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Abstract—Wireless Sensor Networks (WSNs) have been widely
recognized as a promising technology that can enhance various
aspects of today’s electric power systems, making them a vital
component of the smart grid. Efficient aggregation of data
collected by sensors is crucial for a successful WSN-based smart
grid application. Existing works on the Minimum Latency Aggre-
gation Scheduling (MLAS) problem in WSNs usually adopt the
protocol interference model, which is a tremendous simplification
of the physical reality faced in wireless networks. In contrast,
the more realistic physical interference model has been proved
to have the potential to increase the network capacity. In this
paper, we propose a distributed algorithm to minimize the data
aggregation latency under the physical interference model, which
jointly considers routing, power assignment and transmission
scheduling. We theoretically prove that our algorithm solves
the MLAS problem correctly and the latency is bounded by
3(K + 1)2(∆ + log

√
2

K+1 ) + 6K2 + 4K + 2, where K is a model-specific
constant and ∆ is the logarithm of the ratio between the lengths
of the longest and shortest links in the network. Simulation
results demonstrate that our algorithm can significantly reduce
the aggregation latency compared to other schemes under the
physical interference model. In networks where n nodes are
uniformly distributed, our algorithm achieves an average latency
between O(log3 n) and O(log4 n). We also discuss how to improve
the energy efficiency through load-balancing techniques.

I. Introduction

The collaborative and low-cost nature of WSNs brings
significant advantages over traditional communication tech-
nologies used in today’s electric power systems, including
rapid deployment, self-organization, flexibility, and aggregated
intelligence via parallel processing [1]. Wireless sensor motes
can be installed on smart grid equipment and collect the critical
parameters for remote system monitoring, smart metering,
equipment fault diagnostics, etc. [2]–[5].

To support real-time widespread sensing and reduce energy
consumption, efficient aggregation of information collected
by sensors is crucial for a successful WSN-based smart grid
application, which aims to reduce the latency of data aggrega-
tion. The Minimum Latency Aggregation Scheduling (MLAS)
problem is defined as follows. Given a wireless sensor network
that consists of a set of sensor motes and a base station,
assuming each mote has a piece of data to be aggregated
and transmitted to the base station, the MLAS problem is to
design a transmission schedule for all motes such that all data
are received successfully and the total number of timeslots
for link transmissions is minimized. Each data packet can be
completely transmitted in one timeslot.

Extensive research has been done on the MLAS problem,
such as [6]–[9], using both single channel and multiple
channels. Most existing works usually adopt the protocol
interference model that is oversimplified and thus does not
accurately reflect wireless interferences in reality. In contrast,
the physical interference model is more realistic and captures
the cumulative interference between links more accurately.
Under the physical interference model, a transmission is
successful if the signal-to-noise-plus-interference ratio (SINR)
at the receiver exceeds a certain hardware-specific threshold. It
has been proved to have the potential to increase the network
capacity and thus reduce the scheduling latency [10]–[12].
However, due to the challenge of handling the cumulative
interference effect, only a few previous works in the literature
have studied data aggregation under this model [13]–[16].

In this paper, we propose a distributed algorithm for the
MLAS problem under the physical model in WSNs, which
jointly considers routing tree construction, power assignment
and transmission scheduling. Unlike [13] and [14] that adopt
the uniform power assignment scheme (all nodes transmit with
the same transmission power), we consider the linear power
assignment scheme, which assigns the power level of each
sender proportionally to the link’s path-loss factor and can
further increase the network capacity.

The performance of our algorithm is both analyzed theoret-
ically and studied experimentally. We prove that our algorithm
can solve the MLAS problem correctly and achieves a latency
bound of 3(K + 1)2(∆ + log

√
2

K+1 ) + 6K2 + 4K + 2. Here, K is
a model-specific constant depending on the SINR threshold
and the path-loss exponent, and ∆ is the logarithm of the ratio
between the lengths of the longest and shortest links in the
network. Numerical results demonstrate that our algorithm can
significantly reduce the aggregation latency compared to the
algorithm proposed in [15] that achieves the same asymptotic
bound of O(∆), but with a much larger hidden constant. In
networks where n sensor motes are uniformly distributed,
our algorithm achieves an average latency between O(log3 n)
and O(log4 n) even under high SINR requirements, while [15]
achieves an average latency between O(log5 n) and O(log6 n).
In addition, the computation in our algorithm is much simpler
as compared to [15], which makes our solution more suit-
able for resource-constrained sensor motes. Furthermore, we
discuss how to improve the energy efficiency through load-
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balancing techniques. To the best of our knowledge, this is
currently the best distributed algorithm for the MLAS problem
under the physical interference model in the literature.

