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Abstract-Run-to-Run (RtR) control plays an important 
role in semiconductor manufacturing processes. In this pa- 
per, RtR control methods are classified and evaluated. The 
set-valued RtR controllers s i th  ellipsoid approximation 
are compared with two typical RtR controllers: the Expo- 
nentially Weighted Moving Average (EWMA) controller 
and the Optimizing Adaptive Quality Controller (OAQC) 
by simulations according to the following criteria: A good 
RtR controller should be able to compensate for various 
disturbances, such as small drifts, step disturbances and 
model errors; moreover, it should he able to deal with 
hounds, cost requirement and multiple targets that are 
often encountered in semiconductor processes. Based on 
our simulation results, suggestions on selection of a proper 
RtR controller for a semiconductor process are given as 
conclusions. 

1. INTRODUCTION 
Run-to-Run (RtR) control plays an important role 

in semiconductor manufacturing processes [I]- [ 5 ] ,  [9 ] -  
[ I l l ,  [13]- [IE]. A RtR controller is a model-based pro- 
cess control system that combines the advantage of both 
the statistical process control and the feedback control. 
The goal of the controller is to reduce the variability of 
the process outputs, as measured by the Mean Square 
Deviations (MSDs) between the process outputs and the 
target values [l]. A good RtR controller should he able 
to compensate for various disturbances such as small 
drifts, shifts (step disturbances) and model errors. A drift 
disturbance, which may he produced by the equipment 
aging, change of environment or other factors, causes 
slow and smooth changes of process outputs. Different 
from a drift disturbance, a shift disturbance causes a 
large change of process outputs in a few runs. The 
shift disturbance may he produced by the failure of 
a component, change of the operator, etc. A model 
error is often caused by the coarse estimates of process 
parameters. A good RtR controller should also he able to 
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deal with bounds, cost requirement and multiple targets 
that are often encountered in real processes. 

Generally, a RtR controller is designed in the follow- 
ing way. First, it computes an optimal control based on 
the initial process model. The initial process model is 
usually derived from former off-line experiments such as 
using the Response Surface Model (RSM) method [l]. A 
typical block diagram of a RtR controller is illustrated in 
Figure 1. The RtR controller does not modify its recipe 
during a run because of the following reasons: 

I)  Cost. It is usually very expensive to obtain real- 
time information in a semiconductor process. 
Discrete-time measurements are much cheaper. 

2) Variability. Frequent changes of inputs to the pro- 
cess may increase the variability of the process 
outputs [14]. 

When the controller is online, the process model within 
the controller is updated by the model estimator ac- 
cording to the new measurements from run to run. The 
optimizer then supplies a new recipe according to the 
updatedprocess model. The cost function used by the op- 
timizer is usually a weighted quadratic function between 
the process outputs and target values. An important 
output should he given a large weight. Different model 
updating methods lead to different kinds of controllers. 
In this paper, RtR control methods are classified and 
evaluated in some typical semiconductor processes. Sug- 
gestions on how to select a proper RtR controller for a 
specific semiconductor process are provided. 

This paper is organized as follows. Classification of 
RtR control methods is given in section 2; comparisons 
of the set-valued RtR controllers with the Exponentially 
Weighted Moving Average (EWMA) controller are given 
in section 3.1; in section 3.2, one of the set-valued RtR 
controllers is compared with the Optimizing Adaptive 
Quality Controller (OAQC). Finally, conclusions are 
given in section 4. 
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Run-t&un Controller 

Fig. 1. 

11. CLASSIFICATION OF RTR CONTROL METHODS 

Structure of a RtR controller. 

Depending on how to update a process model, RtR 
control methods can be classified into the following 
categories. 

