
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University

of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN
series originating at the University of Maryland.

Web site  http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Performance Evaluation of Run-to-Run Control Methods in 
Semiconductor Processes

by Chang Zhang and John S. Baras

CSHCN TR 2001-20
(ISR TR 2001-44)



Sponsored by: SRC and NASA

Performance Evaluation of Run-to-Run Control Methods in

Semiconductor Processes

Chang Zhang∗, Hao Deng†and John S. Baras ‡
§

Institute for Systems Research and
Department of Electrical and Computer Engineering

University of Maryland, College Park
College Park, MD, 20742

August 31, 2001

Abstract

Run-to-Run (RtR) control plays an important role in semiconductor manufacturing processes. In this
paper, RtR control methods are classified and evaluated. The set-valued RtR controllers with ellipsoid
approximation are compared with two typical RtR controllers: the Exponentially Weighted Moving
Average (EWMA) controller and the Optimizing Adaptive Quality Controller (OAQC) by simulations
according to the following criteria: A good RtR controller should be able to compensate for various
disturbances, such as small drifts, step disturbances and model errors; moreover, it should be able to
deal with bounds, cost requirement and multiple targets that are often encountered in semiconductor
processes. Based on our simulation results, suggestions on selection of a proper RtR controller for a
semiconductor process are given as conclusions.
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1 Introduction

Run-to-Run (RtR) control plays an important role in semiconductor manufacturing processes [1]-[5], [9]-[11],
[13]-[18]. A RtR controller is a model-based process control system that combines the advantage of both the
statistical process control and the feedback control. The goal of the controller is to reduce the variability of
the process outputs, as measured by the Mean Square Deviations (MSDs) between the process outputs and
the target values [1]. A good RtR controller should be able to compensate for various disturbances such as
small drifts, shifts (step disturbances) and model errors. A drift disturbance, which may be produced by
the equipment aging, change of environment or other factors, causes slow and smooth changes of process
outputs. Different from a drift disturbance, a shift disturbance causes a large change of process outputs in
a few runs. The shift disturbance may be produced by the failure of a component, change of the operator,
etc. A model error is often caused by the coarse estimates of process parameters. A good RtR controller
should also be able to deal with bounds, cost requirement and multiple targets that are often encountered
in real processes.

Generally, a RtR controller is designed in the following way. First, it computes an optimal control based
on the initial process model. The initial process model is usually derived from former off-line experiments
such as using the Response Surface Model (RSM) method [1]. A typical block diagram of a RtR controller is
illustrated in Figure 1. The RtR controller does not modify its recipe during a run because of the following
reasons:

1. Cost. It is usually very expensive to obtain real-time information in a semiconductor process. Discrete-
time measurements are much cheaper.

2. Variability. Frequent changes of inputs to the process may increase the variability of the process
outputs [14].

When the controller is online, the process model within the controller is updated by the model estimator
according to the new measurements from run to run. The optimizer than supplies a new recipe according
to the updated process model. The cost function used by the optimizer is usually a weighted quadratic
function between the process outputs and target values. An important output should be given a large
weight. Different model updating methods lead to different kinds of controllers. In this paper, RtR control
methods are classified and evaluated in some typical semiconductor processes. Suggestions on how to select
a proper RtR controller for a specific semiconductor process are provided.

This paper is organized as follows. Classification of RtR control methods is given in section 2; comparisons
of the set-valued RtR controllers with the Exponentially Weighted Moving Average (EWMA) controller are
given in section 3.1; in section 3.2, one of the set-valued RtR controllers is compared with the Optimizing
Adaptive Quality Controller (OAQC). Finally, conclusions are given in section 4.

2 Classification of RtR Control Methods

Depending on how to update a process model, RtR control methods can be classified into the following
categories.

