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Abstract— Consider a discrete-time linear time-invariant
process being observed by two sensors, which are connected to
an observer via links that can be modeled as erasure channels.
If a link transmits successfully then a finite-dimensional vector
of real numbers is conveyed from the sensor to the controller.
If an erasure event occurs, then any information conveyed
over the link is lost. This paper addresses the problem of
designing the maps that specify the processing at the sensors
and the observer to calculate the minimum mean square error
estimate of the state of the process. We derive necessary and
sufficient conditions for the existence of maps such that the
estimate error is bounded in the second moment sense.

I. INTRODUCTION

Recently a lot of attention has been directed towards
processes being observed or controlled across wireless links
or communication networks that may also be used for
transmitting other unrelated data (see, e.g., [1], [10] and the
references therein). The estimation and control performance
in such systems is severely affected by the properties of the
communication channels.

In this work, we are specifically interested in the problem
of estimation and control across communication links that
exhibit data loss. Preliminary work in this area has largely
concentrated on the case when only one sensor is present.
A good overview of works dealing with the effect of the
erasure links on estimation and control as well as designing
a compensator at the observer end to estimate the data
when the link drops packets has been provided in [10], [6],
[12]. This paper takes a more general view by allowing
the sensors to encode or pre-process information prior to
transmission and by utilizing the fact that a typical network
/ communication data packet allows transmission of extra
data apart from that required inside a traditional control
loop. As has been shown in [7], [6], this approach can
yield significant improvements in terms of stability and
performance. Moreover, for a given performance level, it
can also lead to a reduced amount of communication.

In this work, we extend the principle to the case when
multiple sensors are present. Suppose a process is observed
using two sensors that transmit the data over packet-erasure
links to an observer that is interested in the minimum mean
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square error (MMSE) estimate of the process. If the sensors
can share their measurements, there is effectively only one
sensor. We look at the case when cooperation between the
sensors is either not permitted, or occurs over an erasure
link. We solve for the conditions on the links and the
dynamics of the process that allow for the estimation error
covariance to be bounded. The conditions are shown to be
necessary and sufficient. We then extend this result to more
than two sensors being present. As shown in [8], the results
also have relevance for the control of a plant using multiple
sensors over packet erasure links.

The problem involving the presence of multiple sensors
transmitting data in an aperiodic fashion is much more com-
plicated than the problem involving only a single sensor.
The problem of finding optimal encoding algorithms for the
multi-sensor case and analyzing their performance is similar
to the problems of fusion of data from multiple sensors
and track-to-track fusion that have long been open. Many
approaches have been suggested for this problem, some
representative examples being [9], [3], [13], [11]. However,
these approaches assume a fixed communication topology
among the nodes with a link, if present, being perfect. In our
case, information is erased randomly by the communication
channels. This random loss of information reintroduces the
problem of correlation between the estimation errors of
various nodes [2] and renders the approaches proposed in
the literature sub-optimal. In particular, it is known [4]
that techniques based on combining state estimates based
on each sensor’s own local measurements are not optimal.
There are special cases for which the solution is known,
e.g., when the process noise is absent [14] or when one of
the sensors transmits data over a channel that does not erase
information [7].

The paper is organized as follows. We begin in the next
section by describing the problem set-up and a summary
of the stabilizability results for the case when two sensors
transmit data over erasure channels. We then prove the
necessity of these conditions in Section III-A. Then, in
Section III-B, we prove that the conditions are sufficient as
well, by presenting a sub-optimal algorithm that stabilizes
the system. Section IV presents some generalizations.

