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Abstract— We consider a sensor network monitoring a
stochastic process. The sensors exchange information over
wireless communication channels affected by noise. The goal
of the sensors is to compute accurate estimates of the state
of the stochastic process under limited energy available for
communications. We introduce a distributed algorithm which
computes a power allocation scheme aimed at ensuring accurate
state estimates and at saving communication energy. The
distributed algorithm arise from solving an approximate convex
optimization problem with constraints. We present how the
power allocation scheme can be used for performing distributed
estimation in the case where measurements are shared between
sensors.

I. Introduction

An important problem in sensor networks is developing

(distributed) algorithms for state estimation. When consider-

ing wireless sensor networks with limited energy available

for communication, another important problem is designing

power allocation schemes aimed at ensuring good estimation

performance and network longevity. The problem increases

in complexity if we impose the power allocation scheme to

be obtained in a distributed manner.

We are addressing the problem of designing a power

allocation scheme for a network of wireless sensors whose

main functionality is to observe a process of interest and

computing state estimates. Each sensor has a physical neigh-

borhood formed by sensors with which communication is

possible. Each sensor has to allocate its available energy to

the communication channels used for sending information to

its neighbors. The more information a sensor receives from

the neighbors, the more likely the state estimate it computes

is more accurate. However, for each data packet sent, a com-

munication cost is paid and therefore communicating with

the relevant sensors is of outmost importance. Therefore, the

power allocation scheme must result from a tradeoff between

the need for information from neighbors (for accurate esti-

mates computations) and the need for conserving energy.

In this paper we give a distributed algorithm for computing

a power allocation scheme which is obtained by solving

a constraint optimization problem. The main cost reflects

the relevance of the sensor measurements for the estimation

process. The constraints reflect the limited energy available
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for communication and the need to ensure rich enough

local neighborhoods for computing the state estimates. The

formulation of the problem has a similar flavor with the

resource allocation for wireless networks problem [5], [9].

Notations: When referring to a directed edge (link) ( j, i)

of a directed graph, j denotes the destination node, while

i denotes the source node. In the context of a network, a

variable x related to a source (transmitter) s and a destination

(receiver) d is denoted by xds.

II. Problem formulation

In this section we introduce the communication and esti-

mation models used in the paper.

A. Communication Model

We assume that the process is monitored by a wireless

network of (fixed) sensors, where each sensor is capable to

simultaneously transmit to multiple other sensors, without

interferences (by using for example multiple antennas and

transmitting on orthogonal frequencies/channels). Let Pmax
i

denote the maximum power sensor i has available for com-

munication and let P ji be the power allocated for the channel

sending information to sensor j, with the following constraint

inequality
∑

j∈Ni

P ji ≤ Pmax
i , (1)

where Ni represents the neighborhood of node i, i.e. the set

of nodes within its communication range. In addition we

make the assumptions that the communication topology is

directed.

The power of the signal arriving at the receiver j from

transmitter i is given by G jiF jiP ji, where G ji is a positive

scalar representing the path gain from transmitter i to receiver

j and F ji is a random variable modeling the fading of

the channel between i and j. The scalar G ji represents for

us a distance dependent power attenuation, but can also

be interpreted as log-normal shadowing, cross correlation

between codes in a code division multiple access system

or a gain dependency on antenna direction. In particular, we

assume that G ji is given by

G ji = cd
−φ
ji
,

where c represent a constant scalar depending on the physical

characteristics of the transmitter’s antenna and d ji is the

distance between the two communicating sensors, with φ

usually taking values between 1 and 4, depending on the

environment. We assume independent Rayleigh channels and

therefore each F ji has an exponential distribution with unit

mean. The channel towards the sensor j is affected by a white
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Gaussian noise of power σ2
ji
. Given that agent j is a receiver

and agent i is a transmitter, the signal to noise ratio S NR ji

at agent j is given by

S NR ji =
F jiG jiP ji

σ2
ji

. (2)

We refer to the outage of a link i → j as the packet

loss event. The outage event can be translated as the event

when the S NR ji is less than a threshold S ji. The threshold

S ji depends on the physical layer parameters such as rate

transmissions, modulation and coding. The probability a

packet is successfully transmitted from node i to j is given

by p ji = Pr(S NR ji ≥ S ji) and can be explicitly written as

p ji = Pr(S NR ji ≥ S ji) = e
−

S jiσ
2
ji

G jiP ji = e
−
γ ji
P ji , (3)

where γ ji =
S jiσ

2
ji

G ji
. The above probability model was inspired

from [6], except that we omitted the terms corresponding to

interferences.

