function  

[ ]iZZEi T =→ 0|)(ϕ  
 is bounded and therefore since  

1)|)( 0 ==∞< iZTP  for all i V∈ ,  
the unique bounded solution of (12) is: 

[ ]iZZEx Ti ==∞ 0|)()( ϕ . 

Remarks: 
1) The proof is –with minor differences-basically the 

same as [8 theorem 5-2.1, pp 180-182]. With some more 
restrictive conditions like positive-ness of ϕ the above 
theorem can be extended as a special case of Maximum 
principle in discrete time.  

2) L is a discrete Laplacian. As a limit the continuous 
case can be considered. There is a continuous counterpart 
for the above theorem: 
Let NU R⊆ be a smooth, bounded domain and  

R→∂U:ϕ a given continuous function. It is known 
from classical PDE theory that there exists a (harmonic) 
function )()(2 UCUCu ∩∈ satisfying the boundary 
value problem: 





∂=
=∆

Uonu
Uonu

ϕ
0

 

Then we have for each point 
Ux ∈ : [ ]))(X()( xTExu ϕ=   

For x+= (.):(.) WX a Brownian motion starting at x . 
For a proof see [9]. 

V. ILLUSTRATION 
A simple example is given to illustrate the results: 

Consider the network of dynamic agents given by Figure 1, 
where {1,2,3} D = is the set of regular nodes and 

{4,5} D =∂  is the set of invariant nodes. We have shown 
the set of invariant nodes by a circle around the nodes. The 
Laplacian matrix of the overall graph is denoted by L and 
the Laplacian of the regular sub-graph is denoted by LR as 
before. 

 
Figure 1 

The matrices L, LR, M, B, P and the vector u as defined 
in previous sections are calculated: 
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=

10
01
00

B  

The differential equations of the system evolution can be 
written as: 

( )R R Rx M L x Bu= − − +  

1 1

2 2

3 3

4

5

0 0 0 2 1 1
0 1 0 1 2 1
0 0 1 1 1 2

0 0
1 0
0 1

x x
x x
x x

ϕ
ϕ

 − −       
       = − + − − +       
       − −       

 
  + ⇒      

 

1 1

2 2 4

3 3 5

2 1 1 0
1 3 1
1 1 3

x x
x x
x x

ϕ
ϕ

−      
      = − +      
      −      

 

At the steady state for Di ∈ : 
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x

  (15) 

Also for }3,2,1{=∈ Di ,  0)( =∗ ixL   or equivalently 

0)( =∗ ixP .  For }5,4{=∂∈ Di : 

ϕ
ϕ
ϕ

ϕ =







=








⇒=

5

4

5

4

x
x

x ii . 

So overall:  

[ ]0( ) |i T
Px on D

x x E Z Z i
on D

ϕ
ϕ


= ⇒ = = ∂

 (16) 

 Solving the system of equations (15) yields: 
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 (17) 

 
 The values of ix ’s can be also obtained from equation (16) 

as will be shown in following. For Di ∈ and Dj ∂∈ let 

ijp  denote [ ]iZjZP T == 0| . Then: 

15 25 35

15

25 15 25

35

35 25

14
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2 2 1/ 2

1 3/ 4
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1/ 41
2

1/ 2
1/ 4
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p
p
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 = +
   

    = + ⇒ = ⇒    
       =
   
   = ⇒   
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 which is the same as (17). 

VI. CONCLUSION 
Invariant nodes have been proposed in the context of a 

network of dynamic nodes. The effects of these invariant 
nodes on the behavior of the regular nodes have been 
studied thoroughly. It has been shown that the resulting 
system under a set of constraints is stable. Also we have 
shown how the behavior of the regular nodes in steady state 
can be regarded as a solution to a certain Dirichlet-type 
problem with boundary values coming from the behavior of 
invariant nodes. An example has been given to clarify the 



 
 

 

approach. As a simple example for the usefulness of 
invariant nodes we can consider a single invariant node. A 
single invariant node can be regarded as a group leader and 
it can be shown that with a single invariant node the group 
will reach a “consensus” which is the value of the “leader”. 
Also invariant nodes can be regarded as adversaries trying 
to break the group’s consensus. Various other behaviors 
can also be regarded as the result of introducing proper 
invariant nodes. The future work is to consider the problem 
setting for the case of changing topology. 
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