II. PROBLEM FORMULATION

Consider the set-up of Fig 1. Let the process be described
by a discrete-time state-space representation of the type:

x(k + 1) = Ax(k) + w(k), k ≥ 1 (1)
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Fig. 1. Basic framework for estimation using two remote sensors, in the
presence of erasure channels. The process and measurement noises are
represented by w(k) and v1 or 2(k), respectively. Erasures in the links
between the sensors and the observer are governed by r1 or 2(k).

where x(k) ∈ R
n is the process state and w(k) is the

process noise assumed to be white, Gaussian, zero mean
with covariance Σw > 0. The initial state x(0) is a zero
mean Gaussian random variable with covariance matrix
Σ0. The process state is observed using two sensors that
generate measurements of the form

y1(k) = C1x(k) + v1(k), k ≥ 0 (2)

y2(k) = C2x(k) + v2(k), k ≥ 0 (3)

where y1(k) ∈ R
m1 and y2(k) ∈ R

m2 . The measurement
noises v1(k) and v2(k) are also assumed to be white, Gaus-
sian, zero mean with positive definite covariance matrices
Σv,1 and Σv,2 respectively. Throughout this work, we adopt
the following assumption:

Assumption 1: For simplicity, we assume that the pairs
(A,C1) and (A,C2) are not observable. In addition, we
assume that the overall system is observable, i. e., that
(A,C) is observable, where CT =

[
CT

1 CT
2

]
.

Assumption 1 corresponds to the more difficult scenario
where the controller might have to combine the information
gathered from y1 and y2. Later we show that the stability
analysis, for the case where (A,C1) and (or) (A,C2) are
observable, constitutes a particular case of our analysis.
Thus Assumption 1 comes at no loss of generality.

Definition 2.1: (Erasure Link Model ) Consider that
{r1(k)}∞k=0 and {r2(k)}∞k=0 represent Bernoulli stochastic
processes taking values in the set {1, ∅} and characterized
by a probability mass function of the following type:

pi,j
def
= Pr (r(k) = (i, j)) , (i, j) ∈ {1,0}2

where r(k)
def
= (r1(k), r2(k)). The process r(k) governs the

state of the links that connect the sensors to the observer.
More specifically, the relationship between sensor i’s output

si(k) and the observer’s input zi(k) is described by:

zi(k) =

{
∅ if ri(k) = 0
si(k) if ri(k) = 1

, i ∈ {1, 2} (4)

where we adopt the symbol ∅ to represent erasure, i.e.,
it indicates that the information sent from sensor i to the
observer was lost.
Note that, in general, we do not assume that the erasure
events in the channels are uncorrelated. However, we pre-
suppose that the sources of randomness x(0), {r(k)}∞k=0,
{v(k)}∞k=0 and {w(k)}∞k=0 are mutually independent.

The sensors are described by a functional structure Sq.
At every time step k, sensor i calculates and transmits a
vector si(k), as

si(k) =

{
S (i, k,yi(0), . . . ,yi(k)) k ≥ 1
S (i, 0,yi(0)) k = 0

(5)

where i is in the set {1, 2} and si(k) takes values in R
q. In

the sequel, we will also refer to the sensor maps as encoding
algorithms or information processing algorithms and to the
sensors as encoders.

Definition 2.2: ( Observer class ) Consider stochastic
processes z1(k) and z2(k) taking values in R

q
⋃{1, ∅}. We

define the observer class K as the set of all observers with
the following structure:

x̂(k) = K(k, z1(0), z2(0), . . . , z1(k − 1), z2(k − 1)) (6)

where x̂(k) denotes the estimate of the process state x(k).
Given the description of the plant and the erasure link
statistics, specified by the probability mass function pi,j ,
we want to investigate conditions for the existence of sensor
maps and an observer that estimate the process state in the
following sense.

Definition 2.3: ( Stability criterion ) Consider the set-
up of Figure 1 and assume that the matrices A, B, C1, C2

and the erasure link statistics pi,j are given. A selection of
observer K, integer q and sensor maps S1 and S2, in the
set Sq, is stabilizing if and only if the following holds:

sup
k≥0

Eσ(k),x(0)

[
(x̂(k) − x(k))′ (x̂(k) − x(k))

]
< ∞, (7)

where x(k) is the state of the plant and σ(k)
def
=

{r(i),v(i),w(i)}i=k
i=0 is used to indicate that the expectation

is taken with respect to all independent sources of random-
ness. Thus, the error covariance for the mmse estimate of
the process state is bounded at all times.

