
__________________________2004 Conference on Information Sciences and Systems, Princeton University, March 17-19 1

Abstract— If heterogeneous ad hoc battlefield networks are to
scale to hundreds or thousands of nodes, then they must be
automatically split into separate network domains. Domains allow
routing, QoS and other networking protocols to operate on fewer
nodes, with cross-domain interaction only through a few border
nodes. This division greatly reduces overall overhead (e.g.,
routing overhead with n nodes goes from ()2O n to ()O logn n)

and allows protocols to be tuned to more homogenous conditions
[1]. On the other hand, the benefits from grouping the nodes are
obvious only when the clustering is done in a way that the
overhead that is produced due to its application does not offset
the gain from the grouping of nodes. A significant source of
overhead is the reclustering of nodes due to dynamic changes in
network topology. If we manage to minimize the effect of
reclustering then we expect the performance of the network to be
improved (e.g., more scalable and survivable network). In this
work we try to identify the various mobility groups and cluster
the nodes accordingly. By grouping together nodes with similar
mobility characteristics we can minimize/eliminate the effect of
reclustering, since the topology changes will not affect the intra
cluster connectivity.

Index Terms—adhoc networks, self configured networks,
dynamic clustering, mobility.

I. INTRODUCTION
HE survivability and deployment of Future Combat

Systems (FCS) depends on the efficient and careful design
of the algorithms which constitute the basic modules of their
functionality. Two of the most important characteristics that
these systems must have are the robustness and scalability. If
we think of the existing algorithms designed for mobile ad hoc
networks and study their performance we can observe that
these algorithms perform poorly when there is a large number
of participating nodes or when the nodes are more mobile than
the algorithm can handle. Combining the last two observations,
it is obvious that we can not consider large, flat mobile ad hoc
networks.

Prepared through collaborative participation in the Communications and

Networks Consortium sponsored by the U. S. Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooperative
Agreement DAAD19-01-2-0011. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes not withstanding
any copyright notation thereon.

Kyriakos Manousakis is with the Electrical and Computer Engineering
and the Institute for Systems Research of University of Maryland, College
Park, MD 20742 USA (e-mail: kerk@ isr.umd.edu).

John. S. Baras, is with the Electrical and Computer Engineering and the
Institute for Systems Research of University of Maryland, College Park, MD
20742 USA (e-mail: baras@isr.umd.edu).

The generation of hierarchy seems to be part of the remedy
for the design of survivable MANETs but has to be done
carefully and efficient. There are many clustering algorithms
designed for MANETs but their drawback is that they group
the nodes without taking into consideration the characteristics
of the network environment. If the clustering algorithm
operates independently from the network dynamics then it is
destined to fail and harm instead of improving the performance
of the network. For the latter reason the intuitive approach is to
incorporate the network dynamics in the generation of clusters
so that the clustering can be adapted each time to the
requirements of the network.

Consider the following example that proves the importance
of our approach. Assume the following network environment,
where the nodes 1-7 are static, so there is no variation of their
initial position during the lifetime of the network (i.e., these
nodes can be sensor nodes). The nodes 8-11 are mobile nodes,
but they are moving as a group so they are relatively static
(i.e., group of soldiers). The former group of nodes follows a
cyclic trajectory around the static nodes.

Fig. 1. Dynamic Clustering Motivation Example (mobility vs. proximity)

In this case if we attempt to cluster based on the proximity

of the nodes or utilize the traditional methods of clustering
(lower ID, highest degree) then we may end up with frequent
re-clustering. The response of clustering algorithms to the
topology changes is to re-cluster the network so as to maintain
the clusters consistent to the principals of the specific
algorithm. If we cluster based on the mobility of the nodes
then we will not need any re-clustering, since, although the
positions of the nodes change, their mobility characteristics
remain the same. By using the mobility pattern as criterion for
cluster generation we can achieve the following:

• More stable and robust clusters
• Minimize re-clustering/maintenance overhead

Dynamic Clustering of Self Configured Adhoc
Networks Based on Mobility

Kyriakos Manousakis and John S. Baras

T

: mobile nodes relatively static (same speed, same direction)