I .  EWMA methods [14]. The EWMA approach is 
widely used in RtR control for its simplicity and effi- 
ciency to compensate for smooth drifts and other small 
disturbances. The EWMA method uses a linear (affine) 
model to approximate a process: 

where t is the time index (run number), yt represents 
a p by 1 vector of model outputs, A stands for a p by 
q fixed “gain” matrix, ut represents a q by 1 vector of 
inputs‘and bt is a p by 1 vector of model offsets. Let 
the measured output vector be gt. The EWMA method 
only updates the offset vector in the model: 

where I is a unit matrix, weight matrix W = 
diog([wi ... wp]) and 0 < w, < 1, i = 1; ...,p. For 
more details about the EWMA method, we refer readers 
to [2], [9] and [14]. There are many extensions of the 
EWMA method. For example, the Double Exponential 
Forecasting Filter method [3] had hvo EWMA modules. 
One module was used to update the offset term of 
the linear model and the other module was used to 
predict the drift disturbance. The weight matrix W of 
the EWMA controller is an important factor that affects 
its performance. An Artificial Neural Network (ANN) 
was used in [Is] to adaptively adjust the weights of the 
EWMA controller. The neural network had to be trained 
extensively off-line before it was deployed online. 

2 .  Least Square Estimation (LSE) methods. The pro- 
cess model is updated according to a LSE approach. 
Typical examples are the OAQC [4] and the Kalinati 
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filter based approach [IO]. The OAQC uses a second- 
order model to approximate a process: 

dt = f i t%t  t GtTt + bt> (3) 

where f i t  is a p by 2q + q(q  - 1)/2 parameter matrix, 
4 = (ut, 4, ui>tq,t(i < j ) )  is a (2q t q(q - 1 ) ~ )  x 
1 vector that contains the quadratic expansion of ut 
(ui,t, uj,t are components of ut), ilt is a p x 1 parameter 
matrix, Tf, is a 1 x 1 vector of time index t ,  and bt 
is the p x 1 offset vector [4]. All the parameters (fit, 
A& and 6,) of the model in the OAQC can be adjusted 
adaptively using a LSE approach from run to run. For 
more details about the OAQC, we refer readers to [4]. 
Simulations in [I31 showed that the OAQC had better 
performance than the EWMA controller in controlling 
a nonlinear process. The Kalman filter based approach 
uses a linear model to describe a process. Different 
from an EWMA controller, the Kalman filter based RtR 
controller can adaptively adjust both the slope and the 
intercept terms [lo]. Therefore, the LSE method based 
RtR controllers may have stronger tracking ability than 
the EWMA controller. 

3. Set-valued methods [l], [SI, [17], [18]. Due to 
measurement errors and environmental noises, it is dif- 
ficult to find an exact process model. The locations 
of the likely process model parameters for the next 
optimization run form a set. We could be quite certain 
that the parameter vector is somewhere in this set. The 
set-valued approach seeks safe estimates of the process 
model parameters in the possible parameter set for the 
next run. The identified process model is insensitive to 
various noises [I] ,  [17]. The main difficulty of designing 
a set-valued RtR controller is the excessive computa- 
tional time to calculate the feasible parameter set. It 
is also very hard to solve the optimization problem 
within an irregular parameter set. An outer-bounding 
ellipsoid is usually used to approximate the set of likely 
parameter values; the ellipsoid is used for its simplicity. 
An ellipsoid is simply characterized by a vector cen- 
ter and a matrix that describes its size; for a convex 
region, an ellipsoid can be used to obtain a satisfactoly 
approximation; a linear transformation maps an ellipsoid 
into another ellipsoid. With the ellipsoid approximation, 
a high-order polynomial model can be used to describe 
a process: 

Y t  = otxt, (4) 