We now summarize the stability results for the problem
formulated above. The proofs will be presented later in
the paper. We will rely on the following result that can
be proven by applying the canonical structure theorem.

Proposition 2.1: Consider an n dimensional linear and
time-invariant system satisfying Assumption 1 and let y1(k)
and y2(k), taking values in R

m1 and R
m2 , constitute a bi-

partition of the system’s output. We can always construct a
state-space representation with the structure (1)-(3), where
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the matrices A ∈ R
n×n, B ∈ R

n×l, C1 ∈ R
m1×n and C2 ∈

R
m2×n are written in one and only one of the following

forms, which we refer to as type I and type II. The first
possibility, denoted as type I, is given by:

A =
[

A1,1 A1,2

0n2×n1 A2,2

]
(8)

C1 =
[
0m1×n1 C1,2

]
C2 =

[
C2,1 0m2×n2

]
(9)

where Ai,i ∈ R
ni×ni , Ci,j ∈ R

mi×ni and n1 + n2 = n.
The following is the second possibility (type II) :

A =


 A1,1 A1,2 A1,3

0n2×n1 A2,2 A2,3

0n3×n1 0n3×n2 A3,3


 (10)

C1 =
[
0m1×n1 C1,2 C1,3

]
(11)

C2 =
[
C2,1 0m2×n2 C2,3

]
(12)

where Ai,i ∈ R
ni×ni , Ci,j ∈ R

mi×ni and n1+n2+n3 = n.
Remark 2.1: In the above representations (of types I or

II), A1,1 describes the dynamics of the state subspace that
is not observable from y1(k), while the modes that are not
observable by y2(k) follow the dynamics of A2,2. If the
representation is of type II, then A3,3 specifies the dynamics
of the modes that are observable by both y1(k) and y2(k).

Using this result, we can state the necessary conditions
for stabilizability of the system as follows. The proof is
provided in Section III-A.

Theorem 2.2: (Necessary Conditions for Stabilizabil-
ity) Consider the problem set-up of Fig 1. In addition,
assume that the plant satisfies Assumption 1 and that the
statistics of the erasure links are specified by a given
probability mass function Pr(r(k) = (i, j)), with (i, j) ∈
{1, ∅}2 that is independent of the time index k. If the state-
space representation can be written as in (8)-(9) (type I) then
there exists an observer in the class K, a positive integer q
and sensors in the class Sq such that the closed loop system
is stable only if the following inequalities hold:

�(A1,1)2Pr(r2(k) = ∅) < 1 (13)

�(A2,2)2Pr(r1(k) = ∅) < 1, (14)

where �(Ai,i) represents the spectral radius of the matrix
Ai,i. If, instead, the state-space representation is of type II,
i. e. of the form (10)-(12), then necessary conditions for
stabilization also include the following inequality:

�(A3,3)2Pr (r(k) = (∅, ∅)) < 1. (15)
Remark 2.2: The case when Assumption 1 does not hold

and the system is observable using only one sensor has
already been considered in the literature [7]. Our results
can be applied to this case if we adopt the convention that
the spectral radius of an empty matrix is 0. Thus, e.g., if
the entire state is observable from y1(k), then the spectral
radius of A1,1 is assumed to be 0. A similar statement can
be made about the sufficiency conditions given below as
well. Thus we will assume that Assumption 1 holds in our
analysis from now on.

It turns out that the above conditions are also sufficient
for stabilizability for sensors in the class Sq. We have the
following result that will be proven in Section III-B.