B. Estimation model

We assume that a network of N sensors observes a random

process modeled by a discrete-time linear dynamic equation

x(k+1) = Ax(k)+w(k), x(0) = x0, (4)

where x(k) ∈Rn is the state vector and w(k) ∈Rn is a driving

noise, assumed Gaussian with zero mean and covariance

matrix Σw. The initial condition x0 is assumed to be Gaussian

with mean µ0 and covariance matrix Σ0. The sensing model

of the sensor i is given by

yi(k) = Cix(k)+ vi(k), i = 1 . . .N, (5)

where yi(k) ∈ Rri is the observation made by sensor i and

vi(k) ∈Rri is the measurement noise, assumed Gaussian with

zero mean and covariance matrix Σvi
. We assume that the

matrices {Σvi
}N
i=1

and Σw are positive definite and that the

initial state x0, the noises vi(k) and w(k) are independent

for all k ≥ 0. In addition, we assume that all sensor have

knowledge of the parameter of the process, i.e. matrices A,

Σw, µ0 and Σ0.

We denote by x̂i(k) the state estimate computed by sensor i

and by ei(k) = x(k)− x̂i(k) the estimation error. If a (directed)

communication link exists between two agents, they can

exchange information such as local measurements yi(k), the

local sensing model parameters given by matrices Ci and

Σvi
and the local estimates x̂i(k). This information is used to

update the local estimates x̂i(k).

III. Power Allocation Scheme Design

The communication model described in the previous sec-

tion induces a random topology with probability distribution

depending on the powers allocated for communication and

some parameters of the physical layer. Our goal is to design a

power allocation scheme for state estimation purposes which

considers the communication costs inherent to a wireless

network. In essence, this entails the design of a (random)

communication network.

For each sensor i we define the cost

Ji(Pi j, j ∈ Ni) = E



















∑

j∈Ni

αi jli j



















=
∑

j∈Ni

αi j pi j =
∑

j∈Ni

αi je
−
γi j
Pi j ,

(6)

where E is the expectation operator, αi j =
α j

αi
=

tr(C′
j
Σ−1

v j
C j)

tr(C′
i
Σ−1

vi
Ci)

,

γi j =
S i jσ

2
i j

Gi j
, li j is a random variable taking values zero or

one describing the presence of a link from sensor j to i

with probability distribution Pr(li j = 1) = pi j. Note that in

the following, for notational simplicity, we use Ji(Pi j) to

denote Ji(Pi j, j ∈ Ni).

Remark 3.1: The term α j = tr(C′
j
Σ−1

v j
C j) is a Fisher like

information metric, emphasizing the quality of the measure-

ments taken by sensor j. A similar metric was used in [8],

in the context of distributed tracking with information driven

mobility. In our problem, “information” will not drive mo-

bility but rather formation of links. The scalar αi j =
α j

αi
tells

us how much sensor i benefits from receiving measurements

from sensor j. Note that a ratio αi j smaller than one means

that agent i’ measurements are of better quality than agent

j’s. The larger the value of αi j is, the larger the corresponding

probability pi j should be, such that the value of the cost

function Ji(Pi j) is made large.

If the pair (A,Ci) is not detectable (in the sense of the

standard definition for the linear time-invariant systems), the

stability of the estimation error produced by the Kalman

filter, when only local measurements are used, can not be

guaranteed. Therefore an additional constraint which ensures

that enough power is allocated to a sufficient number of

neighbors of sensor i such that the local detectability is

achieved by using additional measurements, may be needed.

Given that |Ni| is the cardinality of set Ni, there are a

number of Li = 2|Ni| combination of sensors belonging to Ni

which can send information to sensor i. Let l denote such an

instance of all possible combinations and let Sl
i

be the set

of sensors that are successfully sending information to agent

i and corresponding to the instance l. Inspired by the work

of [4] (Proposition 4.1), a necessary and sufficient condition

for detectability at the node i (i.e. limk→∞ E[‖ei(k)‖2] <∞),

when the measurements from neighbors are also considered,

is given by
∏

j∈Si
l

(1− pi j)|ρi
l|

2 < 1, l = 1 . . . ,Li, (7)

where ρi
l

is the spectral radius of the unobservable part

of matrix A when the pair (A,Ci
l
) is put in the observer

canonical form, with Ci
l

′
= [Ci

′,C j
′, j ∈ Si

l

c
], with Si

l

c
being

the set of sensors not sending information under the instance

l. To avoid the existence of an infinity of solutions for

an optimization problem formulated in what follows, we

introduce a positive scalar ǫ, much smaller than one and

we replace the strict inequality (7) with the inequality
∏

j∈Si
l

(1− pi j)|ρi
l|

2 ≤ 1− ǫ, l = 1, . . . ,Li. (8)
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In addition of the previous constraint, we recall the power

constraint expressed in (1).

