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Abstract  

Hyst.eresis in smart actuators presents a challenge in 
control of these actuators. A fundamental idea to cope 
with hysteresis is inverse compensation. But due to 
the open loop nature of inverse compensation, its per- 
formance is susceptible to model uncertainties and to 
errors introduced by inverse schemes. In this paper we 
develop a robust control framework for smart actuators 
by combining inverse control with the 11 robust control 
theory, where the inversion error is modeled as an ex- 
ogenous disturbance with a magnitude bound quantifi- 
able in terms of parameter uncertainties and inversion 
schemes. Through the example of controlling a magne- 
tostrictive actuator, we present a systematic controller 
design method which guarantees robust stability and 
robust trajectory tracking while taking actuator satu- 
ration into account. Simulation and experimental re- 
sults are provided. 

1 Introduct ion 

Smart materials, such as magnetostrictives, piezo- 
electrics, shape memory alloys (SMAs), and magne- 
torheological (MR) fluids, all display certain coupling 
phenomena between applied electromagnetic/thermal 
fields and their mechanical/rheological properties. 
Smart actuators and sensors made of these materials 
have been receiving tremendous interest due to their 
broad applications in areas of aerospace, manufactur- 
ing, defense, and civil infrastructure systems, to name 
a few. The hysteretic behavior widely existing in smart 
materials, however, makes the effective use of these ac- 
tuators and sensors quite challenging. 

Models for smart actuators that capture both hystere- 
sis and dynamic behaviour have a cascaded structure 
as shown in Figure l (a)  [1], where W is a hysteretic 
qperator (with possibly some other nonlinearities) and 
G,(X) is a linear system. In this paper we consider 
the discrete-time setting in the interest of digital con- 
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trol, and h(X) denotes the A-transform of a linear 
time-invariant (LTI) system G. We recall that the X- 
transform G(X) is just the usual 2-transform of G with 
X = 2-1 [2]. 

(a) 

ACB1tU. 

Figure  1: (a) The model structure for smart actuators; 
(b) The closed-loop system incorporating in- 
verse compensation. 

In Figure l(b),  &(A) denotes the plant to be controlled 
by the actuator. A basic approach to  cope with the 
hysteresis is to design an (approximate) right inverse 
operator m-' for W, then C % U and the controller de- 
sign problem is reduced to designing a linear controller 
k ( X )  for the composite linear system Go(X) o C,(X). 
The idea of inverse compensation can be found in, e.g., 
[3, 4, 5 ,  6 ,  71. 

The most popular hysteresis model used in control 
of smart actuators has been the Preisach operator 
13, 8, 7, 91. The Preisach operator provides a means 
of developing phenomenological models that are capa- 
ble of producing behaviors similar to those of physical 
systems. For a detailed treatment of the Preisach op- 
erator, we refer to [IO, 111. 

Due to the open loop nature of inverse compensation, 
its performance is susceptible to model uncertainties 
and to  errors introduced by inversion schemes. To com- 
bat this problem, adaptive inverse control schemes were 
proposed for a class of hysteresis nonlinearities with pa- 
rameterizable inverses [4]. For the Preisach operator- 
based hysteresis models, however, their inverses are not 
parameterizable in general. In this paper we develop a 
robust control framework for smart actuators by com- 
bining inverse control with the 11 control techniques. 
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The inversion error is modeled as an exogenous distur- 
bance with a magnitude bound quantifiable in terms of 
parameter uncertainties and inversion schemes. The 
design requirements for the controller k ( X )  can be 
roughly stated as: in the presence ofAthe inversion er- 
ror and the uncertainties in d, and Go, for all desired 
trajectories in a certain class, a) the closed-loop system 
is stable, b) the tracking error is minimized, and c) the 
output of K does not exceed the saturation limits. We 
take the saturation constraint (a common npnlinearity 
for actuators) into account in the design of K to ensure 
that the overall system operates in the linear region and 
thus predictions based on the linear design are credi- 
ble. The controller design method will he illustrated 
through the example of robust trajectory tracking of a 
magnetostrictive actuator. 

The remainder of the paper is organized as follows. 
In Section 2 we introduce the Preisach operator and 
an identification scheme for the Preisach operator. In 
Section 3 we describe the model for a magnetostric- 
tive actuator. We discuss quantification of bounds on 
inversion errors in Section 4. We then formulate the 
robust control problem in Section 5. Simulation and 
experimental results are provided in Section 6. Finally 
we conclude in Section 7. 

