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Abst rac t  

The rate-dependent hysteresis present in thin magne- 
tostrictive actuators can be captured by a dynamic 
model, consisting of a Preisach operator coupled to an 
ordinary differential equation in an unusual way. The 
model presents interesting problems in analysis and 
computation due to its special structure. In this pa- 
per we first transform the model into a more amenable 
form and gain insight into the model by introducing 
a new hysteretic operator. Then we investigate some 
system-theoretic properties of the model: stability of 
equilibria, input-output stability, reachability and ob- 
servability. Existence of periodic solutions under peri- 
odic forcing is also established. Finally numerical inte- 
gration schemes for the model are discussed. 

1 Introduct ion 

Magnetostriction is the phenomenon of strong coupling 
between magnetic properties and mechanical proper- 
ties of some ferromagnetic materials (e.g., Terfenol- 
D): strains are generated in response to an applied 
magnetic field, while conversely, mechanical stresses in 
the materials produce measurable changes in magne- 
tization. This phenomenon can be used for actuation 
and sensing. Magnetostrictive actuators have applica- 
tions in micro-positioning, robotics, ultrasonics, vibra- 
tion control, etc. Figure 1 shows a sectional view of 
a Terfenol-D actuator manufactured by Etrema Prod- 
ucts, Inc. By varying the current in the coil, we vary 
the magnetic field in the Terfenol-D rod and thus con- 
trol the motion of the rod head. 

Like any other smart material, magnetostrictive mate- 
rials exhibit hysteresis, which hinders their wider appli- 
cability in actuators and sensors. A fundamental idea 
in coping with hysteresis is to formulate the mathe- 
matical model of hysteresis and use inverse compen- 
sation to cancel out the hysteretic effect. There have 
been a few monographs devoted to modeling of hys- 
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Figure 1: Sectional view of a Terfenol-D actuator 
[l](Original source: Etrema Products, Inc.) 

teresis and study of dynamical systems with hysteresis 
[2, 3, 4, 51. Hysteresis models can be roughly classified 
into physics-based models, see e.g., [6, 7, 81, and phe- 
nomenological models. The most popular phenomeno- 
logical hysteresis model used in control of smart actua- 
tors has been the Preisach model (9, 10, 111. Although 
in general the Preisach model does not provide phys- 
ical insight into the problem, it provides a means of 
developing phenomenological models that are capable 
of producing behaviors similar to those of physical sys- 
tems. 

The hysteretic behavior of a magnetostrictive actua- 
tor a t  low frequencies (typically below 5 Hz) is rate- 
independent: roughly speaking, the shape of the hys- 
teresis loop does not depend on the frequency of the 
input. This is no longer the case when the operating 
frequency gets high, due to the eddy current effect and 
the magnetoelastic dynamics of the magnetostrictive 
rod (Figure 2, solid curves). The (rate-independent) 
Preisach operator alone is not capable of modeling the 
rate-dependent hysteresis. A novel dynamic model for 
the magnetostrictive hysteresis has been proposed in 
[12, 131, and it can capture the high frequency effects in 
magnetostrictive actuators (see the comparison in Fig- 
ure 2). In the model, a Preisach operator is coupled to 
an ordinary differential equation (ODE) in an unusual 
way. Based on the model one can develop efficient in- 
verse control and robust control algorithms which are 
implementable in real-time [12]. Apart from being use- 
ful for the control purpose, the model presents inter- 
esting problems in analysis and computation due to its 
special structure. 
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The remainder of the paper is organized as follows. Sec- 
tion 2 provides an introduction to  the Preisach oper- 
ator. In Section 3 we describe the model and provide 
a new perspective to study the model. Some system- 
theoretic properties of the model are investigated in 
Section 4. Existence of periodic solutions under peri- 
odic forcing is established in Section 5. We discuss nu- 
merical integration schemes for the model in Section 6. 
Concluding remarks are provided in Section 7. 

2 The Preisach Model 

For a pair of thresholds (0,a) with P 5 cy, consider 
a simple hysteretic element 'yp,u[., ,], as illustrated in 
Figure 3. For u E C([O, TI) and an initial configuration 
C t {-l,l}, the function 

is defined as follows [4]: 

Figure 3: The elementary Preisach hysteron 

this paper). The Preisach operator is a weighted su- 
perposition of all possible hysterons. Define 

a Po = { (Aa)  E RZ : p I a}. 

'Po is called the Preisach plane, and each (/3, cy) E 'Po is 
identified with the hysteron For u E C([O,T]) and 
a Borel measurable initial configuration 60 of all hys- 
terons: (0 : Po 4 {-1, l}, the output of the Preisach 
operator r is defined as [4]: 

r ~ u , < ~ i ( t )  = i . p ,u [u ,~o(~ ,cy ) i ( t )du (~ ,a ) ,  (1) 
PO 

where U is a finite, signed Borel measure on Po, called 
the Preisach measure. 