By summing up the local cost functions over all sensors,

we obtain a global optimization cost

J(Pi j) =

N
∑

i=1

Ji(Pi j), (9)

which together with the constraints (1) and (7) make up the

constraint optimization problem whose solution generates a

random communication topology (through the power allo-

cation scheme) aimed at obtaining good estimates and at

keeping the communication costs limited.

Our goal is to distributively solve the following optimiza-

tion problem

min
Pi j≥0

−∑N
i=1

∑

j∈Ni
αi je

−
γ ji
P ji (10)

s.t.:
∏

j∈Si
l

(

1− e
−
γ ji
P ji

)

|ρi
l
|2 ≤ 1− ǫ, l = 1 . . .Li, i = 1 . . .N,

∑

j∈Ni
P ji ≤ Pmax

i
, i = 1 . . .N,

where the first inequality constraints are imposed to ensure

detectability of the process at sensor i and the second

inequality limits the communication power of sensor i.

Note that although the constraints (1) are convex, both

the cost function J(Pi j) and the constraints (8) needed for

maintaining local detectability at each sensor are not.

In the following, by using a change of variable, we

approximate the original optimization problem (10), with a

convex optimization problem. Consider the change of vari-

able zi j = log(1− pi j) = log

(

1− e
−
γi j
Pi j

)

. Let us also consider

the simplifying notation βi
l
= log(1− ǫ)−2log |ρi

l
|. Under the

new variables and notation, the optimization problem (10)

becomes

min
zi j≤0

∑N
i=1

∑

j∈Ni
αi je

zi j (11)

s. t.:
∑

j∈Si
l
zi j ≤ βi

l
, ∀l, i, (12)

∑

j∈Ni
γ jig(z ji) ≤ Pmax

i
,∀i, (13)

where

g(z) = − 1

log(1− ez)
.

Under the new variables, the cost function and the con-

straints (12) are convex. Although, the function g(z) has the

appearance of a convex function, in fact looses convexity at

small values of z. Therefore, the constraints (13) are non-

convex. We define the function

f (z) =

{

g(z) z ≤ z̃

g′(z̃)z+b z > z̃

where z̃ is the solution of g
′′

(z) = 0 (i.e. the inflexion point)

given by z̃ ≈ −0.2271, g′(z̃) is the slope of g(z) at z̃ given

by g′(z̃) ≈ −1.54413 and b ≈ 0.27677. We note that f (z)

approximates g(z) by a line on the interval [z̃,0] and more

importantly is a convex function and g(z) ≤ f (z), ∀z ≤ 0.

By substituting g(z) with f (z), the set defined by the

constraints (13) is approximated by a convex set and we

obtain a constraint convex optimization problem of the form

min
zi j≤0

∑N
i=1

∑

j∈Ni
αi je

zi j (14)

s. t.:
∑

j∈Si
l
zi j ≤ βi

l
, ∀l, i, (15)

∑

j∈Ni
γ ji f (z ji) ≤ Pmax

i
,∀i, (16)

for which we can use the primal-dual decomposition theory

to solve it.

Since the minimum of f (z) is b ≈ 0.27677 and is attained

at zero, in order for the constraints (16) to be feasible, we

make the following additional assumption.

Assumption 3.1: The following inequality holds
∑

j∈Ni

γ jib < Pmax
i ,∀i.

A. Distributed iterative algorithm for solving the power

allocation problem

The optimization problem (14) is convex with convex
constraints and from Proposition 6.4.3 of [1] (where we use
also the Assumption 3.1), it follows that there is no duality
gap. Let

L(zi j,λi,µ
l
i) =

N
∑

i=1

∑

j∈Ni

αi je
zi j +

N
∑

i=1

λi



















∑

j∈Ni

γ ji f (z ji)−Pmax
i



















+

+

N
∑

i=1

Li
∑

l=1

µl
i























∑

j∈Si
l

zi j−βi
l























(17)

denote the Lagrangian corresponding to the convex opti-

mization problem (14). Algorithm 1 computes iteratively the

solution of the dual of the optimization problem (14).