This operator is sometimes referred to  as an elemen- 
tary Preisach hysteron (we will call it a hysteron in 
this paper). The Preisach operator is a weighted su- 
perposition of all possible hysterons. Define 

A Po = { (A  a )  E w* : p I a} 

PO is called the Preisach plane, and each (p, a)  E PO is 
identified with the hysteron To,*. For u E C([O, TI) and 
a Borel measurable initial configuration CO of all hys- 
terons: CO : PO + {-l,l}, the output of the Preisach 
operator r is defined as [ll]: 

where v is a finite, signed Borel measure on PO, called 
the Preisach measure. 

We call the Preisach measure U nonsingular if IvI is ab- 
solutely continuous with respect to  the two-dimensional 
Lebesgue measure, and singular otherwise. By the 
Radon-Nikodym theorem, if U is nonsingular, there ex- 
ists a Borel measurable function p,  such that 

r [u ,  Col(t) = J ~(P,a)%,a [u ,Co(P~ a)l(t)dPda. (2) 
PO 

The weighting function p is often referred to  as the 
Preisach functzon or the density function. To simplify 
the discussion, throughout the paper we assume that For a pair of thresholds ( A  a)  with P 5 
~ has a support, p(p, a)  = ,, if p < -ro or 

a simple hysteretic element as illustrated in a > for > o. This leads us to consider 
Figure 2. For u E C([O, TI) and an initial configuration 

P =  {(,B,a) E W Z l a  2 0,p 2   TO,^ 5 TO}. At t imet ,  
P can be divided into two regions: 

2 The Preisach Model 

consider 

A 
C E {-l,l}, the function 

v=?o.e[.,II: [O,TI+ {-1,1} 

is defined as follows [ll]: 

-1 if u(0) 5 0 

1 if u(0) > a  

and for t E (O,T], 

a { ;(o) if Xt = e  
v(t)  = -1 if X t  # 0 and u(maxXt) = @ , 

if Xt  # 0 and u(maxXt) = a 

A where X t  = {T t (0, t] : U(.) = 0 or a }  

P*(t) { ( ~ , a )  E P I  output ofi.,,, at t is i 1). 

In most cases of interest, each of P- and P+ is a con- 
nected set [lo], and the output of I? is determined by the 
boundary between P- and P+ if the Preisach measure 
is nonsingular. The boundary is also called the memory 
curve. The memory curve has a staircase structure and 
its intersection with the line a = p gives the current 
input value. The memory curve $0 at t = 0 is called 
the inztial memory curve and it represents the initial 
condition of the Preisach operator. 

If the Preisach measure is nonsingular, we can identify 
a configuration of hysterons C+ with a memory curve $ 
in the following way: <+(p, a )  = 1 (-1,resp.) if (p ,a)  is 
below (above, resp.) the graph of $. Note that it does 
not matter whether C+ takes 1 or -1 on the graph of $. 
In the sequel we will put the initial memory curve $,, 
as the second argument of r, where r[., $01 = r[., &,]. A 

A constrained least squares scheme was proposed to  
identify the Preisach measure in 171. In the scheme, 
the input is discretized into L + 1 levels for some L > 0 Figure 2: The elementary Preisach .hysteron. 
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and that leads to  a discretized Preisach operator (Fig- 
ure 3), i.e., a weighted sum of finitely many hysterons. 
What is identified in (71, is a collection of weighting 
masses sitting at centers of cells in the discretization 
grid (see the dark dots in Figure 3), which forms a 
singular Preisach measure. We can then obtain a nori- 
singular approximation vp to the true Preisach mea- 
sure Y by assuming each identified mass is distributed 
uniformly over the corresponding cell. Note that the 
density p p  corresponding to vp is piecewise uniform. 

x 

Figure 3: Discretization of the Preisach plane ( L  = 3) 

3 'The Mode l  for Magnetostrictive Actuators 

Mag,netostriction is the phenomenon of strong coupling 
between magnetic properties and mechanical properties 
of some ferromagnetic materials (e.g., Terfenol-D). Fig- 
ure 4 shows a sectional view of a Terfenol-D actuator. 
By varying the current in the coil, we vary the mag- 
netic field in the Terfenol-D rod and thus control the 
displacement of the rod head. 