1. The EWMA method [14]. The EWMA approach is widely used in RtR control for its simplicity and
efficiency to compensate for smooth drifts and other small disturbances. The EWMA method uses a linear
(affine) model to approximate a process:

ŷt = Aut + b̂t, (1)
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Figure 1: Structure of a RtR controller.

where t is the time index (run number), ŷt represents a p by 1 vector of model outputs, A stands for a p by

q fixed “gain” matrix, ut represents a q by 1 vector of inputs and b̂t is a p by 1 vector of model offsets. Let
the measured output vector be yt. The EWMA method only updates the offset vector in the model:

b̂t+1 = (I −W )b̂t +W (yt −Aut), (2)

where I is a unit matrix, weight matrixW = diag([w1...wp]) and 0 < wi < 1, i = 1, ..., p. For more description
about the EWMA method, we recommend readers to [2], [9] and [14]. There are many extensions to the
EWMA method. For example, the Double Exponential Forecasting Filter method [3] had two EWMA
modules. One module was used to update the offset term of the linear model and the other module was
used to predict the drift disturbance. The weight matrix W of the EWMA controller is an important factor
that affects its performance. An Artificial Neural Network (ANN) was used in [15] to adaptively adjust the
weights of the EWMA controller. The neural network had to be trained extensively off-line before it was
deployed online.

2. Least Square Estimation (LSE) method. The process model is updated according to a LSE approach.
Typical examples are the OAQC [4] and the Kalman filter based approach [10]. The OAQC uses a second-
order model to approximate a process:

ŷt = N̂tzt + M̂tT t + b̂t, (3)

where N̂t is a p by 2q + q(q − 1)/2 parameter matrix, zTt = (ut,u
2
t , ui,tuj,t(i < j)) is a 2q + q(q − 1)/2 by 1

vector that contains the quadratic expansion of ut (ui,t, uj,t are components of ut), M̂t is a p by l parameter

matrix, T t is a l by 1 vector of time index t, and b̂t is the p× 1 offset vector [4]. All the parameters (N̂t, M̂t

and b̂t) of the model in the OAQC can be adjusted adaptively using a LSE approach from run to run. For
more details about the OAQC, we recommend readers to [4]. Simulations in [13] showed that the OAQC
had better performance than the EWMA controller did in controlling a nonlinear process. The Kalman filter
based approach uses a linear model to describe a process. Different from an EWMA controller, the Kalman
filter based RtR controller can adaptively adjust both the slope and the intercept terms [10]. Therefore, the
LSE method based RtR controllers may have stronger tracking ability than the EWMA controller.

3. The set-valued method [1], [5], [17], [18]. Due to measurement errors and environment noises, it is
difficult to find an exact process model. The locations of the likely process model parameters for the next
optimization run form a set. We could be quite certain that the parameter vector is somewhere in this set.
The set-valued approach seeks safe estimates of the process model parameters in the possible parameter set
for the next run. The identified process model is insensitive to various noises [1], [17]. The main difficulty of
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designing a set-valued RtR controller is the excessive computational time to calculate the feasible parameter
set. It is also very hard to solve the optimization problem within an irregular parameter set. An outer-
bounding ellipsoid is usually used to approximate the set of likely parameter values; the ellipsoid is used for
its simplicity. An ellipsoid is simply characterized by a vector center and a matrix that describes its size;
for a convex region, an ellipsoid can be used to obtain a satisfactory approximation; a linear transformation
maps an ellipsoid into another ellipsoid. With the ellipsoid approximation, a high-order polynomial model
can be used to describe a process:

ŷt = ΘtXt, (4)

where Θt is a p by n parameter matrix, Xt is a n by 1 vector of inputs (e.g., XT
t = (1,ut,u

2
t , ui,tuj,t(i <

j),u3
t , ...). Therefore, the ellipsoid algorithm based RtR controllers may describe a nonlinear process more

accurately than linear model and second-order model based RtR controllers.

At each iteration, the ellipsoid algorithm returns an outer bounding ellipsoid that contains the true
parameter vector with high probability. If the vector center of the ellipsoid is taken as the estimate of
the process parameter vector, the explicit model update is implemented and it leads to a model-reference
method. If we search for the worst expected output that may be produced by a vector within the ellipsoid
and then minimize the worst-case cost, a worst-case controller is obtained. There are mainly two ellipsoid
based algorithms available for RtR control: the Modified Optimal Volume Ellipsoid (MOVE) algorithm [17],
[18] and the Dasgupta Huang Optimal Bounding Ellipsoid (DHOBE) algorithm [6]. For details of these two
algorithm based RtR controllers, we recommend readers to [5], [17] and [18]. The RtR controller based on
the MOVE algorithm is called the SVR-MOVE controller [17]. The RtR controller based on the DHOBE
algorithm and the model-reference approach is called the DHOBE-MR controller [5]. The RtR controller
based on the DHOBE algorithm and the worst-case approach is called the DHOBE-SV controller [5]. Both
the SVR-MOVE controller and the DHOBE-MR controller use the center of the ellipsoid as the estimate of
the process parameter vector. The DHOBE-SV controller uses the vector within the ellipsoid that produces
the worst-expected cost as the estimate of the parameter vector.