We call the Preisach measure U nonsingular if I u I  is ab- 
solutely continuous with respect to the two-dimensional 
Lebesgue measure, and singular otherwise. By the 
Radon-Nikodym theorem, if U is nonsingular, there ex- 
ists a Borel measurable function p,  such that 

r [ u , ~ ~ i ( t )  = J,, ~ L ( P , ~ ) T ~ , ~ [ u , ~ ~ ( P ,  4 i ( w d a .  (2) 

The weighting function is often referred to  as the 
Preisach function 131 or the density function [ 5 ] .  To 
simplify the discussion, we assume that p has a com- 
pact support, p(p,  a)  = 0 if p < -ro or cy > r g  for some 
ro > 0. This leads us to consider the finite triangular 
area P = {(@,.U) t ~P1a 2 b,P 2 -ro,a I To}. 

At time t ,  P can be divided into two regions: 

A 

p*(t) { (p ,a)  E PI output ofTo,u at t is * 11 

-1 ifu(0) 5 0  

1 if u(0) > a  

In most cases of interest, each of P- and P+ is a con- 
nected set [3], and the output of I' is determined by the 
boundary between P- and P+ if the Preisach measure 
is nonsingular. The boundary is also called the memory 
curue. The memory curve has a staircase structure and 
its intersection with the line a = gives the current 
input value. The memory curve $0 at t = 0 is called 
the initial memory curue and it represents the initial 
condition of the Preisach operator. 

If the Preisach measure is nonsingular, we can identify 
a configuration of hysterons <+ with a memory curve 11 
in the following way: <*(P, a)  = 1 ( -1 ,  resp.) if (0, a) is 
below (above, resp.) the graph of 11. Note that it does 
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and for t E (O,T], 

a { :(o) if Xt = 0 
w ( t )  = -1 if X t  # 0 and u(maxXt) = 0 , 

if X t  # 0 and u(maxXt) = a  

a where X t  = { T  E ( O , t ]  : U(.) = 0 or a}.  

This operator is sometimes referred to as an elemen- 
tary Preisach hysteron (we will call it a hysteron in 



not matter whether <+ takes 1 or -1 on the graph of $. 
In the sequel we will put the initial memory curve $0 

as the second argument of r, where r[.,$o] = r[.,&]. 
Somstimes it is more convenient to  describe the 
Preisach operator using the ( T ,  s) coordinates with 
T = ~9 2 and s = q. In the new coordinates, a 
memory curve $ is the graph of a function of T ,  and 
$(O) gives the current input value. Although practi- 
cally a memory curve is only composed of segments of 
slope *I in (T, s) coordinates, we make the following 
definition to  facilitate the analysis (5, 141: 

Definition 2.1 The set I of memory curves is defined 
to be the set of continuous functions $ : [O,ro] + R 
such that 

A 

1. I$(T l ) -$(TZ) i  5 ( T I  - T Z l i  h , T Z  E [O,TO];  

2. $ ( T o )  = o .  
W e  will switch between the ( p ,  a) coordinates and the 
( T ,  s) coordinates in this paper. 

The following summarizes some basic properties of the 
Preisach operator 141: 

Theorem 2.1 Let Y be a Preisach measure. Let 
u,u1,uz E C([O,T]) and $0 f Q. 

1. (Rate Independence) If $ : [O,T] + [O,T] 
is an increasing continuous function satisfying 
$(O) = 0 and $(T)  = T ,  then 

r [ u o $ , Q O w  = r [ u , $ o w t ) ) ,  vt E [O,TI, 

where "0" denotes composition of functions. 

8. (Strong Continuity) If U is nonsingular, then 
rI.,$o] : C([O,T]) -t C([O,T]) is strongly contin- 
uous (in the sup n o m ) .  

3. (Piecewise Monotonicity) Let U 2 0.  If U 
is either nondecreasing OT noninreasing on some 
interval in  [O,T], then so is r [ u , $ o ] .  

4 .  (Order Preservat ion)  Let Y 2 0. If u1 5 u2 
on [O,Tl, then r[~1,$01 5 r[w,$ol on [O,TI. 

3 A Dynamic  Model for the Hysteresis 

Venkataraman and Krishnaprasad proposed a bulk 
magnetostrictive hysteresis model for a thin rod actu- 
ator based on energy balancing principles 17, 11. The 
model has a cascaded structure as shown in Figure 4. 
W takes care of the M - H hysteresis and the eddy cur- 
rent losses, where A4 and H denote the bulk magneti- 
zation and the magnetic field (assumed uniform) along 
the rod direction, respectively. The magnetoelastic dy- 
namics of the rod is lumped into a second order linear 

10 

Figure 4: Model structure of a magnetostrictive actuator. 

system C(s). In [7, 11, the M - H hysteresis was de- 
scribed by a low dimensional ferromagnetic hysteresis 
model and that leads to a switching ODE model for 
w. 
A new dynamic model for W has been proposed in 
112, 131, where the Preisach operator r is used to model 
the M - H hysteresis: 

' (3) 
i r ( t )  + i q t )  = C l ( I ( t )  - 9) { M ( t )  = WV.), +nl ( l )  

Here I is the input current, CO > 0 and c1 > 0 are 
constants. 