where Ot is a p x TZ parameter matrix, X t  is a n x 1 vector 
of inputs (e.g., XT = (l,ut,u2,ui,tuj,t(i < j),u:, ...I. 
Therefore, the ellipsoid algorithm based RtR controllers 
may describe a nonlinear process more accurately than 
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At each iteration, the ellipsoid algorithm retnms an 
outer bounding ellipsoid that contains the true parameter 
vector with high probability. If the vector center of the 
ellipsoid is taken as the estimate of the process parameter 
vector, the explicit model update is implemented and 
it leads to a model-reference method. If we search for 
the worst expected output that may be produced by a 
vector within the ellipsoid and then minimize the worst- 
case cost, a worst-case controller is obtained. There 
are mainly two ellipsoid based algorithms available for 
RtR control: the Modified Optimal Volume Ellipsoid 
(MOVE) algorithm [17], [18] and the Dasgupta Huang 
Optimal Bounding Ellipsoid (DHOBE) algorithm [6]. 
For details of these two algorithm based RtR controllers, 
we refer readers to [ 5 ] ,  [17] and [18]. The RtR controller 
based on the MOVE algorithm is called the SVR-MOVE 
controller [17]. The RtR controller based on the DHOBE 
algorithm and the model-reference approach is called the 
DHOBE-MR controller [ 5 ] .  The RtR controller based 
on the DHOBE algorithm and the worst-case approach 
is called the DHOBE-SV controller [ 5 ] .  Both the SVR- 
MOVE controller and the DHOBE-MR controller use 
the center of the ellipsoid as the estimate of the process 
parameter vector. The ,DHOBE-SV controller uses the 
vector within the ellipsoid that produces the worst- 
expected cost as the estimate of the parameter vector. 

4. Other RtR control methods using nonlinear models 
to describeprocesses. They include the machine learning 
method and the neural-network based method, etc.. A 
typical example of the machine leaming based approach 
is the Knowledge Based Interactive Controller (KIRC) 
[13]. The KIRC uses leaves in a classification decision 
tree to suggest control actions. The algorithm generates a 
decision tree by using an information space with attribute 
tests. The starting operating point is chosen from the 
largest leaf in the decision tree, where all outputs are 
inside the target range. A comparative simulation [ 131 
showed that the KIRC was only applicable to processes 
that could be approximated by linear models. The ANNs 
have great potential in modeling strongly nonlinear semi- 
conductor processes [7], [8], [IZ]. But a drawback of the 
ANN method is that it may not supply an explicit model 
for the process. Thus it may be difficult for one to apply 
optimal control to the process. A Taylor expansion was 
used in [ 161 to find a linear equation to describe the ANN 
model. The authors believe that a higher-order Taylor 
expansion may produce better results. 

linear model and second-order model based RtR con- 
trollers. 

~ 
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111. PERFORMANCE EVALUATION OF RTR 
CONTROLLERS BY SIMULATION 

In thk section, we compare the.set-valued RtR con- 
trollers with two other popular RtR controllers: the 
EWMA controller and the OAQC. Because the detailed 
design of the OAQC was not available to us, we simu- 
lated one of the set-valued RtR controllers, the DHOBE- 
MR controller under the same environment as that of 
the OAQC. Because the objective of a RtR controller 
is to maintain the process outputs on targets, the main 
performance metric is R M S D ( y i  -Ti), the square root 
mean square deviation of the process’s ith output y i  from 
its target value Ti. The smaller its value, the better. In 
the rest of the paper, we will use the notation RMSDi 
for simplicity. 

A. Comparison of the Set-valued RtR Controllers with 
the EWMA Coniroller 

The set-valued RtR controllers that we evaluated 
included the SVR-MOVE controller, the DHOBE-MR 
controller and the DHOBE-SV controller. They were 
compared with the EWMA controller. The platform we 
used was the Chemical Mechanical Polishing (CMP) 
process. CMP process is of critical importance in semi- 
conductor manufacturing [ 2 ] .  In the CMP process, a 
wafer is affixed to a wafer carrier and pressed facedown 
on a rotating platen holding a polishing pad. A slurry 
with abrasive material is dripped onto the rotating platen 
during polish. The typical process goal is to achieve 
“global” planarization [2]. 

The underlying process model was given by: 

yt = -1382.6 + 50.18~1,t - 6.65~2, t  

+163.4~3,t t 8 . 4 5 ~ 4 ~  + W t  t 6t,  (5)  

where t was the time index (run number), yt was the 
process output and u,,tl z = 1: 2 , 3  and 4 were the inputs, 
wt was a normally distributed random variable with 
variance 665.64 and 6 = -17 was the drift size at each 
run. The units were dropped for simplicity. The target 
value was set as 1700. The inputs were constrained in the 
range: 0 5 U I , ~  5 2 ,  0 5 U Z , ~  5 200, 0 5 5 30 and 
0 5 u4,t 5 50 respectively. The controllers’ objective 
was to maintain the output ut as close to the target value 
as possible. 