\ /  
Aluminum Housing I 

Prdordd Sy.w 

Fignre  4: Sectional view of a Terfenol-D actuator 
[12](0riginal source: Etrema Products, Inc.). 

When the input frequency is low (typically below 5 Hz), 
the magnetostrictive hysteresis is rate-independent: 
roughly speaking, the shape of the hyst,eresis loop is 
independent of the input frequency, and a model for 
the actuator is [7]: 

H ( t )  = coI( t )  
M ( t )  = r [ H ( . ) ,  @ol(t) , (3) 
Y(t) = CMMZ(t) 

where I is the input current, y is the displacement of 
the actuator head, M and H are the bulk magnetiza- 
tion and the magnetic field (as'sumed uniform) along 

the rod direction, respectively, r is the Preisach oper- 
ator, and and CM are positive constants. 

When the input frequency gets high, the magnetostric- 
tive hysteresis is rate-dependent. A hulk magnetostric- 
tive hysteresis model was proposed based on energy 
balancing principles in [12]. The model has a cascaded 
structure as shown in Figure 5. Note the resemblance 
of Figure 5 with Figure l(a). w takes care of the A4 - 
H hysteresis and the eddy current losses, and the mag- 
netoelastic dynamics of the rod is lumped into a second 
order linear system G(s). G(s)  has a state space r e p  
resentation [12](after some manipulations): 

Y(t) + Z&J,Y(t) + WiY(t) = WbfMZ(t) ,  (4) 

where WO and < are positive constants. 

W ~.................. 

Figure 5:  Model structure of a magnetostrictive actuator. 

By replacing the switching ODE model in (121 with 
a Preisach operator r for the M - H hysteresis, we 
have proposed a new dynamic model [13, 141 for the W 
block: 

where CI is a positive constant 

Remark  3.1 A variety of smart actuators have been 
modeled by essentially the Preisach operator alone as 
(3), e.g., see 13, 81. On the other hand, the rate- 
dependent model (4) and (5) captures important dy- 
namtc effects in the Jrequency region of practical in- 
terest. Chooszng the magnetostrictive actuator as the 
example allows us to cover both the rate-independent 
case and the rate-dependent case. 

4 Quantification of the Inversion Error 

Recall Figure l(b). For the Preisach operator-based 
W ,  there exists no stable A such that the inversion er- 
ror e, = 6-U can be modeled as A.u. Hence we model 
e, as an exogenous disturbance. The inversion error is 
bounded in magnitude instead of in energy. Hence a 
natural choice for the signal spaces is 1, and not 12. 

Also it is more appropriate to use 1, for the desired 
trajectory and the tracking error. Another advantage 
of using 1, for signals is that the actuator saturation 
constraint can be easily handled in the corresponding 
11 robust control theory, while it's very hard to he for- 
mulated in the '& control theory. 

We now quantik the error bounds in inversion of the 
Preisach operator and the dynamic model ( 5 ) .  Here 
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we are concerned with eM = M - M ,  where M and M 
denote the trajectories of achieved magnetization and 
desired magnetization, respectively. The hound on e, 
when the square nonlinearity in Figure 5 is included 
can be easily derived from the bound on eM. 

4.1 Inversion of the Preisacb operator r 
If the Preisach measure U is given, an iterative inversion 
algorithm is available and lleMIlrn 5 e ,  where e is the 
stopping criterion [13]. If U is unknown, we can obtain 
a nonsingular approximation up with ' a  piecewise uni- 
form density p p  as discussed in Section 2. The Preisach 
operator with measure vP can be inverted exactly (in a 
finite number of steps) 1131. Hence the inversion error 
eM is solely due to the measure error I U  - uPj. It turns 
out that we can quantify the error hound in terms of 
the relative error of identification and the discretization 
level L of the Preisach plane: 

Propos i t ion  4.1 (131 Let the true Preisach measure 
U be nonnegative and nonsingular with density p 5 b, 
where p > 0 is a constant. Given a discretization of 
level L ,  denote U: the integral of p over the i-th cell, 
and U; the identified mass for the same cell. Assume 9 5 61, Vi,  where 61 > 0 is some constant. Then 

where M, is the positive saturntion corresponding to U. 