: static nodes (i.e., sensor nodes)

: mobile nodes relatively static (same speed, same direction)

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

Clustering 1: Based on mobility Clustering 2: Based on proximity

: mobile nodes relatively static (same speed, same direction)

: static nodes (i.e., sensor nodes)

: mobile nodes relatively static (same speed, same direction)

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

Clustering 1: Based on mobility Clustering 2: Based on proximity

__________________________2004 Conference on Information Sciences and Systems, Princeton University, March 17-19 2

For the presentation of our approach we will introduce the
appropriate methods and metrics that generate clusters subject
to the mobility of the nodes. In the following paragraph we
present the clustering algorithm we propose and the
metrics/cost functions that we applied for the identification of
the various mobility groups. In section 3, we present a
prototype networking framework where the proposed
clustering algorithms can be incorporated and applied in real
world scenarios. The methods of interaction of the proposed
algorithms with the specific networking framework are also
discussed in the same section. Section 4 is related to the
performance evaluation of the clustering algorithms. In the last
section we will conclude this paper and will give some future
directions.

II. CLUSTERING ALGORITHM, COST FUNCTIONS AND METRICS

A. Simulated Annealing
 Simulated annealing (SA) has been widely used for tackling
different combinatorial optimization problems [5]. The process
of obtaining the optimum configuration is similar to that
followed in a physical annealing schedule. In SA, however, the
temperature is merely used as a control parameter and does not
have any physical meaning.

Fig. 2. Simulated Annealing algorithm for network partitioning

Figure 2 highlights the general steps in the algorithm. The
objective of the algorithm is to obtain the K cluster network
partition configuration, C*, that optimizes a particular cost
function. The process starts with an initial temperature value,
T0, which is iteratively decreased by the cooling function until
the system is frozen (as decided by the stop function). For each
temperature, the SA algorithm takes the current champion
configuration C* and applies the recursive function to obtain a
new configuration C’ and evaluates its cost, E’. If E’ is lower
than the cost of the current E*, C’ and E’ replace C* and E*.
Also, SA randomly accepts a new configuration C’ even
though E’ is greater than E* to avoid local minima. In the latter
case C’ and E’ replace C* and E* respectively.

One of the key characteristics of simulated annealing is that
it allows uphill moves at any time and relies heavily on
randomization [6]. The higher the temperature, the higher the
probability of accepting a configuration that worsens E*
instead of improving it. Indeed, if the temperature is
sufficiently high, SA will simply take a random walk around
the solution space. The lower the temperature, the lower the
probability of accepting worse configurations.

The number of iterations required to reach equilibrium are
defined by the equilibrium function. The function can be a
simple constant (e.g., 100) or a function of the temperature and
other parameters specific to the optimization problem, such as
number of nodes in the network.

In order to complete the description of the proposed
dynamic clustering algorithm we will present the metrics/cost
functions we suggest so as to succeed in our objective, which
is to cluster based on the mobility characteristics of the nodes
for the reduction/elimination of the reclustering overhead and
the improvement of robustness and scalability of the network.
The next section elaborates on the problem of selecting the
appropriate metrics/cost functions.

B. Metrics and Cost Functions
Our objective is to identify and group together the nodes

that present similar mobility characteristics subject to the
generation of topological domains1. The appropriate selection
of metrics/cost functions in combination with SA will generate
domains that are robust to the mobility of the nodes, since its
effect on the intracluster connectivity will be minimized or
even eliminated, because even though the topology will be
changing, the nodes with similar mobility characteristics will
be still moving together. By succeeding in this, we will have
generated a hierarchy into our network, without penalizing
performance because of reclustering overhead. This will result
in network performance improvement because we can take
advantage of the generated hierarchy without having to deal
with the overhead of its maintenance.

There are various ways to characterize the mobility of the
nodes. The cost function that we propose involves the
direction of the mobile entities. In the following paragraphs we

__________________________2004 Conference on Information Sciences and Systems, Princeton University, March 17-19 3

will present the metric and the corresponding cost function that
we applied in combination with SA for the clustering of the
nodes.