In Algorithm 1, [·]+ represents the projection operator onto

the set of positive real numbers and ζ represents a small

positive scalar which controls the precision of the algorithm.

The parameter δ(t) represents the stepsize of the algorithms.

Conditions the stepsize must satisfy such that the langrange

multipliers λi(t) and µl
i
(t) converge, can be found in Chapter

8 of [1], for example. We now turn to the step 2 of Algorithm

1, i.e. solving the optimization problem

z ji(t) = arg min
z ji≤0
L(z ji,λi(t),µ

l
i(t)). (18)

Note that as a result of our approximation, problem (18)

is convex and therefore we can use efficient algorithms to

find a solution. For simplicity, in what follows we will omit

the time index t associated with the lagrange multipliers. The

lagrangian function can also be represented as

L(z ji,λi,µ
l
i) =

n
∑

i=1

∑

j∈Ni

F ji(z ji,λi,µ
l
i),

where

F ji(z ji,λi,µ
l
i) = α jie

z ji +µi jz ji +λiγ ji f (z ji),
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Algorithm 1: Subgradient algorithm for solving the dual

optimization problem

Input: λi(0), µl
i
(0), i = 1 . . .N, ζ

Initialization: t = 01

do Solve the primal optimization problem:2

(z ji(t)) = arg min
z ji≤0
L(z ji,λi(t),µ

l
i(t)), i = 1 . . .N, j ∈ Ni

Update the lagrange multipliers:3

λi(t+1) =



















λi(t)+ δ(t)



















∑

j∈Ni

γ ji f (z ji(t))−Pmax
i





































+

, i = 1 . . .N

µl
i(t+1) =























µl
i(t)+ δ(t)























∑

j∈S l
i

zi j(t)−βl
i













































+

, i = 1 . . .N, l = 1 . . .Li

Update the time step:4

t = t+1

while |λi(t)−λi(t−1)| ≤ ζ and |µl
i
(t)−µl

i
(t)| ≤ ζ5

Compute6

P ji = −
γ ji

log(1− ez ji(t))
, i = 1 . . .N, j ∈ Ni

with

µi j =
∑

l=1...L j

µl
j1{i∈S l

j
},

where 1{·} is the indicator function. We can see that

L(zi j,λi,µ
l
i
) is minimized if each of the functions F ji(·) is

minimized. Basically, minimizing (18) is reduced to solving

z∗ = argmin
z≤0

F(z), (19)

where F(z) = αez +µz+λγ f (z) for some α,µ,λ,γ ≥ 0, with

f (z) =

{

−1/ log(1− ez) z ≤ −0.2271

−1.54413z+0.27677 z > −0.2271.

It turns out that F(z) is a strictly convex function on R and

therefore admits a unique minimizer. The solution of (19) is

given by

z∗ =min{z̃,0},

where

z̃ = argmin
z∈R

F(z),

and where the above optimization problem can be solve

efficiently by using a line search method [10], for example.

Note that the above algorithm can implemented in a dis-

tributed manner since each agent uses only local information.

From this perspective, each agent i controls the variables

z ji(t), j ∈ Ni (which is an estimate of the optimizer z∗
ji

at

time instant t), λi(t) (which can be interpreted as the price

paid in terms of energy for sending data to its neighbors) and

µl
i
(t) (which can be interpreted as the reward node i gets, in

terms of the detectability property, under some combination

of neighbors sending data to it). Indeed, for updating z ji(t),

node i needs from its neighbors the quantities µi j, j ∈ Ni

and for updating µl
i
(t) node i needs only zi j(t) for j ∈ Ni.

The quantity µi j(t) can be interpreted as the total reward

nodes j gets when node i shares information with j. This

terms mitigates the variable z ji(t) in the function F ji(·), which

is a representation of how much power nodes i spends for

transmitting to node j (i.e. the larger the power the smaller

z ji becomes).

B. Sensors satisfying the local detectability property

In this subsection we study how Algorithm 1 simpli-

fies when the sensors are locally detectable, i.e. the pairs

(A,Ci) are detectable. The first consequence is that the set

of constraints (12) are no longer necessary. Therefore the

optimization problem (11) becomes

min
zi j≤0

∑N
i=1

∑

j∈Ni
αi je

zi j (20)

subject to:
∑

j∈Ni
γ jig(z ji) ≤ Pmax

i
,∀i, (21)

where

g(z) = − 1

log(1− ez)
.