4. Other RtR control methods using nonlinear models to describe processes. They include the machine
learning method and the neural-network based method, etc. A typical example of the machine learning
based approach is the Knowledge Based Interactive Controller (KIRC) [13]. The KIRC uses leaves in a
classification decision tree to suggest control actions. The algorithm generates a decision tree by using an
information space with attribute tests. The starting operating point is chosen from the largest leaf in the
decision tree, where all outputs are inside the target range. A comparative simulation [13] showed that the
KIRC was only applicable to processes that could be approximated by linear models. The ANNs have great
potential in modeling severe nonlinear semiconductor processes [7], [8], [12]. But a drawback of the ANN
method is that it may not supply an explicit model for the process. Thus it may be difficult for one to apply
optimal control to the process. A Taylor expansion was used in [16] to find a linear equation to describe the
ANN model. The authors believe that a higher-order Taylor extension may produce better results.

3 Performance Evaluation of RtR Controllers by Simulation

In this section, we compared the set-valued RtR controllers with two other popular RtR controllers: the
EWMA controller and the OAQC. Because the detailed design of the OAQC was not available to us, we
simulated one of the set-valued RtR controllers, the DHOBE-MR controller under the same environment as
that of the OAQC. Because the objective of a RtR controller is to maintain the process outputs on targets,
the main performance metric is RMSD(yi− Ti), the square root mean square deviation of the process’s ith
output yi from its target value Ti. The smaller its value, the better. In the rest of the paper, we will use the
notation RMSDi for simplicity.
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3.1 Comparison of the Set-valued RtR Controllers with the EWMA Controller

The set-valued RtR controllers that we evaluated included the SVR-MOVE controller, the DHOBE-MR
controller and the DHOBE-SV controller. They were compared with the EWMA controller. The platform
we used was the Chemical Mechanical Polishing (CMP) process. CMP process is of critical importance in
semiconductor manufacturing [2]. In the CMP process, a wafer is affixed to a wafer carrier and pressed
facedown on a rotating platen holding a polishing pad. A slurry with abrasive material is dripped onto the
rotating platen during polish. The typical process goal is to achieve “global” planarization [2].

The underlying process model was given by:

yt = −1382.6 + 50.18u1,t − 6.65u2,t + 163.4u3,t + 8.45u4,t + wt + δt, (5)

where t was the time index (run number), yt was the process output and ui,t, i = 1, 2, 3 and 4 were the
inputs, wt was a normally distributed random variable with variance 665.64 and δ = −17 was the drift size
at each run. The units were dropped for simplicity. The target value was set as 1700. The inputs were
constrained in the range: 0 ≤ u1,t ≤ 2, 0 ≤ u2,t ≤ 200, 0 ≤ u3,t ≤ 30 and 0 ≤ u4,t ≤ 50 respectively. The
controllers’ objective was to maintain the output yt as close to the target value as possible.

In the following three scenarios, we tested the performance of RtR controllers with respect to different
noises.

Scenario 1

First, we assumed that the controllers had perfect knowledge of the process model parameters at the
beginning. The initial process model used by the controllers was:

ŷt = −1382.6 + 50.18u1,t − 6.65u2,t + 163.4u3,t + 8.45u4,t, (6)

where ŷt is the predicted process output. The noises (wt and δ) were unknown to the controllers. The
controllers were fully tuned to compensate for the disturbances based on post-measurements. Because the
weight of the EWMA controller played an important role in its performance, we listed the simulation results
for different weights of the EWMA controller in the first row of Table 1. The RMSD values for the SVR-
MOVE controller, DHOBE-MR controller, DHOBE-SV controller and the uncontrolled process were given in
the first row of Table 2. The simulation result when the optimal weight value (0.5) of the EWMA controller
was chosen is shown in Figure 2. The three horizontal straight dashed lines give the target and the 3σ
bounds, where σ = 25.8 is the standard deviation of the Gaussian noise. The uncontrolled process, denoted
by the “*-” symbol, diverged due to the drift disturbance. From Figure 2 and data in Table 2, one can see
that the SVR-MOVE controller, DHOBE-MR controller and EWMA controller with a proper weight worked
well in this case. The DHOBE-SV controller had larger variability than the other controllers. It was due to
the fact that the controller is pessimistic or conservative to produce the recipe.

Scenario 2

In this scenario, a shift disturbance was added to the underlying process (i.e., the disturbances included
unknown drift, unknown shift and unknown Gaussian noise). The occurrence of the shift disturbance and
its magnitude were unknown to the controllers a priori. The initial process model used by the controllers
was the same as that in scenario 1. As in scenario 1, we computed the RMSDs for different weights of the
EWMA controller and listed the results in the second row of Table 1. The RMSD values for the SVR-MOVE
controller, DHOBE-MR controller, DHOBE-SV controller and the uncontrolled process were given in the
second row of Table 2. Figure 3 shows the simulation results when the weight of the EWMA controller was
optimal (0.6 in this scenario). Again, the uncontrolled process diverged. The SVR-MOVE controller and
DHOBE-MR controller returned the output of the process back to target quickly. The EWMA controller
needed more steps to do so. The process controlled by the DHOBE-SV controller still had large variability.
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Figure 2: Comparison of the set-valued RtR controllers with the EWMA controller in scenario 1.
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Figure 3: Comparison of the set-valued RtR controllers with the EWMA controller in scenario 2.
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Figure 4: Comparison of the set-valued RtR controllers with the EWMA controller in scenario 3.

Weight 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Scenario 1 82.13 52.60 42.44 37.75 37.29 39.52 41.50 45.37 59.17
Scenario 2 269.42 186.09 157.19 140.62 133.38 132.39 138.51 149.07 160.79
Scenario 3 157.88 132.27 121.24 122.15 133.13 148.59 197.90 366.64 1040.67

Table 1: RMSD values of the EWMA controller in three scenarios

The gains of the SVR-MOVE controller and the DHOBE-MR controller over the EWMA controller with the
best weight (0.6) were 29.45% and 25.30% respectively.

Scenario 3

In real life, the underlying process model parameters are unknown. To address this model uncertainty,
in this scenario, the initial process model parameters used by the controllers were set at 80% of the true
parameter values of the underlying process. Hence, the initial process model was:

ŷt = −1106.08 + 40.144u1,t− 5.32u2,t + 130.72u3,t + 6.76u4,t (7)

This large model error should cause the output of the process to change abruptly at the beginning of
the simulation. The RMSD values of the EWMA controller with respect to different weights were listed
in the third row of Table 1. The RMSD values for the SVR-MOVE controller, DHOBE-MR controller,
DHOBE-SV controller and the uncontrolled process were given in the third row of Table 2. The simulation
results are shown in Figure 4. The weight of the EWMA controller was 0.3 in this figure. Still, the SVR-
MOVE controller and the DHOBE-MR controller performed better than the other two controllers. Even
the DHOBE-SV controller performed better than the EWMA controller in this case. The gains of the SVR-
MOVE controller and the DHOBE-MR controller over the EWMA controller with the best weight (0.3) were
28.27% and 29.84% respectively.
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Scenario SVR-MOVE DHOBE-MR DHOBE-SV Uncontrolled
1 36.70 39.25 57.36 179.18
2 93.40 98.90 158.92 523.36
3 86.96 85.06 112.98 284.60

Table 2: RMSD values of the set-valued RtR controllers in three scenarios

3.2 Comparison of the DHOBE-MR Controller with the OAQC

Detailed descriptions of the OAQC can be found in [4]. To make the comparison between the DHOBE-MR
controller and the OAQC fair, we used exactly the same experimental conditions as those described in [4] 1.
The platform used was another CMP process. The underlying “real” process was given by [4]:

y1,t = 1563.5 + 159.3u1,t − 38.2u2,t + 178.9u3,t + 24.9u4,t − 67.2u1,tu2,t − 46.2u2
1,t