The mobility of the nodes is characterized from two basic
metrics: speed and direction. In this work we utilized only one
of these two metrics and more specifically the cost function we
propose is based on the direction of the nodes. The direction
of the nodes is described from the angle that is defined
counter-clockwise from the straight line that is defined from
two consecutive points on the trajectory of the node and the
straight line parallel to the positive x-axis (0oθ =). Figure 3
gives a couple of examples:

Fig. 3. Method to estimate the node direction

Since we have specified the metric, we need to define the

appropriate cost function that will be optimized from the SA
algorithm for the generation of clusters. The objective is to
group together nodes with similar mobility characteristics.
Specifically, due to the focus on the nodes direction metric, we
expect the cost function to be successful in grouping together
nodes that have similar directions. The reason behind this
approach is that the nodes that will constitute these groups will
most likely remain connected for a long period of time.

In the cost function we do not apply the raw value of the
direction of each node but the relative direction of each pair of
nodes that belong in the same cluster. The value of the cost
function is evaluated after every iteration performed from the
SA algorithm. The cost function is:

,

2

1 , 1
min

z

i j

CK

r
z i j

E θ
= =

 
=   

 
∑ ∑ (1)

where
K : number of generated clusters

zC : size of zth cluster

,i jrθ : Relative direction of nodes i and j

• Relative Direction

,i jrθ

The relative direction of each pair of nodes i,j of the same
cluster is defined as follows:

1 Topological domains: Group of nodes/interfaces such that each pair of

them can communicate with every other node/interface of the same
topological domain only through nodes that belong in this domain.

(),
min ,360

i jr i j i jθ θ θ θ θ= − − −

The proposed cost function results in K clusters which
consist of nodes that present similarity in the direction of their
movement. As we are going to show in the performance
evaluation section, (1) is very successful and accurate in
identifying the various mobility groups in the network.

Apart from the above cost function that we will utilize in
conjunction with the SA algorithm, we pose an extra constraint
on the generation of clusters. We require that the resulting
clusters are topological clusters. The definition of a
topological cluster is:

Definition (Topological Cluster): A cluster consisting of
the set S of nodes is called topological if ,i jnode node∀ ∈ S

and i j≠ , there is always a path ijP from inode to jnode s.t

knode∀ ∉ S holds that k ijnode P∉ .

In order to fulfill this extra constraint we allow the SA
algorithm to search only among this set of feasible clustering
maps. In order for a clustering map (CM) to be eligible for
evaluation during the execution of SA, it has to involve only
topological clusters. This constraint is included in the
implementation of the SA algorithm, and we aim on the
minimization of (1) by searching only among the set of
feasible clustering maps.

III. NETWORK ARCHITECTURE FOR THE APPLICATION OF THE
CLUSTERING ALGORITHMS

A. IP Autoconfiguration Suite – IPAS
Rapidly deployable and survivable networks are very

important requirements in the Objective Force. Thus, in order
to support these requirements, the entire tactical battlefield
network, possibly consisting of thousands of hosts, routers and
MANET nodes, must be autoconfigured. Moreover, the
networks must be rapidly reconfigured as conditions or
requirements change. In this section, we present an approach
to plug-and-play and survivable networking using the IP
Autoconfiguration Protocol Suite (IPAS) [4]. We describe the
IPAS protocol architecture, its elements and their
functionalities.

Figure 4 shows the IPAS components and how they relate to
each other. At its heart is the new Dynamic Configuration
Distribution Protocol (DCDP). DCDP is a robust, scalable,
low-overhead, lightweight (minimal state) protocol designed to
distribute configuration information on address-pools and
other IP configuration information (e.g., DNS Server’s IP
address, security keys, or routing protocol). DCDP was
designed for dynamic wireless battlefield, operating without
any central coordination or periodic messages. Moreover,
DCDP does not require a routing protocol to distribute
information or any interface to be configured (except for the
link-local information in IPv6).