Note that as before, the above problem becomes convex

if we approximate g(z) with f (z), defined above. Using the

same ideas as before, for solving the primal problem during

the iterative algorithm for solving the dual problem, each

sensor will have to locally minimize a set of problems of

the form

F(z) = αez +λγ f (z),

over the interval (−∞ 0], where

f (z) =

{

g(z) z ≤ z̃

g′(z̃)z+b z > z̃.

Differentiating F(z) and solving F′(z) = 0 for z, we obtain

that the minimal point of F(z) on the interval (−∞ 0] is given

by

z∗(η) =































0 η > η1

log(1.54413η) η2 < η ≤ η1

log

(

1− 1
4

η

W
(

− 1
2

√
η
)2

)

0 < η ≤ η1

, (22)

where η =
λγ

α
, W(η) is the Lambert W function, η1 ≈ 0.64761

and η2 ≈ 0.51602. Interestingly, we can interpret the param-

eter η as the weighted transmission price, where the weight

is given by the factor
γ

α
, with γ increasing with the distance

between the source and destination, and α reflecting the

informational richness of the measurements.

IV. Distributed estimation under lossy communication links

In this section we combine the power allocation scheme

presented in the previous sections with the state estimation

process. We study here only the case where the sensors

use only the measurements of their neighbors, and not their

estimates. We make the following fundamental assumptions.

We assume that the estimation process is split in two steps.

In the first step, the sensors negotiate a topology suitable

for the state estimation, by deriving a power allocation

scheme. During this step the sensors implement distributively

Algorithm 1. In the second step, the sensors perform the state

estimation process.
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Assumption 4.1: We assume that during the first step, the

agents invest sufficient energy for communication such that

the agents communicate without errors with the neighbors.

This assumption makes sense if the time horizon of the

estimation process is very large compared with the time

necessary for the topology negotiation and therefore the

energy consumed during the first step is much smaller

compared to the energy spent for exchanging information

during the estimation process.

In our numerical example we consider a grid network

formed of sixteen sensors (Figure 2 monitoring a linear

stochastic process, with parameters

A =

(

0.9996 −0.03

0.03 0.9996

)

, Σw = 0.1I, µ0 =

(

10

10

)

,Σ0 = I.

The parameters of the sensing models are as follows: Ci =

� � � �

� � � �

	 �
 �� ��

�� ������

�

�
�
�


����

Fig. 1. Grid sensor network

[1 0] and the measurement noise σ2
vi

depends on the distance,

i.e. σ2
vi
= d2

i
, where di is the distance between the sensor i and

the object. In our example we assume that the first sensor is at

the origin of the 2D coordinate frame, that the vertical and

horizontal distances between sensors is five distance units

and that the coordinates of the observed object are (1,1)

distance units.

The sensors first execute Algorithm 1, in order to de-

termine the power allocation scheme. In our numerical

simulations we assume that Pmax
i
= 3 power units and that

the parameters γ ji = 1 power units for all i and j ∈ Ni. The

numerical simulation results of Algorithm 1 are presented in

Figure 2, where the numerical values on the links refer to the

percentage of the available power of each sensor allocated

for the respective links. In this numerical simulation we do

not consider the detectability constrains (8) since the pairs

(A,Ci) are detectable for all i. Note that as expected, the

sensors tend to allocate more power to the neighbors further

away from the tracked object, since they have less accurate

measurements. In addition, each sensor allocates at least

9% of its power for each link in its neighborhood, as per

constraints (16).

For the estimation process, each sensor uses the mea-

surements and the sensing models from the neighbors and

employs a linear filter under intermittent measurements;

intermittence induced by the random nature of the commu-

nication channels. This approach is a particular case of the

� � � �

� � � �
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Fig. 2. Random network architecture as a result of Algorithm 1

state estimation for Markovian jump linear systems, detailed

in [3]. We would like to point out that the analysis can be

extended to the case where the estimation is performed using

a consensus-based linear filter, where the linear filter under

intermittent measurements is combined with a consensus

step and where the estimates from neighbors are also used.

This approach was studied extensively in [2], [7], [11], [12]

under a deterministic communication topology. Due to space

limitation however, such analysis is not done in this paper.

A. Distributed Estimation - Measurements Sharing

From the point of view of the information received, sensor

i can be in 2|Ni | modes of operation. Let l be a mode of

operation and let S l
i

be the set of neighbors of agent i which

successfully transmit information to sensor i, in mode l.