−19.2u2
2,t − 28.9u2

3,t − 12u1,tt
′ + 116u4,tt

′ − 50.4t′ + 20.4t′2 + ε1,t (8)

y2,t = 254 + 32.6u1,t + 113.2u2,t + 32.6u3,t + 37.1u4,t − 36.8u1,tu2,t + 57.3u4,tt
′ − 2.42t′ + ε2,t, (9)

where
t′ = (t− 53)/53, ε1,t ∼ N(0, 602), ε2,t ∼ N(0, 302), and
y1,t was the removal rate; its target value was 2000.
y2,t was the with-in wafer non-uniformity; its target value was 100.
u1,t was the platen speed.
u2,t was the back pressure.
u3,t was the polishing down-force.
u4,t was the profile.

The process model was rather complex as it included both quadratic and two factor interaction terms.
The inputs u1,t, u2,t, u3,t and u4,t were scaled to fit in the range [−1, 1]. For output y1,t, the larger the value,
the better the performance; and for y2,t, the smaller the value, the better the performance.

Following [4] to approximate the underlying nonlinear process, we used exactly the same two reduced
models as in [4], a quadratic form model and a linear form model respectively. These reduced models provided
us with an opportunity to test the controllers’ robustness to model errors for nonlinear processes.

1) Approximate the Underlying Process – A Quadratic Model (Scenario 1)
The “real” process model of equations (8) and (9) was unknown to the DHOBE-MR controller. As in [4],
the following quadratic model was used to approximate the “real” process:

ŷ1,t = 1600 + 150u1,t − 40u2,t + 180u3,t + 25u4,t − 30u2
1,t − 20u2

2,t

−25u2
3,t − 60u1,tu2,t − 0.9t (10)

and
ŷ2,t = 250 + 30u1,t + 100u2,t + 20u3,t + 35u4,t − 30u1,tu2,t + 0.05t (11)

As easily seen, the approximate model was different from the underlying process model, which meant that
there existed a model error at the beginning of the control experiment. Moreover, the noises in equations
(8) and (9) were unknown to the DHOBE-MR controller, so that the controller had to compensate for such
disturbances by post-measurements. Our simulation results of the process (simulated by equations (8) and

1Because the parameters of the OAQC were unknown, we could not replicate the OAQC results of [4] in our simulations.
Instead, the simulation data of the OAQC performance were used as appeared in [4]
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Scenario Method ȳ1 ȳ2 Sy1 Sy2 RMSD1 RMSD2

1 OAQC 1719.7 168.4 70.4 40.1 288.9 79.2
1 DHOBE-MR 1754.7 157.3 84.5 35.0 259.7 67.5
2 OAQC 1718.2 165.7 72.1 42.0 291.0 78.2
2 DHOBE-MR 1781.9 165.0 84.5 36.1 234.2 74.8
3 OAQC 1661.2 189.2 89.2 43.5 350.2 99.2
3 DHOBE-MR 1741.4 189.1 108.7 35.6 280.8 96.0

Table 3: Performance measure (RMSD values) of the OAQC and the DHOBE-MR controller for the three
scenarios. The response target values for y1,t and y2,t were equal to 2000 and 100 respectively. (The data
for the OAQC were from [4].)

(9)) controlled by the DHOBE-MR controller (designed using the reduced model of equations (10) and (11))
are shown in Figure 5 (a). The two dashed lines in the plot are the outputs of the uncontrolled process. The
solid lines in the plot with symbols (i.e., circles or squares) depict the controlled outputs. One can see that
the controlled process outputs (the removal rate and the non-uniformity) are closer to the targets than the
uncontrolled outputs during the entire simulation run.

2) Approximate the Underlying Process – A Linear Model (Scenario 2)
In this scenario, following [4], we used a linear model to fit the underlying process at the beginning:

ŷ1,t = 1600 + 150u1,t − 40u2,t + 180u3,t + 25u4,t − 0.9t (12)

ŷ2,t = 250 + 30u1,t + 100u2,t + 30u3,t + 35u4,t + 0.05t (13)

As the underlying process was approximated well by the linear model (based on the results of [4] and our
own simulations), the DHOBE-MR controller based on this model also performed well (Figure 5 (b)).