Theorem 2.3: (Sufficient conditions for stabilizability)
Consider the problem set-up of Figure 1. In addition,
assume that the plant is observable and that it satisfies
Assumption 1. In addition, let the statistics of the erasure
link, given by the probability mass function Pr(r(k) =
(i, j)) , (i, j) ∈ {1, ∅}2, be given. If the state space repre-
sentation can be written as in (8)-(9) (type I), then there
exists an observer of class K, a positive integer q and
sensors of class Sq such that the feedback system is stable,
if the following two inequalities hold:

�(A1,1)2Pr(r2(k) = ∅) < 1 (16)

�(A2,2)2Pr(r1(k) = ∅) < 1 (17)

where �(Ai,i) represents the spectral radius of the matrix
Ai,i. If the state-space representation is of type II, i.e. it is
of the form (10)-(12), then stability is assured by requiring
that the following additional inequality also holds:

�(A3,3)2Pr (r(k) = (∅, ∅)) < 1. (18)
Remark 2.3: We have not assumed that the sensors at

time step k have access to any acknowledgements from the
observer about the vectors si(j) transmitted at any time step
j < k. As proved in [8], the conditions given in Theorems
2.2 and 2.3 remain necessary and sufficient for stability even
if such access were allowed. In this sense, the conditions
are the least conservative.

Remark 2.4: The stabilizability conditions make intuitive
sense. The quantity �(A1,1)2 measures the rate of increase
of the second moment of the modes that are observable
using only sensor 2. To keep the estimate error covariance
of these modes bounded, we need the information from
sensor 2 to arrive at a large enough rate. Equation (13)
formalizes this relation. Inequalities (14) and (15) can be
similarly interpreted.

III. PROOFS OF THEOREMS 2.2 AND 2.3

At any time k, define the time-stamp corresponding to
sensor i as ti(k) = max{j | j ≤ k− 1, ri(j) = 1}. Thus
the time-stamp denotes the latest time at which transmission
was possible from sensor i. Using the time-stamp, define the
maximal information set Imax

i (k) for each sensor as

Imax
i (k) = {yi(0), yi(1), · · · , yi(ti(k))}.

The maximal information set is the largest set of mea-
surements from sensor i that the controller can possibly
have access to at time k. For any encoding algorithm A
followed by the sensors, we will also define the information
set corresponding to sensor i at time k as

IA
i (k) = {zi(0), . . . , zi(k − 1)},

where zi(m) is the output of the communication link
corresponding to the sensor i at time m, when the algorithm
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A is followed. For any encoding strategy,

I
A
i (k) ⊆ I

max
i (k),

where I
A
i (k) is the smallest sigma algebra generated by

IA
i (k). Consider two encoding algorithms A1 and A2 that

guarantee at every time step

I
A1
1 (k) ⊆ I

A2
1 (k), I

A1
2 (k) ⊆ I

A2
2 (k).

With the optimal mmse estimator for the two algorithms, it
is obvious that a necessary condition for the algorithm A1

to be stabilizable is that the algorithm A2 is stabilizable.
Now consider an algorithm Ā under which, at every time
step k the encoder for sensor i transmits the set

Si(k) = {yi(0), yi(1), · · · , yi(k)}.
Note that the algorithm Ā does not specify valid sensor
maps Sq since the dimension of the transmitted vectors
cannot be bounded by any constant q. However, if algorithm
Ā is followed, at any time step k, the decoder (and the
controller) would have access to the maximal information
sets Imax

1 (k) and Imax
2 (k). This implies that for any other

encoding algorithm A, a necessary condition for the system
to be stabilizable is that the system be stabilizable when the
information sets Imax

i (k)’s are available to the observer, that
calculates the mmse optimal estimate.

A. Necessary Conditions for Stabilizability

We shall need the following result that can be proved
along the lines of Theorem 4 in [5].

Proposition 3.1: Consider the system in equation (1)
being observed by a sensor of the form

ȳ(k) = C̄x(k) + v̄(k),

where v̄(k) is white Gaussian noise with zero mean and
covariance R. Let f(X) denote the Ricatti recursion corre-
sponding to this sensor as applied on the matrix X , thus,

f(X) = AXAT + Σw −AXC̄T
(
C̄XC̄T + R

)−1
C̄XAT .