iθ
+

trajectory

estimated
linear path

node i

1 80 o
iθ =

+

trajectory

estimated
linear path

node i

iθ
+

trajectory

estimated
linear path

node i

1 80 o
iθ =

+

trajectory

estimated
linear path

node i

__________________________2004 Conference on Information Sciences and Systems, Princeton University, March 17-19 4

Fig. 4. IPAS network and node models

DCDP relies on the Dynamic and Rapid Configuration

Protocol (DRCP) to actually configure the interfaces. DRCP
borrows heavily from DHCP, but adds features critical to
roaming users. DRCP can automatically detect the need to
reconfigure (e.g., due to node mobility) through periodic
advertisements. In addition, DRCP allows for: a) efficient use
of scarce wireless bandwidth, b) dynamic addition or deletion
of address pools to support server fail over, c) message
exchange without broadcast, and d) clients to be routers.

The Configuration Database Update Protocol (YAP) is a
simple bandwidth efficient reporting mechanism for dynamic
networks. YAP has three elements: 1) YAP Clients running on
every node, 2) YAP Relays forwarding information from YAP
clients to a server, and 3) a YAP Server. YAP clients
periodically report its node’s capabilities, configuration, and
operational status to the YAP relay agents. The capabilities
say, for example: “This node can be a DNS server with
priority 0” or “a YAP server with priority 3” (priority
reflecting a node’s willingness to perform a function). Other
YAP information include the node’s: 1) name and IP address,
2) Rx/Tx packets, bit rate, link quality, 3) routing table, and 4)
address pool. The YAP server stores this information in a
configuration database (see Figure 1).

The brain of IPAS is the Adaptive Configuration Agent
(ACA). It observes the state of the network in the
Configuration Database (filled by YAP) and can perform some
actions, such as server reconfiguration, based on some rules or
policies. The ACA can also reset the network and can
distribute an address pool from human input or from a
predefined private address pool (e.g., 10.x.x.x).

B. Application of Clustering Algorithm
Our main objective is to design efficient clustering

techniques that can be successful in dynamic and distributed

network environments. Even though the proposed clustering
algorithm is based on Simulated Annealing which is a
centralized global optimization algorithm, it can successfully
fit the targeted network environment. The architectural
framework in which SA can be applied for the clustering of
distributed and dynamic networks (i.e., adhoc networks) is
described in this section.

If we utilize IPAS to configure and maintain the mobile
adhoc network, then we can easily incorporate SA for the
dynamic generation of clusters. Even though IPAS is a
distributed algorithm, the configuration decisions are
originated from a centralized entity, the ACA (Adaptive
Configuration Agent). If we attach a SA module to the ACA
then this centralized entity will be enriched with the extra
capability of generating clustering decisions which can be
distributed to the network following the exact same mechanism
that is used for the distribution of the network entity
configuration decisions. Using the already existing IPAS
architecture, the application of a centralized algorithm (i.e.,
SA) is realizable. In the realization of SA, there are two more
points that they haven’t been clarified yet. The first has to do
with the collection of metrics that SA utilizes for the clustering
of nodes. The values of these metrics have to be collected from
the network in real time. Once more the design of IPAS can
help us achieve that without the development of new modules.
A module of IPAS is YAP which collects configuration
information from the network and stores it in a centralized
database. This database is accessible from ACA and is used
for the generation of the appropriate configuration decisions.
YAP can be slightly modified to collect from the network the
metrics of interest that can be used later from the SA algorithm
in the generation of clusters. The second point for the
realization of SA has to do with the post clustering decision
generation phase and specifically with the distribution of the
clustering decisions to the nodes. Up to this point ACA
distributes configuration decisions that target specific network
interfaces, but now we want to distribute configuration
information that targets a group of interfaces. We have already
designed this mechanism by extending ACA, DCDP and
DRCP to distribute and process new domain configuration
messages [1].