The rest of this paper is organized as follows. We dis-
cuss related work in Section II, and formally describe our
system model and problem definition in Section III. In Sec-
tion IV, we present the distributed joint tree construction,
power assignment and scheduling algorithm. The correctness
and performance of our algorithm are theoretically analyzed
and experimentally studied in Section V. Finally, Section VI
concludes this paper and future work is discussed.

II. RelatedWork

A. WSN-based Smart Grid

The harsh and complex electric-power-system environments
pose great challenges in the reliability of WSNs in smart grid
applications. An extensive survey [17] discussed the current
technologies and possible future directions for the smart grid.
Gungor et al. [1] performed a comprehensive experimental
study and field tests on IEEE 802.15.4-compliant WSNs in
real-world power delivery and distribution systems, which
provided valuable insights and design guidance for WSN-
based smart grid applications. Majumder et al. [5] proposed a
Find Reliable Link scheme to ensure reliable communications
on error-prone wireless channels, which enables the system to
make a quick recovery from node failures or link failures.

Araújo et al. [4] presented a hybrid MAC and control
architecture for scalable control over large complex systems
with packet drops, where a small number of control loops
with high demand of attention are scheduled in a contention-
free scheme and well-regulated loops are scheduled in a lossy
asynchronous contention-access scheme. iHEM, an in-home
energy management system developed in [3], can maintain
demand-supply balance and reduce electricity expenses effi-
ciently in the presence of local energy generation capability,
prioritized appliances, and real-time pricing. The potential
applications and challenges of employing wireless multimedia
sensor and actor networks for the smart grid are discussed
in [2], which can provide much more information than scalar
sensor measurements.

B. Link scheduling and Data Aggregation

Link scheduling under the physical interference model has
been studied extensively in recent years. Goussevskaia et
al. [18] proved the NP-completeness of this problem and
provided an O(log n) approximation algorithm in [19] for a
special case, in which a set of single-hop transmission requests
is given and the uniform power scheme is exploited.

Moscibroda et al. [11] demonstrated that the network ca-
pacity can be greatly increased using the non-linear power
assignment scheme (the power level of each node is as-
signed according to non-liner functions) and presented a novel
scheduling algorithm to schedule a strongly connected set of
links for multi-hop communications in time O(log4 n). Later,
they applied link scheduling to the data gathering problem
in WSNs, achieving an O(log2 n) latency [12]. They also

studied topology control under the physical interference model
and obtained a theoretical upper bound on the scheduling
complexity for arbitrary topologies [10].

The MLAS problem under the physical interference model
is first studied by Li et al. in [13], which introduced a schedul-
ing algorithm with a latency bound of O(R +Λ) exploiting the
uniform power scheme, where R is the network radius and Λ

is the maximum node degree in the communication graph. The
algorithm in [14] achieves the same latency bound, but with
an improved hidden constant by dividing the MLAS problem
into the Maximum Weighted Independent Set of Links sub-
problem and the Minimum Latency Link Scheduling sub-
problem. Lam et al. [16] made the milestone contribution
to prove the NP-completeness of the MLAS problem, and
provided an algorithm yielding a latency bounded by O(R+Λ)
in the dual power assignment scheme, in which each node is
assigned one of two power levels.

Li et al. [15] presented work closest to ours. Using the linear
power scheme, they proposed a distributed algorithm with a
latency bound of O(∆) in networks of arbitrary topology, and a
centralized algorithm with a latency bounded by O(log3 n) that
is the best result in the literature. Our algorithm achieves the
same latency bound, but with a much smaller hidden constant,
simpler computations and much better performance in practice.

III. SystemModel
We consider a sensor network consisting of n nodes V =

{v1, . . . , vn−1, v∗} located arbitrarily in the plane, where v∗ is the
base station that is responsible to collect data from all sensors.
Each sensor generates exactly one packet for each measure-
ment and will aggregate its own data with that received from
other sensors before transmitting it. The Euclidean distance
between two nodes vi and v j is denoted by d(vi, v j) and the
maximal distance between any two nodes in the network is
denoted by D. For simplicity and without loss of generality,
we assume that the minimal distance between any two nodes
is 1 and we define ∆ = log dmax as the link length diversity.