(19)
Further, let fm(X) denote the above Ricatti recursion
applied m times on the matrix X . Finally, let p be a scalar.
Then, the sum

S = X +pf(X)+p2f2(X)+p3f3(X)+ · · ·+pmfm(X),
(20)

is bounded as m → ∞ if and only if p | �(Ā) |2< 1,
where �(Ā) is the spectral radius of the state subspace
that is unobservable from ȳ(k). In particular, if the matrix
C̄ = 0, so that the Ricatti recursion (19) corresponds to
the Lyapunov recursion f(X) = AXAT + Σw, then the
sum (20) converges if and only if p | �(A) |2< 1, where
�(A) is the spectral radius of matrix A.

Proof of Theorem 2.2: Necessary conditions for stabi-
lizability using algorithm Ā will yield necessary conditions
for stabilizability using any other algorithm in the class Sq.
For ease of notation, we define the Ricatti operators f1(.),

f2(.) and f∅(.) in a fashion similar to equation (19) when
sensor 1, sensor 2 and no sensor is used, respectively. We
also define fm

1 (.), fm
2 (.) and fm

∅ (.) analogously. Finally we
define M(k) to be the error covariance of the mmse estimate
of x(k +1) when all the measurements from sensors 1 and
2 till time step k are available. Because of the assumption
on observability of (A,C), M(k) converges exponentially
to a steady-state value denoted by M�.

We will condition the expected error covariance E[P (k)]
of the estimate of the state x(k) on events Emn where the
subscript m denotes the time at which the last transmission
was successfully received from sensor 1 and n denotes
the time at which the last transmission was successfully
received from sensor 2. Obviously 0 ≤ m,n ≤ k. We also
allow the indices to attain the value −1 to denote the event
when transmission from the corresponding sensor was never
possible till time k. Denote the error covariance conditioned
on the event Emn happening by Pmn. Pmn is the error
covariance in estimating x(k + 1) based on measurements
y1(0), y1(1), · · · , y1(m) from sensor 1 and y2(0), y2(1),
· · · , y2(n) from sensor 2. Let pmn be the probability of the
event Emn occurring. We can thus write

E[P (k)] =
k∑

m=−1

k∑
n=−1

pmnPmn.

Since each term in the above summation is positive semi-
definite, a necessary condition for the sum to be bounded
is that any subsequence in the sum is bounded. We will
consider three particular subsequences and show that the
conditions in (13-15) are necessary for stabilizability. First
consider the sequence

S1(k) =
k∑

m=0

pmkPmk

= Pr(r1(k) = 1)Pr(r2(k) = 1)
(
M(k)

+Pr(r1(k) = ∅)f2 (M(k − 1)) + · · ·
+(Pr(r1(k) = ∅))kfk

2 (M(0))
)
.

Since M(k) converges exponentially to M� as k → ∞, we
can substitute M� for the conditional error covariances to
study the convergence. Thus, we obtain

lim
k→∞

S1(k) = Pr(r1(k) = 1)Pr(r2(k) = 1)
∞∑

m=0

(Pr(r1(k) = ∅))mfm
2 (M�) .

Thus, using Proposition 3.1, we can prove that this sum
converges only if (13) holds. In a similar fashion, we can
prove that the condition in (14) is necessary by considering
the sub-sequence S2(k) =

∑k
n=0 pknPkn. Finally, the sub-

sequence S2(k) =
∑k

n=0 pnnPnn yields the necessary
condition

�(A)2Pr (r(k) = (∅, ∅)) < 1. (21)
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Note that �(A) = max{�(Ai,i)}. The proof is now com-
plete since

1) if �(A) = �(A3,3), equation (21) reduces to (15);
2) if either �(A) = �(A1,1) or �(A) = �(A2,2), equa-

tion (21) is subsumed by either equation (14) or (13).
Moreover, equation (21) implies (15).

B. Sufficient Conditions for Stabilizability

We now present the proof of Theorem 2.3 by considering
a particular algorithm in the class Sq. Due to Proposi-
tion 2.1, we can consider the system to be either of type I
or of type II. We can also partition the state space x(k) of
the process in one of two ways.