In the following three scenarios, we tested the perfor- 
mance of RtR controllers with respect to different noises. 

Scenario 1 
First, we assumed that the controllers had perfect 

knowledge of the process model parameters at the begin- 
ning. The initial process model used by the controllers 
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Fig. 3. 
EWMA controller in scenario 2. 

Comparison of the set-valued RtR controllers with the Fig. 2. 
EWMA controller in  scenario 1. 

Comparison of the set-valued RtR controllers with the 

was: 

Qt = -1382.6+50.18~1,t-6.65~2,t+163.4~3~t+8.45~~,t, 
(6)  

where yt is the predicted process output. The noises (wt 
and 6) were unknown to the controllers. The controllers 
were fully tuned to compensate for the disturbances 
based on post-measurements, Because the weight of 
the EWMA controller played an important role in its 
performance, we listed the simulation results for different 
weights of the EWMA controller in the first row of Table 
I. The RMSD values for the SVR-MOVE controller, 
DHOBE-MR controller, DHOBE-SV controller and the 
uncontrolled process were given in the first row of Table 
11. The simulation results when the optimal weight value 
(0.5) of the EWMA controller was chosen are shown in 
Figure 2. The three horizontal straight dashed lines give 
the target and the 3u bounds, where U = 25.8 is the 
standard deviation of the Gaussian noise. The uncon- 
trolled process, denoted by the "*-" symbol, diverged 
due to the drift disturbance. From Figure 2 and data in 
Table 11, one can see that the SVR-MOVE controller, 
DHOBE-MR controller and EWMA controller with a 
proper weight worked well in this case. The DHOBE-SV 
controller had larger variability than the other controllers. 
This was due to the fact that the controller is pessimistic 
or conservative to produce the recipe. 

Scenario 2 
In this scenario, a shift disturbance was added to 

the underlying process (i.e., the disturbances included 
unknown drift, unknown shift and unknown Gaussian 
noise). The occurrence of the shift disturbance and its 
magnitude were unknown to the controllers a priori. 
The initial process model used by the. controllers was 
the same as that in scenario 1. As in scenario 1, we 
computed the RMSDs for different weights of the 
EWMA controller and listed the results in the second row 

of Table I. The RMSD values for the SVR-MOVE con- 
troller, DHOBE-MR controller, DHOBE-SV controller 
and the uncontrolled process were given in the second 
row of Table 11. Figure 3 shows the simulation results 
when the weight of the EWMA controller was optimal 
(0.6 in this scenario). Again, the uncontrolled process 
diverged. The SVR-MOVE controller and DHOBE-MR 
controller returned the output of the-process hack to 
target quickly. The EWMA controller needed more steps 
to do so. The process controlled by the DHOBE-SV 
controller still had large variability. The gains of the 
SVR-MOVE controller and the DHOBE-MR controller 
over the EWMA controller with the best weight (0.6) 
were 29.45% and 25.30% respectively. 

Scenario 3 
In real life, the underlying process model parameters 

are unknown. To address this model uncertainty, in this 
scenario, the initial process model parameters used by 
the controllers were set at 80% of the true parameter 
values of the underlying process. Hence, the initial 
process model was: 

yt = -1106.08 t 40.144~1,t - 5.32U2,t 

+130.72~3,t t 6 . 7 6 ~ 4 , ~  (7) 

This large model error should cause the output of the 
process to change abtuptly at the beginning of the 
simulation. The RMSD values of the EWMA controller 
with respect to different weights were listed in the 
third row of Table I. The RMSD values for the SVR- 
MOVE controller, DHOBE-MR controller, DHOBE-SV 
controller and the uncontrolled process were given in 
the third row of Table 11. The simulation results are 
shown in Figure 4. The weight of the EWMA controller 
was 0.3 in this figure. Still, the SVR-MOVE controller 
and the DHOBE-MR controller performed better than 
the other two controllers. Even the DHOBE-SV con- 
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Fig. 4. 
EWMA controller in scenario 3. 

troller performed better than the EWMA controller in 
this case. The gains of the SVR-MOVE controller and 
the DHOBE-MR controller over the EWMA controller 
with the best weight (0.3) were 28.27% and 29.84% 
respectively. 