We assume that time is divided into synchronized slots
of equal length. Each sensor mote is assigned one timeslot
and a power level in that timeslot for its transmission. The
power assignment P determines the power level Pv of each
sensor node v ∈ V\{v∗}. An aggregation schedule S =

{S 1, . . . , S L} determines which nodes will transmit in each
timeslot, where S t ⊆ V\{v∗} (t = 1, . . . , L) contains all the
nodes scheduled to transmit in timeslot t and L is the total
time span for the schedule. We adopt the physical interference
model for wireless communications, in which the received
power on the medium is assumed to decay with distance at
an exponential rate with path-loss exponent α > 2. Whether a
packet is received successfully at the receiver depends on the
received signal strength, the background noise level, and the
cumulative interference caused by simultaneously transmitting
nodes. Formally, a packet from s is successfully received by r
if the SINR at r is above a certain threshold β, i.e.,

Ps/d(s, r)α

N0 +
∑

v∈S t\{s} Pv/d(v, r)α
≥ β (1)
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where N0 is the background noise.
The network topology is organized as a tree structure for

routing in data aggregation, whose root node is the base
station. A valid aggregation schedule should satisfy all the
following conditions:

1) Any sensor node should be scheduled exactly once:⋃L
t=1 S t = V\{v∗} and S i ∩ S j = ∅ (∀i , j).

2) A non-leaf node must be scheduled after all its child
nodes: ∀r ∈ S i, s ∈ S j and r = p(s), we must have i > j,
where p(s) is the parent of node s.

3) All the transmissions must be successful, i.e., the SINR
at the receiver of each transmission must be strong
enough to decode the packet: ∀t, ∀s ∈ S t and r = p(s),
inequality (1) must be satisfied.

The MLAS problem studied in this paper can be formally
defined as follows: given a set V of sensor nodes and the base
station, and their locations, construct an aggregation tree T , a
power assignment P and an aggregation schedule S satisfying
the above three conditions, such that the total number of
timeslots L is minimized.

IV. Power Assignment and Aggregation Scheduling

In this section, we first present our distributed joint rout-
ing tree construction, power assignment and link scheduling
algorithm to solve the MLAS problem under the physical
interference model. Then we discuss how to improve its energy
efficiency through load-balancing techniques.

A. Distributed Algorithm

Our distributed algorithm applies a cluster-based aggrega-
tion mechanism. At the beginning, sensor motes in each small
area form a cluster with short transmission links. After the
cluster head in each cluster has aggregated data from all
the members, these cluster heads form larger clusters with
longer transmission links. This process repeats until the whole
network is covered by a single cluster.

The complete algorithm is shown in Fig. 1, which proceeds
in phases, each phase corresponding to an iteration of the out-
ermost loop. The purpose of each phase is to gradually reduce
the number of active nodes in A. In Phase k (k = 1, 2, . . .), we
apply the grid partition to divide the whole network into square
cells of side length l = 2k

√
2
, which means that the maximum

distance between nodes in the same cell is 2k. Then we mark
all the cells using (K + 1)2 colors, guaranteeing that cells of
the same color are separated by at least Kl, as shown in Fig. 2.
Nodes in the same cell form a cluster and one node is selected
as the cluster head.

Each phase consists of at most (K +1)2 rounds. The purpose
of each round is to schedule the nodes in the cells of the
same color sequentially. In Round i, one link (if it exists) is
selected from each cell of Color i, and they are scheduled
in a new timeslot. The transmission power of the sender of
the link

−−−−→
(v, h j) is set to be µd(v, h j)α, where h j is the cluster

head of that cell. The intuition is that when the cells of
the same color are sufficiently far away from each other, all

Input: Node set V , the base station v∗ and their locations
Output: Tree link set T , node powers P and schedule S

1: A ← V\{v∗}; k ← 1; t ← 1; T ← ∅; P← ∅; S ← ∅;

2: K ←
(
1 + 4β

(
α
(
1+2

α
2
)

α−1 + π
2(α−2)

)) 1
α

; µ← N0βKα;

3: while |A| > 1 do . Phase k
4: Partition the network with cells of side length 2k

√
2
;

5: Mark the cells using (K + 1)2 colors;
6: for i = 1→ (K + 1)2 do
7: notEmpty← true; . Round i
8: while notEmpty do
9: S t ← ∅; . Timeslot t