1) If the system is of type I, denote

x(k) =
[

x1(k)n1×1

x2(k)n2×1

]
. (22)

2) If the system is of type II, denote

x(k) =


 x1(k)n1×1

x2(k)n2×1

x3(k)n3×1


 . (23)

Now consider the following algorithm. At each time step k

• Encoder for Sensor 1:

– If the system is of type I, sensor 1 calculates
and transmits the estimate x̂loc,1

2 (k) of the modes
x2(k) of the process using its local measurements
y1(0), y1(1), · · · , y1(k).

– If the system is of type II, sensor 1 calculates
and transmits the estimate x̂loc,1

2 (k) and x̂loc,1
3 (k)

of the modes x2(k) and x3(k) of the process using
its local measurements y1(0), y1(1), · · · , y1(k).

• Encoder for Sensor 2:

– If the system is of type I, sensor 2 calculates
and transmits the estimate x̂loc,2

1 (k) of the modes
x1(k) of the process using its local measurements
y2(0), y2(1), · · · , y2(k).

– If the system is of type II, sensor 2 calculates
and transmits the estimate x̂loc,2

1 (k) and x̂loc,2
3 (k)

of the modes x1(k) and x3(k) of the process using
its local measurements y2(0), y2(1), · · · , y2(k).

• Decoder:

– If the system is of type I, the decoder maintains
an estimate x̂1(k) of the modes x1(k) and x̂2(k)
of the modes x2(k). At every time step k,
1) if r1(k − 1) = ∅, x̂1(k) = Ax̂1(k − 1), else

x̂1(k) = x̂loc,2
1 (k);

2) if r2(k − 1) = ∅, x̂2(k) = Ax̂2(k − 1), else
x̂2(k) = x̂loc,1

2 (k).
The estimate x̂(k) is constructed by stacking the
estimates x̂1(k) and x̂2(k).

– If the system is of type II, the decoder maintains
estimates x̂1(k), x̂2(k) and x̂3(k) of the modes
x1(k), x2(k) and x3(k) respectively. At every
time step k,

1) if (r1(k − 1), r2(k − 1)) = (1,1),

x̂1(k) = x̂loc,2
1 (k)

x̂2(k) = x̂loc,1
2 (k)

x̂3(k) = x̂loc,1
3 (k);

2) if (r1(k − 1), r2(k − 1)) = (1, ∅),
x̂1(k) = x̂loc,2

1 (k)
x̂2(k) = Ax̂2(k − 1)
x̂3(k) = x̂loc,1

3 (k);

3) if (r1(k − 1), r2(k − 1)) = (∅,1),

x̂1(k) = Ax̂1(k − 1)
x̂2(k) = x̂loc,1

2 (k)

x̂3(k) = x̂loc,2
3 (k);

4) if (r1(k − 1), r2(k − 1)) = (∅, ∅),
x̂1(k) = Ax̂1(k − 1)
x̂2(k) = Ax̂2(k − 1)
x̂3(k) = Ax̂3(k − 1).

The estimate x̂(k) is constructed by stacking the esti-
mates x̂1(k), x̂2(k) and x̂3(k).

We shall now prove that under the conditions (16-18),
the estimate x̂(k) of the state x(k) is stable.

Proof of Theorem 2.3 We give the proof if the system is
of type II. The proof for type I is similar. By construction,
the estimates x̂loc,1

2 (k), x̂loc,2
1 (k), x̂loc,1

3 (k) and x̂loc,2
3 (k) are

stable. Denote the corresponding error covariance matrices
by K1(k), K2(k), K3(k) and K4(k) respectively.

1) For the modes x3(k), the error covariance evolves as
follows:

P3(k) =




K3(k) w. pr. Pr(r1(k) = 1)
K4(k)
w. pr. Pr(r1(k) = ∅)Pr(r2(k) = 1)

A3,3P3(k − 1)AT
3,3 + Q3

w. pr. Pr(r(k) = (∅, ∅)),
where Q3 is covariance matrix of the process noise
entering the evolution of the modes x3(k). If (18) is
satisfied, the error for the modes x3(k) will be stable.