Comparison of the set-valued RtR controllers with the 

B. Comparison of the DHOBE-MR Controller with the 
OAQC 

Detailed descriptions of the OAQC can be found in 
[4]. To make the comparison between the DHOBE-MR 
controller and the OAQC fair, we used exactly the same 
experimental conditions as those described in [4] ‘. The 
platform used was another CMP process. The underlying 
“real” process was given by [4]: 

Yi,t = 1563.5 + 159.3u1,t - 38.2u2,t + 178.9U3,t 
+24.9~4,t - 6 7 . 2 ~ 1 , ~ ~ 2 , ~  - 46.2~: ,~  

-19.2~’& - 28.9& - 12~1, t t ’  

+116ue,tt‘ - 50.4t’ + 20.4t” + t l , t  (8) 

y2,t = 254 + 3 2 . 6 ~ 1 ~  + 113.2uq + 32.6~3,t 
t37.lU4,t - 3 6 . 8 ~ 1 ~ ~ 2 ~  + 57.3~4,tt’ 

-2.42t’ + € 2 , ~ ~  (9) 

where 

and 
t’ = (t - 53)/53, E I , ~  N N(0,  GO’), e2,t N N(O: 30*), 

y1,t was the removal rate; its target value was 2000. 
yz,t was the with-in wafer non-uniformity; its target 

1 ~ 1 , ~  was the platen speed. 
value was 100. 

’Because the parameters of the OAQC were unknown, we could 
not replicate the OAQC results of [4] in our simulations. Instead, the 
simulation data of the OAQC performance were used as appeared in 
[41 
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u ~ . ~  was the back pressure. 
us,t was the polishing down-force 
~ 4 , ~  was the profile. 

The process model was rather complex as it included 
both quadratic and two-factor interaction terms. The 
inputs ul . t ru~, t ,u3, t  and u4,t were scaled to fit in the 
range [-1,1]. For output y ~ , ~ ,  the larger the value, the 
better the performance; and for yz.t, the smaller the 
value, the better the performance. 

Following [4] to approximate the underlying nonlinear 
process, we used exactly the same two reduced models 
as in [4], a quadratic form model and a linear form model 
respectively. These reduced models provided us with an 
opportunity to test the controllers’ robustness to model 
errors for nonlinear processes. 

1) Approximate the Underlying Process - A 
Quadratic Model (Scenario 1) 
The “real” process model of equations (8) and (9) was 
unknown to the DHOBE-MR controller. As in [4], the 
following quadratic model was used to approximate the 
“real” process: 

As easily seen, the approximate model was different 
from the underlying process model, which meant that 
there existed a model error at the beginning of the control 
experiment. Moreover, the noises in equations (8) and (9) 
were unknown to the DHOBE-MR controller, so that the 
controller had to compensate for such disturbances by 
post-measurements. Our simulation results of the pro- 
cess (simulated by equations (8) and (9)) controlled by 
the DHOBE-MR controller (designed using the reduced 
model of equations (10) and (11)) are shown in Figure 
5 (a). The two dashed lines in the plot are the outputs of 
the uncontrolled process. The solid lines in the plot with 
symbols (i.e., circles or squares) depict the controlled 
outputs. One can see that the controlled process outputs 
(the removal rate and the non-uniformity) are closer to 
the targets than the uncontrolled outputs during the entire 
simulation run. 