10: for all Cell j with Color i do
11: Assign any node h j as the head if no head yet;
12: Select any non-scheduled cluster member v;
13: S t ← S t ∪ {v}; |A| ← |A|\{v}; T ← T ∪ {

−−−−→
(v, h j)};

14: Assign transmission power: Pv ← µd(v, h j)α;
15: end for . Timeslot t is filled up
16: if S t , ∅ then
17: S ← S ∪ {S t}; t ← t + 1;
18: else
19: notEmpty← false;
20: end if
21: end while . Round i finished
22: end for
23: k ← k + 1; . Phase k finished
24: end while
25: w← the only node in A; Pw ← µd(w, v∗)α;
26: S t ← A; T ← T ∪ {

−−−−−→
(w, v∗)}; S ← S ∪ {S t};

Fig. 1. Distributed power assignment and aggregation scheduling

2k
√

2

K

Fig. 2. Grid partition and coloring in Phase k with side length 2k
√

2

these link transmissions will be successful due to the limited
cumulative interference at the receivers (proved in Theorem 1).
This process repeats until all the links in the cells of Color i
have been scheduled. For each scheduled link, its sender is
removed from A.

After Phase k, A contains only the cluster heads of the
cells in Phase k. In Phase k + 1, the network is covered by
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cells of side length 2k+1
√

2
and a new head is selected for data

aggregation in each cell. In the last phase (when the outermost
loop finishes), only one node will remain, which has collected
all the data in the network, and will transmit the aggregated
result to the base station in one hop. An example of a small
sensor network that can be processed in 4 phases is provided
in Fig. 3 to illustrate our algorithm. As shown in [15], the
algorithm can be implemented in a fully distributed fashion.

Phase 1: [20, 21] cells in 82 rounds Phase 2: [21, 22] cells in 42 rounds

Phase 3: [22, 23] cells in 22 rounds Phase 4: [23, 24] cells in 1 rounds

Fig. 3. Example: a small network with D = 24
√

2
. Nodes in the first phase

are not shown here for clarity. Black nodes are cluster heads.

B. Load-Balancing for Energy Efficiency
In [15], the node closest to the base station is selected as the

cluster head in each cell. The main drawback of this method is
that the lifetime of the cluster head is significantly shortened
due to its large energy dissipation compared to the cluster
members. To solve this problem, many dynamic cluster-based
routing algorithms for energy efficiency have been proposed.
In this paper, we apply a load-balancing mechanism based on
the residual energy on each node. Since many algorithms are
available in the literature, we only briefly describe the main
steps here.

After the cluster head h ∈ S t1 has served for a certain time,
which is an application-specific defined parameter, it initiates
the procedure to select a new cluster head in the cell. The
node h∗ ∈ S t2 with the most residual energy will become
the new cluster head. Each cluster member v (including h)
sets µd(v, h∗)α as its new transmission power. Node h∗ sets its
transmission power to µd(v, p(h))α, where p(h) is the parent
of h in the aggregation tree. Then h∗ and h transmit in
timeslot t1 and t2, respectively. Other nodes in the network
are not affected and the resulting scheduling is still valid (by
Theorem 1). Autonomous fault recovery from node failures
can be achieved in a similar way.

V. Performance Analysis
In this section, we first prove the correctness of the proposed

scheduling algorithm and analyze the bound of data aggrega-

tion latency. Then we briefly compare the performance of our
method with another important algorithm in the literature.

A. Correctness

Theorem 1 (Correctness): The algorithm in Fig. 1 can con-
struct a valid data aggregation tree and correctly schedule all
the transmissions under the physical model with:

K =

1 + 4β

α
(
1 + 2

α
2

)
α − 1

+
π

2(α − 2)




1
α

and µ = N0βKα (2)

Proof: From [15], we know that the resulting aggregation
tree is valid, satisfying Condition (1) and (2) described in
Section III. We now prove that all transmissions are successful
under the physical interference model (Condition (3)).