2) For the modes x2(k), the error covariance in estimat-
ing the modes x3(k) can thus be considered to be
additional noise with bounded covariance. The error
covariance for these modes evolves as

P2(k) =




K2(k) w. pr. Pr(r1(k) = 1)
A2,2P2(k)AT

2,2 + Q2

w. pr. Pr(r1(k) = ∅),
where Q2 denotes the covariance of noise and error
through the estimation of modes x3(k). If (17) is
satisfied, the error for the modes x2(k) is stable.

3) A similar argument shows that if (16) is satisfied, the
error for the modes x1(k) will be stable.
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IV. EXTENSIONS AND GENERALIZATIONS

It is fairly obvious that the proof techniques of Theo-
rems 2.2 and 2.3 can be generalized to the case when N
sensors are present. We have the following stability result.

Proposition 4.1: Consider the process in (1) being ob-
served by N sensors, such that the i-th sensor generates
measurements according to the model

yi(k) = Cix(k) + vi(k), 1 ≤ i ≤ N.

The sensors transmit data over erasure channels, with the
packet erasure in the i-th channel being denoted by ri =
∅. Consider the 2N possible ways of choosing m out of
the N sensors, for all values of m between 0 and N . For
the j-th such way, let the sensors chosen be denoted by
n1, n2, · · · , nj and sensors not chosen by m1, m2, · · · ,
mN−j . Denote by Cj the matrix formed by stacking the
matrices Cm1 , Cm2 , · · · , CmN−j

. Finally, denote by �j the
spectral radius of the unobservable part of matrix A when
the pair (A, Cj) is put in the observer canonical form. A
necessary and sufficient condition for the existence of a
positive integer q, an encoding algorithm of the type Sq and
an observer that stabilize the process is that the following
2N inequalities be satisfied:

Pr
(
rn1 = ∅, rn2 = ∅, · · · , rnj

= ∅) | �j |2< 1,

for all 1 ≤ j ≤ 2N .
We can also consider the case when sensors transmit

information not over erasure channels, but over networks
of erasure links, provided there is a provision for time-
stamping the packet. A special case of the network arises
when each sensor transmits data over a single link to the
controllers. However, in addition, the sensors can cooperate
by communicating with each other over an erasure link.

Proposition 4.2 (Cooperation over an erasure link):
Consider the set-up of Figure 1 with an additional
bidirectional erasure link connecting the two sensors. Let
A ∈ R

n×n, B ∈ R
n×l, C1 ∈ R

m1×n and C2 ∈ R
m2×n

be given matrices specifying the state-space representation
for the plant. Let the plant be observable and that its
state-space representation be of type I or type II. Also,
let the erasures over the link connecting the two sensors
be according to a Bernoulli process with the erasure
event at time k denoted by r3(k) = ∅. If the state space
representation is of type I, then there exists an observer
of class K, a positive integer q and sensors of class Sq

such that the feedback system is stable if and only if the
following inequalities hold

�(A2,2)2 max
(
Pr(r1(k) = ∅),

P r(r2(k) = ∅, r3(k) = ∅)
)

< 1

�(A1,1)2 max
(
Pr(r2(k) = ∅),

P r(r1(k) = ∅, r3(k) = ∅)
)

< 1,

where �(Ai,i) represents the spectral radius of the matrix
Ai,i. If the state-space representation is of type II then the
necessary and sufficient conditions for stabilizability include
the following additional inequality:

�(A3,3)2Pr(r1(k) = ∅, r2(k) = ∅) < 1. (24)

V. CONCLUSIONS

In this paper, we considered the problem of observing
a process using measurements from multiple sensors that
transmit information over erasure links. We identified nec-
essary and sufficient conditions that allow for the plant to
be stabilized in a mean square sense using transmission
of a vector of constant dimension from the sensors to the
controller. We also considered various extensions such as
sensors being able to co-operate over an erasure channel.
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