2) Approximate the Underlying Process - A Linear 
Model (Scenario 2) 
In  this scenario, following [4], we used a linear model 



Weight. 
Scenario I 
Scenario 2 
Scenario 3 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
82.13 52.60 42.44 37.75 37.29 39.52 41.50 45.37 59.17 

269.42 186.09 157.19 140.62 133.38 132.39 138.51 149.07 160.79 
157.88 132.27 121.24 122.15 133.13 148.59 197.90 366.64 1040.67 

TABLE II 
RMSD VALUES OF T H E  SET-VALUED RTR CONTROLLERS IN THREE SCENARIOS 

Scenario 
1 
2 
3 

to fit the underlying process at the beginning: 

Q1,t =‘1600 + 1502~1~ - 402Lz:t + 180~3,t  + 25U4,t  - O.9t 
(12) 

(13) 
y2,t = 250 + 3Ou1,t + 100v2,t + 3 0 ~ 3 , ~  + 3 5 2 ~ 4 , ~  + 0.0% 

As the underlying process was approximated well by the 
linear model (based on the results of [4] and our own 
simulations), the DHOBE-MR controller based on this 
model also performed well (Figure 5 (b)). 

3) A Quadratic Model with Step Disturbances 
(Scenario 3) 
In this simulation, following [4], two shift disturbances 
(step disturbances) were fed into the underlying process. 
The quadratic initial model was used and the constraints 
were the same as before. The shift for the first response 
g1.t happened at t = 20 with magnitude -100. At t = 30, 
another shift occurred with magnitude 50 for ~ 2 , ~  ’. 
Our simulation results are shown in Figure 5 (c). The 
DHOBE-MR controller performed well in this case also. 

The final results with regard to the statistical variance 
analysis are listed in Table 111. The data on the OAQC 
performance provided here follow precisely the results 
in [4]. The following data are also listed in Table I11 for 
the convenience of comparison: 

vi: the mean of the %th output of the process. 
Sy,: the standard deviation of the ith output of the 

Table 111 shows that the mean values of the process 
responses (outputs) controlled by the DHOBE-MR con- 
troller are closer to the target values than those of the 
OAQC. The R M S D  values of the outputs controlled 
by the DHOBE-MR controller are smaller than those of 
the OAQC. Only the standard deviations of response yl , t  
controlled by the DHOBE-MR controller are larger than 

*The magnitudes of these shifts were too small to be discemed 
with the other noises in [4]. However, to make the comparison fair, 
we used the same values as in [4]. 

process. The smaller its value, the better. 

SVR-MOVE DHOBE-MR DHOBE-SV Uncontrolled 
36.70 39.25 57.36 179.18 
93.40 98.90 158.92 523.36 
86.96 85.06 112.98 284.60 

those of the OAQC. But standard deviation is not the 
performance metric of interest. Therefore, the DHOBE- 
MR controller performed slightly better than the OAQC 
in all scenarios. For more comparisons of the DHOBE- 
algorithm-based RtR controllers with the OAQC, we 
refer readers to [5]. 

IV. CONCLUSIONS 

RtR control methods are classified and compared in 
this paper. Depending on the property of a semiconductor 
process, we can select a proper RtR control method. 
For a process that can be approximated well by a linear 
model, an EWMA controller usually works well and it 
is unnecessary to apply more complex control methods. 
Many semiconductor processes are subjected to small 
drift disturbances or other small-sized noises. These 
perturbations can be compensated by using the EWMA 
method or some other linear-model-based method. The 
linear-model-based RtR controllers are usually simple to 
implement and very efficient to deal with such small 
disturbances. When there exists a large deviation, a 
rapid mode can be added to the EWMA controller [14]. 
The rapid mode may be used to return the process 
outputs quickly back to target values. However, to the 
authors’ best knowledge, there are no explicit formulae 
for applying the rapid mode. 