Eq. (3) presents interesting problems in analysis due 
to  its special structure. The well-posedness of (3) was 
proved in [13] using the Euler polygon method. In this 
section we present another perspective for study of (3), 
which would provide an alternative proof of the well- 
posedness as well as new insight into understanding of 
(3). 

We define an operator B : C([O,T]) x I --t C([O,T]), 
such that for H E  C([O,T]), $0 E Q, 

B I H , $ ~ I ( ~ )  = H ( t )  + rw, +Oi(t) .  (4) 

Let B = B[H,$O]. Note that the physical interpreta- 
tion of B is the scaled magnetic flux density. If B[., $01 

is invertible, Eq. (3) can be written as: 

Eq. (5) is of a more amenable form and people have 
studied such systems, see [5] and the references therein. 

For an interval J ,  we define 

CJ([O,T]) {U E C([O,T]) : u ( t )  E J,W E [O,T]} 

Let J H  = [Il,;,, H,,,] c R be the range of H .  Then 
r : CJ,([O,T]) x CJ + CJ,([O,T]). Here the interval 
J M  = [M,i,,, Mmo,), where M,in (M,,,, resp.) is the 
negative (positive, resp.) saturation corresponding to 
H,;, (H,,,, resp.). Let J B  = [H,i, + M,in, HmaZ + 
Mmazl. 

Proposi t ion 3.1 Let the Preisach measure v be non- 
negative and nonsingular. Then V$O E 'P, 

B[.,$O] : cJ,([O,T]) --t cJ,([o,T]) 

i s  rate-independent, strongly continuous, piecewise 
monotone, order preserving, and injective. 
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Proof. It's straightforward that  the range of E [ ,  $01 
is a subset of CJ,([O,T]), and B[.,@O] is piecewise 
monotone and rate-independent. Continuity and or- 
der preservation of B[., $01 follow from those of F[., $0). 
The injectivity can also he shown using the order 
preservation property of r. 0 
The following lemma (see, e.g., 141) will be useful for 
proving the surjectivity of B[.,@O]: 

L e m m a  3.1 Let X , Y  be metric spaces, f : X -t Y 
be continuous and P C f (X)  be dense in Y .  Also as- 
sume that for any relatively compact set K C ?, the 
set f-'(K) = {z E X : f(z) E K }  i s  relatively com- 
pact. Then f ( X )  = Y .  If ?noreover f is injective, then 
f-' : Y -t X is continuous. 

For U E C([O,T]), we define 

a 

A o s c u = m a x u -  m i n u , V [ t l , t z ] c [ O , T J  
It,,t*l lt,,t>l I t l , t 2 l  

L e m m a  3.2 Let the Preisach measure U be nonsingu- 
lar and nonnegative. Then V@o E 8, V H  E C([O,T]), 

P T O O ~  Let t' = argmaxit,,tzl 8, t,  = argmin[t,,tzl H .  
It's easy to  verify that r [ H , & ] ( t * )  2 r [ H , $ o ] ( t * ) .  
Hence 

osc B[H,@o] 2 B[H,$o]( t*)-B[H,$o]( t*)  t osc H .  0 
i t l . t 2 l  [ t I , t Z l  

Theorem 3.1 Let the Preisach measure U be nonneg- 
ative and nonsingular. Then for any $0 E P, B[. ,+o]  
is surjective, an.d its inverse 

B-'!.,iol : CJ,(!O,T!) + CJ,([O,T!) 

is continuous 

Pmof The results will follow from Lemma 3.1, by 
letting X = CJ,([O,T]), Y = c~,([o,T]) ,  f = 

B[. ,$O] ,  and ? = Cpm,~,([O,T!) = 1. E CJ,([O,T]) : 
U is piecewise monotone}. We now verify that the as- 
sumptions in Lemma 3.1 are satisfied. 

n o m  Proposition 3.1, f is continuous and injective. ? 
is obviously dense in Y .  Using a technique in [15], one 
can show 9 c f (X). We are left to show f-'(K) is rcl- 
atively compact for any relatively compact set K c Y .  
Using Lemma 3.2, the set B-'[K, QO] is equicontinuous 
if K C C,,,j,([O,T]) is. Then we conclude with the 
Ascoli-ArzelB Theorem. 0 

It turns out that a stronger result holds: 

Theorem 3.2 Let the Preisach measure U be nonneg- 
ative and nonsingular. Then V$o E @, B-'[.,$o] is 
Lipschitz continuous with Lipschitz constant 2. 