Consider any link
−−−→
(s, r), where the sender s is scheduled in

timeslot t (i.e., s ∈ S t). For ∀v ∈ S t\{s}, r and v are located in
cells of the same color and their distance d(v, r) ≥

√
i2 + j2Kl,

where −∞ < i, j < ∞ (i and j cannot both be zero) and l is the
side length of a cell in the current grid partition. Obviously,
d(s, r) ≤

√
2l because they are located in the same cell. Since

at most one node is transmitting in each cell in timeslot t, we
get the cumulative interference I+ at the receiver r from all
the other nodes transmitting in timeslot t as follows:

I+ =
∑

v∈S t\{s}

Pv

d(v, r)α
≤

∞∑
i=−∞

∞∑
j=−∞

N0βKα
(√

2l
)α( √

i2 + j2Kl
)α

= N0β2
α
2

∞∑
i=−∞

∞∑
j=−∞

(√
i2 + j2

)−α
= 4N0β2

α
2

1 +

∞∑
i=2

i−α + 2−
α
2 + 2

∞∑
i=2

(√
1 + i2

)−α
+

∞∑
i=2

∞∑
j=2

(√
i2 + j2

)−α
≤ 4N0β2

α
2

α
(
1 + 2−

α
2

)
α − 1

+
π2−

α
2

2(α − 2)


= 4N0β

α
(
1 + 2

α
2

)
α − 1

+
π

2(α − 2)


Substituting the above inequality in inequality (1), we get the
SINR at the receiver r as follows:

S INR =
Ps/d(s, r)α

N0 + I+

≥
N0βKα

N0 + 4N0β

(
α
(
1+2

α
2
)

α−1 + π
2(α−2)

)
=

βKα

1 + 4β
(
α
(
1+2

α
2
)

α−1 + π
2(α−2)

) = β

Therefore, each link transmission is successful under the
physical interference model.
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B. Aggregation Latency

Lemma 1: If the minimum distance between any two nodes
is 1, there can be at most 6 nodes within a cell in the grid
partition in the first phase.

Proof: We use the Groemer inequality [9]: suppose that C
is a compact convex set and U is a set of points with mutual
distances at least 1, then

|U ∩C| ≤
area(C)
√

3/2
+

peri(C)
2

+ 1

where area(C) and peri(C) are the area and perimeter of C
respectively.

In the grid partition in the first phase, the side length of
each cell is

√
2. Then we derive

|U ∩C| ≤
2
√

3/2
+

4
√

2
2

+ 1 = 6.1378 < 7

Therefore, there can be at most 6 nodes in each cell in the
first phase.

Lemma 2: In the algorithm in Fig. 1, there can be at most
log

√
2D

K+1 phases that consist of exactly (K + 1)2 rounds.
Proof: Since the maximum distance between any two

nodes is D, the whole network can be covered by a square
with side length D. In Phase i, the side length of each cell
is 2i
√

2
. Thus the number of cells in each row (or column) is

√
2D
2i . If Phase i consists of exactly (K + 1)2 rounds, we must

have
√

2D
2i ≥ K + 1. Thus we derive i ≤ log

√
2D

K+1 , which means
there can be at most log

√
2D

K+1 such phases.
Theorem 2 (Latency Bound): The algorithm in Fig. 1 can

achieve an upper-bound on latency of 3(K + 1)2∆ + 3(K +

1)2 log
√

2
K+1 + 6K2 + 4K + 2 timeslots, where ∆ = log D and K

is a constant given in equation (2).
Proof: The data aggregation latency consists of three parts

based on different phases:
i) In Phase 1, we know that there can be at most 5

links transmitting to the head node in each cell from
Lemma 1. Since all the cells can be marked using
(K + 1)2 colors, Phase 1 consists of (K + 1)2 rounds,
one for each color. In each round, the links selected from
cells of the same color can transmit simultaneously from
Theorem 1. Therefore, at most 5(K + 1)2 timeslots are
needed to schedule all cells in Phase 1.

ii) From Lemma 2, we know that (K+1)2 rounds are needed
for each phase i (2 ≤ i ≤ log

√
2D

K+1 ). Since each cell
in Phase i contains 4 cells from Phase i − 1, each of
which contains at most one head node left, there are at
most 4 nodes for each cell in Phase i. Thus there are at
most 3 links transmitting to the new head node in each
cell, which means 3(K + 1)2

(
log

√
2D

K+1 − 1
)

timeslots are

needed for Phase 2 to Phase log
√

2D
K+1 .

iii) In Phase log
√

2D
K+1 + 1, at most 3K2 timeslots are needed.