Many plasma processes have been shown to exhibit 
small to large nonlinearities in behavior. The photoresist 
process requires a dynamic process model too. In this 
case, it may be necessary to deploy nonlinear model 
based RtR controllers. The LSE method based RtR con- 
trollers can more accurately describe a nonlinear process 
than the EWMA controller in general. They are also 
more complex to design than the EWMA controller. The 
set-valued RtR controllers are even more complex than 
the LSE method based RtR controllers. They can use a 
high-order polynomial model to fit a process. Hence, the 
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Scenario 
I 
1 
2 
2 
3 
3 

set-valued RtR controllers may provide a better fit for a 
process than the LSE method based RtR controllers. 

In the application of the set-valued RtR controllers, the 
SVR-MOVE controller and the DHOBE-MR controller 
are recommended. They had good performance under 
various conditions in our simulations. The SVR-MOVE 
controller and the DHOBE-MR controller performed 
especially well when there existed large step disturbances 
and model errors. The DHOBE-SV controller is more 
conservative and may cause large variability. This con- 
troller is usually not recommended for applications. 

The other nonlinear-model-based RtR controllers such 
as the ANN-based RtR controllers may provide an even 
better fit for a severe nonlinear process than the set- 

Method Yi g2 Sgi Syz RA4SDi RMSDz 
OAQC 1719.7 168.4 70.4 40.1 288.9 79.2 

DHOBE-MR 1754.7 157.3 84.5 35.0 259.7 67.5 
OAQC 1718.2 165.7 72.1 42.0 291.0 78.2 

DHOBE-MR 1781.9 165.0 84.5 36.1 234.2 74.8 
OAQC 1661.2 180.2 89.2 43.5 350.2 99.2 

DHOBE-MR 1741.4 189.1 108.7 35.6 280.8 96.0 

[6] S. Dasgupta and Y.F.Huang,“Asymptotically convergent modi- 
fied recursive least-squares with data-dependent updating and 
forgetting factor for systems with bounded noise”, IEEE Trans. 
Information Theory, vol IT-33, No. 3, p383-392, 1987. 

[7] C. D. Himmel and G. S. May, “Advantages of plasma etch 
modeling using neural networks over statistical techniques”, 
IEEE Trans. Semiconductor Manufacturing, vol. 6, no. 2, 1993. 

[8] Y. L. Huang, et 01, “Constructing a reliable neural network 
model for a plasma etching process using limited experimental 
data”, IEEE Trans. Semiconductor Manufacturing, vol. 7. no. 
3, 1994. 

191 A. lngolfsson and E. Sachs, “Stability and sensitivity of an 
EWMA controller”, Journal of Quality Technology, vol. 25, pp. 
271-287, 1993. 

[ I O ]  E. Palmer, W. Ren, C. J. Spanos, “Control of photoresist 
properties: A Kalman filter based approach,” IEEE Trans. 
Semiconductor Manufacturing, vol. 9, no. 2, pp. 208-214,1996. 

1111 J .  A. Mullins, et al. “An evaluation of model predictive control . .  
valued RtR controllers. But in applications the other 

superior Performance. In a comparative simulation in 
[l8], the SVR-MOVE controller had slightly better per- 
formance than an ANN-based RtR controller. Therefore, 
more needs to be done Io improve the Other 

nonlinear-model-based RtR control methods. 

in run to run processing in semiconductor manufacturing”, 
SPIE, vol. 3213, pp. 182.189, 1997. 

deposition process by a modular neural network”, IEEE Trans. 
Semiconductor Manufacturing, vol. 12, no. I, 1999. 

1131 Z. Ning, et al, “A comparative analysis of run-to-run control 
algorithms in the semiconductor manufacturing industry”, 1996 
IEEEISEMI Advanced Semiconductor Manufacturing Confer- 
ence, pp. 375-381, 1996. 
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Fig. 5 .  A CMP process controlled by the DHOBE-MR Controller. 
The outputs are the removal rate and the non-uniformity respectively. 
(a) Scenario 1: A quadratic model was used to approximate the 
underlying process. (b) Scenario 2 A linear model was used to ap- 
proximate the underlying process. (c) Scenario 3: A step disturbance 
with magnitude -100 happened to response m,t at run 20; another 
step disturbance with magnitude 50 happened to response m,t at run 
30. 
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