IV. PERFORMANCE EVALUATION
In this section we will present the results we collected for

the evaluation of the proposed clustering algorithm. We will
characterize the performance of the algorithm from two
different perspectives. Initially, we will present the results we
collected related to the accuracy of the algorithm in the
identification of the various mobility groups that exist into the
network. Results related to the speed of the algorithm will
follow. The latter class of results is important for the
characterization of the approach in terms of its effectiveness in
a dynamic environment. Since, we want to apply the SA in a
dynamic environment, we want to show that the algorithm that
generates the clusters can be fast enough to cope with the

Config Server

ACA

Preconfigured
node capabilitiesInterface

YAP low-bandwidth
configuration reports

Config Database

MySQL
DCDP distributes
new configuration

Node
DRCP configures
subnet interfaces

D R C P

D C D P

A C A

Y A P (c lien t/rela y)

Y A P (serv er)

C on fig u ra tio n D a ta b ase

D R C P

D C D P

Y A P (re la y)

D R C P Y A P (c lien t)

R ou ter

A C A

H o st

__________________________2004 Conference on Information Sciences and Systems, Princeton University, March 17-19 5

dynamic changes happening in the network.
Before going into the presentation details of the collected

results we will highlight the important points of the
experiments’ set up. We implemented the SA algorithm on a
LINUX platform (Redhat 9.0), which was running on a P4
machine (CPU:1.2GHZ, SDRAM: 256MB). We generated an
application for the generation of connected networks. This
application gets as inputs the desired size (e.g., number of
nodes) of the network to be generated and the 2D dimensions
of the area in which these nodes are going to be distributed.
Two sample networks which were used in the evaluation of the
proposed algorithm are shown.

Fig. 5. Sample Network Configurations: 100 nodes (left), 200 nodes (right)

In order to test the accuracy of the algorithm on the

identification of the various mobility groups we designed
specific experiments so we could evaluate easier the
performance of the algorithm. We manually assigned nodes to
mobile groups so we could know beforehand the configuration
of the mobile groups. We did that so after the application of
the clustering algorithm we could compare the generated
clusters with the preassigned mobile groups. We utilized the
Reference Point Group Mobility (RPGM) [7] model for the
movement of nodes. In RPGM we define a number of RP
equal to the number of mobility groups we want to generate.
To complete the generation of mobility groups each node is
assigned to a Reference Point (RP). The movement of the
nodes is defined from the mobility patterns of their
corresponding RPs. These mobility patterns are assigned
manually to the various RPs in the form of trajectories. When
a RP moves to a new location each corresponding node is
assigned to a random radius and direction around the new
position of the RP. Because of the functionality of RPGM
model and the randomness in the selection of the new node
position, it is obvious that nodes that belong into the same
group may have different speeds and directions, which makes
our work of identifying the various mobility groups more
difficult but makes the evaluation of our clustering approach
more general.

The following results were collected by assuming two
mobility groups, where the corresponding RPs where moving
on a straight line and in constant relative direction

1 2,RP RPθ . We

varied the relative direction from 0o to 360o

(e.g.,
1 2, 0 ...360o o

RP RPθ  ∈  ) with a step of 15o. In each run we

measured the percentage (%) of nodes that they were assigned
in an incorrect cluster. The variation of this percentage versus

1 2,RP RPθ is given in the following graph:

Misassigned Nodes (%) vs. Relative Direction (degrees)

0

5

10

15

20

25

30

35

40

45

50

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

Relative Direction (degrees)

M
is

as
si

gn
ed

 N
od

es
 (%

)

Fig. 6. Percentage of nodes that have been assigned incorrectly vs. the relative
direction of the mobile groups

From the above figure, the cost function can identify
accurately the various mobility groups especially when the
groups are moving in relative directions such
that

1 2, 30 ...330o o
RP RPθ  ∈   . When

1 2, 30 ...330o o
RP RPθ  ∉   then

the proposed cost function has difficulty to identify the
mobility groups. This is not a limitation of the algorithm since
in this scenario, the selection of mobility groups is not
restricted to the original mobility groups, because of the
similarity in their directions. Even in this case the reclustering
overhead will be low, because the nodes of the mobility groups
are moving towards an almost similar direction.