4.2 Inversion of (5) 
An inversion scheme was proposed for the model (5) 
1141. But if there is uncertainty in the model parame- 
ters, it is very hard to derive a hound for the inversion 
error. We now present another inversion algorithm. 
Eq. (5) can be rewritten as: 

where g ( t )  carries the interpretation of ''g" at time t ,  
and it depends on both the state $t (the memory curve 
at t )  and the sign of fi [13]. Under mild conditions, 
0'5 g( t )  I C for some C > 0. We can view (6) as 
perturbed from the following decoupled system: 

"") 
( 7 )  f i m  = &(Ut) - , { ~ ( t )  = riw.), 

where 0 6 [O,C] is some constant. Based on ( 7 ) ,  an 
approximate inversion scheme for (6) is given formally 
by 

(8 )  
w = r - l [M( . ) ,+Oi( t )  

I+-f i  t +"" ' { U t )  = + ( ) 

In the discrete-time implementation, a delay is intro- 
duced.in the inversion due to the dynamics. Hence the 

Figure 6: Robust control of a magnetostrictive actuator 

A -  inversion error is defined as eM[k] = M [ k ]  - M [ k  - l l .  
We can choose an explicit or implicit Euler scheme in 
discretizing (5) and (8 ) ,  and for either scheme, we can 
quantify the error hound in terms of model parameters, 
see [13]. 

Remark 4.1 The inversion algorithm (8) leads to an 
inversion error even i f  the exact parameters are known. 
But the payoff is that, this scheme allows us to quantify 
the inversion error when parameter erPors are present. 

5 Formulat ion of the Robust Cont ro l  P r o b l e m  

In this paper, we consider &(A) to  be the identity o p  
erator, i.e., we are interested in trajectory tracking of 
the actuator head itself. Figure 6 shows the closed-loop 
system after the inverse compensation is done, where 
the exogenous noise U represents the inversion error. 
From the previous section, livllrn 5 6, and 6 is quan- 
tifiable in terms of inverse schemeSAand parametric nn- 
certainties. The composition A o Wo(X) represents the 
deviation of the actual plant from the nominal plant 
G,(X). We assume that A can be any nonlinear opera- 
tor with ~ ~ A ~ ~ ~ ~ - , , , ~  < 1. Wo(X) is a weighting function 
and it reflects that the model uncertainty is larger at a 
higher frequency. 

Let 11y7..~/Irn 5 F, where yref is the reference trajectory. 
The error ey  = Y,.~J - y is fed into the controller K ( X ) .  
The delay X following k ( X )  is due to inversion of the 
dynamic hysteresis model. Let the saturation limits 
of the actuator be -a and ii respectively. Then the 
saturation constraint translates into /Iuolloa 5 1, where 
uo is as defined in Figure 6. The case urn%,, # -urnor 
can be handled by defining G = and ug = 
y,  where U b  is a bias input to be injected into 
the system [13]. 

There are two delays in the loop since G a ( A )  contains 
a pure delay. This motivates us to define the tracking 
error e; as 

a 

(9) 

Proceedings of the American Control Conference 
Denver, Colorado ~ u n e  4-6, zw3 4648 



(a) 6) 

Figure 7: Formulation of the robust control problem 

Figure  8:  Effect of the saturation limit on y’ 
where 7 > 0 is called the disturbance attenuation level. 
To ease the formulation, we normalize signals v and 
y r e f ,  and regard 00 and r0 as inputs to the system with 
I/uoIJ,a 5 1, )I TO lj,5 ; (Figure 6). The transfer func- 
tion G(X) from ( w 1 , u 0 , ~ g , u ) ~  to (nl,e:;uo,e,)T can 
be easily written down. In terms of G, the closed-loop 
system in Figure 6 can be simplified as in Figure 7(a). 

The control objective is to find the smallest y and a 
stabilizing controller ,?(A), such that 

1. the ‘closed-loop system is stable for any A with 

.2.  Ile;llm 5 1 if A = 0, VWO, TO with lluo/lrn 5 1 and 

3. /Iu& 5 1 if A = 0, VVO, TO with /Iu& 5 1 and 

llA~l!m-<nd < 1, 

l l 7 0 l l ~  5 1, and 

,IITnl/rn 5 1. 