Denoting by θi(k) the mode of sensor i at time k, we get

that

Pr(θi(k) = l) =
∏

j∈S l
i

pi j

∏

j∈S l
i

c

(1− pi j) = qi,l,

where S l
i

c
is the complement of S l

i
(i.e. the set of neighbors

of agent i with unsuccessful transmissions) and pi j are

probabilities of successful transmissions determined in the

first stage.

At each time instant k, the measurements available at

sensor i are given by the vector yθi(k)(k)′ = [yi(k)′,y j(k)′, j ∈
S
θi(k)

i
]′ with sensing model

yθi(k)(k) = Cθi(k)x(t)+vθi(k)(k), (23)

where C′θi(k) = [C′
i
,C′

j
, j ∈ S

θi(k)

i
]′ and vθi(k)(k)′ =

[vi(k)′,v j(k)′, j ∈ S
θi(k)

i
]′ a vectored valued zero

mean Gaussian noise with covariance matrix

Σθi(k) = diag(Σvi
,Σv j
, j ∈ S

θi(k)

i
). Note that for all possible

modes of operations, matrix Σi,θi(k) is invertible. In addition,

the dimensions of the vectors yθi(k)(k), vθi(k)(k) and matrices

Cθi(k), Σθi(k) varies for each mode of operation.

Inspired by the Markovian jump linear system estimation

theory [3], in the following we introduce a linear filtering

scheme for computing the state estimates. To simplify no-

tation, the index i corresponding the an agent is omitted.

Denoting by x̂(k) the estimate, a linear filter for computing

the estimate is given by

x̂(k+1) = Ax̂(k)+Mθ(k)
(

yθ(k)−Cθ(k) x̂(k)
)

, x̂(0) = µ0.
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Proposition 4.1: The finite horizon quadratic filtering cost

K
∑

k=0

E[‖e(k)‖2],

where e(k) = x(k) − x̂(k) denotes the estimation error is

minimized by the filtering gains

Ml(k) = AY(k)C′l
(

Σvl
+ClY(k)C′l

)−1
, (24)

where Y(k) = E[e(k)e(k)′] is the covariance matrix of the

estimation error whose dynamics is given by

Y(k+1)=
∑

l

ql(A−ClMl)Y(k)(A−ClMl)
′+

∑

l

qlMlΣlM
′
l +Σw,

(25)

with Y(0)= Σ0, C′l = [C′
i
,C′

j
, j ∈ S l

i
]′ and Σl = diag(Σvi

,Σv j
, j ∈

S l
i
).

Proof: The proof of this result can be mimicked after

the proof of Theorem 5.5 of [3], where θ(k) is a finite state

Markov chain. Although in the aforementioned theorem the

parameters of the sensing model are assumed to have the

same dimension across the operating modes (e.g. Cl has the

same dimension for all l), it can be easily shown that that

optimal filter (24) remains valid even under our assumptions.

Remark 4.1: It turns out that the infinite horizon quadratic

filtering cost given by

lim
K→∞

1

K

N
∑

k=0

E[‖e(k)e(k)‖2],

is minimized by the same filtering gains as in (24) (for k ≥ 0),

and in addition if the optimization problem (14) is feasible

and consequently the constraint (8) is satisfied, the infinite

horizon filtering cost is upper-bounded since the trace of the

covariance matrix Y(k) remains upper-bounded for all k ≥ 0.

Sufficient conditions under which Y(k) also converges can

be found in Appendix A of [3].

Figure 3 shows the average estimation error (in means

square sense) taken over all sensors, given by ǫav(k) =
1
N

∑N
i=1 E[‖ei(k)‖2] under two power allocation schemes. With

ǫ
(1)
av (k) we denoted the average estimation error when the

power allocation scheme is computed using Algorithm 1,

while by ǫ
(2)
av (k) we denoted the average estimation error

when sensors equally distribute the available power to their

neighbors. Figure 3 does show an improvement of the

average estimation error when the power allocation scheme

given by Algorithm 1 is used.

V. Conclusions

In this paper we addressed the problem of designing a

power allocation scheme for distributed estimation executed

by a sensor network. The power allocation scheme results

from solving an (approximate) constrained convex optimiza-

tion problem and reflects the tradeoff between the need

for accurate and stable estimates and the need for network

longevity. We gave an iterative algorithm for solving the opti-

mization problem which can be implemented in a distributed

0 50 100 150
0

10

20

30

40

50

60

time

 

 

ε
av

(1)
(k)

ε
av

(2)
(k)

Fig. 3. Average estimation error under two power allocation schemes

manner. Finally we show how the power allocation scheme

can be used to perform distributed estimation in the case

where measurements are shared between sensors.
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