The other important class of results is related to the
convergence speed of the proposed algorithm. We measured
the time to the completion of the algorithm for various network
sizes. We let the number of nodes vary from 50 to 1000 with
steps of 50 nodes. The collection of the running times was
done with the help of the gettimeofday(struct timeval *tv,
struct timezone *tz) function that exists under the
UNIX/LINUX systems. The following graph represents the
performance of the algorithm:

Speed of Simulated Annealing Algorithm
Time(secs) vs. Number of Nodes

0

200

400

600

800

1000

1200

1400

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Number of Nodes

Ti
m

e(
se

cs
)

Fig. 7. Speed of Simulated Annealing algorithm measured in time (secs) vs.
the size of the network

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

__________________________2004 Conference on Information Sciences and Systems, Princeton University, March 17-19 6

From figure 7, we can conclude that the proposed clustering
algorithm can be used effectively as an optimization technique
under either of the following two conditions a) small networks
independently of network dynamics (e.g. few hundreds of
nodes), or b) large networks with low rate of topology changes
(i.e. sensor networks where we have none or very slow
movement of the nodes). The latter conclusions are justified
from the fact that the running time of SA increases
exponentially with the network size.

V. CONCLUSIONS AND FUTURE WORK
In this work we presented a novel approach for the dynamic

organization of MANETs into clusters. The generation of
hierarchy can only help the network if it is done in a way that
the clustering/reclustering overhead is minimized or
eliminated. To achieve our objectives, our approach takes into
consideration the network environment. We follow this
philosophy by attempting to cluster the nodes based on their
mobility characteristics – nodes with similar mobility
characteristics are clustered together, in order to minimize the
effect of topology changes on the clustering overhead.

We introduced a cost function that is based on the relative
direction of nodes. We showed that the cost function is very
accurate in identifying the various mobility groups, especially
when

1 2, 30 ...330o o
RP RPθ  ∈  

. For the cases, where
1 2, 30...330o o

RP RPθ  ∉  , the

algorithm may not be very accurate subject to the predefined
mobility groups, but this does not suggest that the clustering
will result in large overhead, because of the similarity of nodes
direction.

Our intention is to apply the proposed algorithm in dynamic
environments. So, we had to evaluate the ability of the
algorithm to capture the dynamics of the network. We
presented the time required from the algorithm until its
completion for various network sizes. The initial indication is
that the algorithm can be applicable in small, quickly changing
networks or in larger but slowly changing ones.

Currently we are investigating the improvement of the
proposed clustering approach by looking into two different
directions. The first one is related to the identification of the
mobility groups, where we will try to make our approach more
accurate by incorporating in the cost function the velocity and
location of nodes. We expect that the utilization of the
combination of metrics can be even more effective than
utilizing only the node direction. The second direction has to
do with the time to completion (speed) of SA algorithm where
we aim on improving its speed by configuring appropriately
the various input parameters of the algorithm. The latter can
produce suboptimal clustering maps but if this is done
carefully we can significantly improve the convergence speed
of the algorithm and at the same time we can still obtain very
good clustering maps.

REFERENCES
[1] Manousakis K., McAuley J., Morera R., Baras J., “Routing Domain

Autoconfiguration for More Efficient and Rapidly Deployable Mobile
Networks,” Army Science Conference 2002, Orlando, FL

[2] Lin Chunhung Richard and Gerla Mario, “Adaptive Clustering for
Mobile Wireless Networks,” IEEE Journal on Selected Areas in
Communications, pages 1265-1275, September 1997

[3] Baker D., Ephremides A., and Flynn J. “The design and simulation of a
mobile radio network with distributed control,” IEEE Journal on
Selected Areas in Communications, SAC-2(1):226--237, 1984

[4] McAuley A., Misra A., Wong L., Manousakis K., “Experience with
Autoconfiguring a Network with IP addresses,” IEEE Milcom, October
2001.

[5] Kirkpatrick, S, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by
Simulated Annealing,” Science 220 (13 May 1983), 671-680

[6] D. S. Johnson and L. A. McGeoch, “The Traveling Salesman Problem:
A Case Study in Local Optimization,” in E. H. Aarts and J. K. Lenstra
(eds.), “Local Search in Combinatorial Optimization,” John Wiley and
Sons, Ltd., pp. 215-310, 1997.

[7] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A group mobility model
for ad hoc wireless networks,” in ACM/IEEE MSWiM, August 1999.