3) A Quadratic Model with Step Disturbances (Scenario 3)
In this simulation, following [4], two shift disturbances (step disturbances) were fed into the underlying
process. The quadratic initial model was used and the constraints were the same as before. The shift for
the first response y1,t happened at t = 20 with magnitude -100. At t = 30, another shift occurred with
magnitude 50 for y2,t

2. Our simulation results are shown in Figure 5 (c). The DHOBE-MR controller
performed well in this case also.

The final results with regard to the statistical variance analysis are listed in Table 3. The data on the
OAQC performance provided here follow precisely the results in [4]. The following data are also listed in
Table 3 for the convenience of comparison:

• ȳi: the mean of the ith output of the process.

• Syi : the standard deviation of the ith output of the process. The smaller its value, the better.

Table 3 shows that the mean values of the process responses (outputs) controlled by the DHOBE-MR
controller are closer to the target values than those of the OAQC. The RMSD values of the outputs controlled
by the DHOBE-MR controller are smaller than those of the OAQC. Only the standard deviations of response
y1,t controlled by the DHOBE-MR controller are larger than those of the OAQC. But standard deviation
is not the performance metric of interest. Therefore, the DHOBE-MR controller performed slightly better
than the OAQC in all scenarios. For more comparisons of the DHOBE-algorithm-based RtR controllers with
the OAQC, we refer readers to [5].

2The magnitudes of these shifts were too small to be discerned with the other noises in [4]. However, to make the comparison
fair, we used the same values as in [4].
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Figure 5: A CMP process controlled by the DHOBE-MR Controller. The outputs are the removal rate and
the non-uniformity respectively. (a) Scenario 1: A quadratic model was used to approximate the underlying
process. (b) Scenario 2: A linear model was used to approximate the underlying process. (c) Scenario 3: A
step disturbance with magnitude -100 happened to response y1,t at run 20; another step disturbance with
magnitude 50 happened to response y2,t at run 30.
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4 Conclusions

RtR control methods are classified and compared in this paper. Depending on the property of a semicon-
ductor process, we can select a proper RtR control method. For a process that can be approximated well by
a linear model, an EWMA controller usually works well and it is unnecessary to apply more complex control
methods. Many semiconductor processes are subjected to small drift disturbances or other small-sized noises.
These perturbations can be compensated by using the EWMA method or some other linear-model-based
methods. The linear-model-based RtR controllers are usually simple to implement and very efficient to deal
with such small disturbances. When there exists a large deviation, a rapid mode can be added to the EWMA
controller [14]. The rapid mode may be used to return the process outputs quickly back to target values.
However, to the authors’ best knowledge, there are no explicit formulae for applying the rapid mode.

Many plasma processes have been shown to exhibit small to large nonlinearities in behavior. The pho-
toresist process requires a dynamic process model too. In this case, it may be necessary to deploy nonlinear
model based RtR controllers. The LSE method based RtR controllers can more accurately describe a non-
linear process than the EWMA controller in general. They are also more complex to design than the EWMA
controller. The set-valued RtR controllers are even more complex than the LSE method based RtR con-
trollers. They can use a high-order polynomial model to fit a process. Hence, the set-valued RtR controllers
may provide a better fit for a process than the LSE method based RtR controllers.

In the application of the set-valued RtR controllers, the SVR-MOVE controller and the DHOBE-MR
controller are recommended. They had good performance under various conditions in our simulations. The
SVR-MOVE controller and the DHOBE-MR controller performed especially well when there existed large
step disturbances and model errors. The DHOBE-SV controller is more conservative and may cause large
variability. This controller is usually not recommended in application.

The other nonlinear-model-based RtR controllers such as the ANN-based RtR controllers may provide
an even better fit for a severe nonlinear process than the set-valued RtR controllers. But in application,
the other nonlinear-model-based RtR controllers have not shown superb performance. In a comparative
simulation in [18], the SVR-MOVE controller had slightly better performance than an ANN-based RtR
controller. Therefore, more work needs to be done to improve the other nonlinear-model-based RtR control
methods.
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