If we define the exogenous input w and the regulated 
output z as shown in Figure 7(a), items 2 and 3 above 
translate into ~ ~ Q Z , , , ~ ~ ~  5 1, where Qz,,, denotes the 
transfer function from w to 2, and 11 111 denotes the 
11 norm of an LTI system. By the small gain theorem, 
this is equivalent to requiring robust stability of the 
system when we wrap a nonlinear uncertainty block 
Ap from t to  w with /lAplll,-;nd < 1 (Figure 7(b)). 

Now the control problem can be reformulated as: find 
the smallest y and a stabilizing controller &(A), such 
that  the closed-loop system in Figure 7 (b) is robustly 
stable for all A E A, where A 5 {A = diag(A,  Ap) : 
A is nonlinear and of dimension 1 x 1, A p  is nonlinear 
and of dimension 2 x 2, llA/il,-;nd < 1). The proce- 
dure:; to  solve this problem can be found in [ 2 ] .  

6 Simulation and Experimental  Resul t s  

6.1 Effects of design parameters on 7’ 
We first present computation results on how the op- 
timal attenuation level 7’ is affected by the design 
parameters. For the sampling frequency 2000 Hz, 

Ga(X) = o . i o x 2 - L x j i  
tified parameters. We let Wo(X) = 1.175~:~,$&0005), 

2 . 2 3 X 1 0 ~ ” A 2  4.28XIO-“A based on the iden- 

where c,,, > 0 determines the magnitude of the uncer- 
tainty. 

Figure 8 shows how 7’ varies with the saturation con- 
straint 0. We have used C = 30, c,,, = 6.53 x 
and V = O.lM,”, where M, is the saturation magneti- 
zation. Since the range of U for the magnetostrictive 
actuator is 10, A43, expressing B and 2L in terms of M,” 
allows one to make more concrete sense out of these 
numbers. From Figure 8, y* drops when E increases, 
but y’ becomes a constant when E hits 4.5M,2, beyond 
which the saturation constraint no longer plays a role. 
Effects of cU and ti on y’ have also been studied, and 
we find that y* drops as c,,, or V does so 113). 

6.2 Resul t s  of trajectory tracking 
As we have seen from Figure 8, the tracking perfor- 
mance deteriorates as the saturation constraint ii is 
tightened. For the magnetostrictive actuator, 0 = 
0.5M,2 and strictly enforcing this constraint would lead 
to large tracking errors. This reveals the limitation of 
pure linear design for an intrinsically nonlinear plant. 
Hence a practical approach would be to properly relax 
the constraint. 

Figure 9(a) shows the simulation result of tracking a 
sinusoidal signal. The current I applied is also dis- 
played. The controller k ( X )  is designed based on 
e,,, = 3.3 x l O - I 3 ,  U = O.lM,”, and 2L = 3.25M:. Al- 
though we set ii = 3.25M: in the controller design, 
the control U stays in the (true) unsaturated region 
[-0.5M,”, 0.5M,”] except during the transient period at 
the beginning [13]. Our composite controller (the linear 
robust controller plus the inverse algorithm) is compua- 
tion efficient and we can implement it in real-time. Fig- 
ures 9(b) shows the experimental result of trajectory 
tracking based on the same controller as used in the 
simulation. It matches well with the simulation result 
and the overall performance is satisfactory. We have 
also performed simulation and experiment of tracking 
an irregular signal, and the results are similar to those 
in Figures 9(a) and 9(b) [13]. The saturation limit ii 
can not be “over-relaxed“. Experiments have shown 
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Figure  9: (a) Simulation result of trajectory tracking; 

(b) Experimental result of trajectory tracking. 

that  the tracking performance suffers from persistant 
control saturation if we set ?L = 5M: in the design [13]. 

7 Conclusions 

In this paper, we have presented a robust control frame- 
work for smart actuators by combining the inverse com- 
pensation with the linear robust control theory. We 
modeled the inversion error as an exogenous noise with 
a quantifiable bound on its magnitude. Robust control 
techniques were then employed to attenuate the impact 
of the inversion error as well as ensure stability in the 
presence of uncertainty. The saturation constraint was 
also incorporated into the controller design. Simula- 
tion and experimental results have demonstrated the 
effectiveness of the approach. 

The first author would like to acknowledge useful dis- 
cussions with Professors R. Venkataraman, P. S. Krish- 
naprasad, and A. Tits. 
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