In all the following phases, the number of cells in the
next phase is just 1

4 of those in the current phase. In

the last phase, there is only one cell left and at most 3
timeslots are needed. Hence, 3

∑log K
i=0

(
2i
)2

timeslots are
totally needed for these phases.

After all data have been transmitted to the root of the
aggregation tree, one additional timeslot is required for the
root to transmit the result to the base station. Therefore, the
overall aggregation latency is as follows:

L ≤ 5(K + 1)2︸     ︷︷     ︸
(i)

+ 3(K + 1)2
log

√
2D

K + 1
− 1

︸                            ︷︷                            ︸
(ii)

+ 3
log K∑
i=0

(
2i
)2

︸      ︷︷      ︸
(iii)

+1

= 3(K + 1)2 log

√
2D

K + 1
+ 2(K + 1)2 + 4K2

= 3(K + 1)2 log D + 3(K + 1)2 log

√
2

K + 1
+ 6K2 + 4K + 2

= 3(K + 1)2∆ + 3(K + 1)2 log

√
2

K + 1
+ 6K2 + 4K + 2

C. Comparison With Cell-AS [15]

A similar algorithm Cell-AS is proposed in [15]. Cell-AS
achieves an upper latency bound of 12( 16

3 X2 + 12X + 7)∆ −
32X2−72X−29, where X = (6β(1+( 2

√
3
)α 1

α−2 )+1)1/α. Although
both algorithms are bounded by O(∆) asymptotically, Cell-AS
has a much larger hidden constant. From Table I, we can see
that the hidden constant of Cell-AS is at least 15 times of that
of our algorithm, which makes our algorithm more practical
in real-world deployments. In addition, since grid partitions
are applied in our algorithm rather than hexagon partitions as
in Cell-AS, the computations become much simpler, which is
more suitable for resource-constrained sensor motes.

TABLE I
The Comparison of Hidden Constants Under Different α and β

α β Our Algorithm Cell-AS [15] Ratio
4 2 43.099 712.96 16.543
4 6 65.205 1030.6 15.806
4 10 79.834 1239.2 15.522
4 15 94.113 1441.6 15.318
4 20 105.97 1609 15.184
3 8 154.28 2382 15.439
4 8 73.027 1142.3 15.643
5 8 50.309 804.22 15.986

D. Numerical Result

In order to compare the performance of our algorithm with
Cell-AS, we apply the same simulation settings as [15]. The
simulations are conducted in a 200m× 200m two-dimensional
free-space region, in which n = 100 to 1000 sensor motes are
uniformly distributed. We set α = 4 and β varies from 2 to 20.
Each simulation result is the average of 100 runs.

Fig. 4a shows the aggregation latency with different β. As
expected, the latency increases with larger β corresponding to
higher SINR requirement, which will increase the number of
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Fig. 4. Aggregation latency in uniform distribution

colors needed and thus reduce the transmission concurrency.
In addition, compared to [15] (please refer to [15] for their
experimental results), our algorithm achieves a much better
performance because the concurrency of link scheduling across
different cells is significantly increased. Due to the simplicity
of grid partition using square cells, we are able to analyze the
cumulative interference more accurately, resulting in much less
colors required to mark all cells.

Fig. 4b shows the asymptotic performance of our algorithm.
The latency when α = 4 and β = 20 (most demanding) is
divided by log3 n and log4 n, respectively, and then scaled
properly. The curve slightly increases in the case of log3 n,
and decreases in the case of log4 n. Therefore, our algorithm
achieves an average latency between O(log3 n) and O(log4 n)
in uniform distributions, while Cell-AS achieves an average
latency between O(log5 n) and O(log6 n).

VI. Conclusions and FutureWork

In this paper, we proposed a distributed joint routing, power
assignment and link scheduling algorithm to minimize the data
aggregation latency in WSNs under the physical interference
model, which achieves a latency bounded by O(∆), with a
much smaller hidden constant than another important algo-
rithm which achieves the same bound. Simulation results show
that our algorithm can reduce the latency significantly and

achieve an average latency between O(log3 n) and O(log4 n)
in networks where nodes are uniformly distributed.

Our future work includes: (i) extend our algorithm to deal
with multiple base stations and analyze the latency bound,
and (ii) extend our algorithm to apply the non-linear power
assignment that has been proved to be able to further increase
the network capacity and thus reduce the aggregation latency.
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“Capacity of arbitrary wireless networks,” in IEEE INFOCOM, 2009,
pp. 1872–1880.

24