A 

Theorem 3.2 can be shown by adapting the proof of 
Lipschitz continuity of I'-' in [ I S ]  when some addi- 
tional conditions on U are satisfied, see [la]. Using 
Theorem 3.2, one can easily show the existence and 
uniqueness of the solution to ( 5 ) ,  see Theorem 3.1.1 in 
151. 

We can also show that 8-' is Lipschitz continuous with 
respect to  both arguments, from which we can obtain 
an explicit formula for continuous dependence of the 
solution to  (3) on initial conditions [12]. 

4 System-Theoret ic  Properties of the Mode l  

In this section, we study system-theoretic properties 
associated with the infinite dimensional hysteretic sys- 
tem (3). In particular, we look at stability of equilibria, 
input-output stability, reachability and observability. 

4.1 Stabi l i ty  of equi l ibr ia  
The state for (3) is the (infinite-dimensional) memory 
curve $ E P since both H and A4 can be derived from 
$J. We set the input I 0 in (3) and investigate sta- 
bility of the equilibria of the following equation: 

i M ( t )  = W(.), $ol ( t )  (7) 
fi( t)  + k ( t )  = - z H ( t )  

We can easily see that  in (r, s) coordinates, the set of 
equilibria is PO = {$ E P : $(O) = 0). 

Recall the definition of <+ for $ E 9 in Section 2. For 
+ I , @ z  E P, we define 

Il$l - $211 n S'tC$',(P,n) - C$',(P,4ldPda. (8 )  
P 

If the Preisach density p is continuous, for $ E P, we 
can define %($J,+)  (%($,-), resp.), which carries 
the interpretation of the derivative of M with respect 
to  H when H is being increased (decreased, resp.) at 
the state 6 [12]. Furthermore, if p 2 0, we have 

d M  
0 5 -(@,*) dH 5 c, (9) 

for some C > 0. 

Proposition 4.1 Assume that the Preisach measure 
i s  nonnegative, and nonsingular with a piecewise con- 
tinuous density p.  Then every @ E Po is a stable but 
not asymptotically stable equilibrium of (7). 

P m o j  Consider $* t 90. Denote $[ti the memory 
curve at t when the system starts from +O E P at t = 0. 
For a.e. t ,  the first equation in (7) can be rewritten as 

which implies H ( t )  i ciH(t j  
ca( l+% Wl t l .~~n(H( t ) ) ) ) '  

0 asymptotically. Therefore ll$[t] - $*I\ 5 - 6'11, 
V t  2 0, and @* is stable. $* is not asymptotically 
stable since 90 forms a continuum. 0 

H(t) = - 
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R e m a r k  4.1 Although any individual $ E 90 is not 
asymptotically stable, QO is 't$obally asymptotically 
stable", in the sense that, starting from any $0 E V, 
limt-, inf+sQo Il$!tl - $ 1 1  = 0. 

4.2 Input -output  stability 
For each $0 E 9, the system (3) defines a mapping 
from the input I(.) to  the output { H ( . ) , M ( . ) } .  Here 
we focus on the finite gain LZ stability and the finite 
gain L ,  stability from I ( . )  to H ( . )  since the case from 
I ( . )  to M ( . )  is not as interesting 1121. 

Proposi t ion 4.2 Let the Preisach measure be nonneg- 
ative and nonsingular. Then 'd$o E 9, for any piece- 
wise continuous I ( . )  with finite L ,  norm, 

llH(,)llm 5 m a x ~ l ~ ( O ) I ~ c o l l ~ ( . ) l l m ~ .  (10) 

P T O O ~  Due to the piecewise monotonicity of I?, 

which lead to the result. 0 

Proposi t ion 4.3 Let the Preisach measure be nonneg- 
ative and nonsingular with a piecewise continuous den- 
sity p. Then V$o t 9, for any piecewise continuous 
I(.) with finite Lz norm, 

l")112 5 rllI(.)lIz +60,  (11) 

where 7 = sup w I j U + & , >  60 = p g % ( O ) I >  
and C is the constant in (9). 

Sketch ofprooj Rewrite (3) as 

where g ( t )  = s ( $ [ t ] , s g n ( f ? ( t ) ) ) .  Then (11) can be 
derived using the bounds on g ( t )  and the Parseval's 
identity [12]. 0 

4.3 Reachability a?d observability 
Let $[t] denote the memory curve a t  time t. For any 
I( .)  E PC([O,T]) (the space of piecewise continuous 
functions), the corresponding $[.I is continuous in the 
metric (8) and we write $[.I E C ( [ O , T ] , Q ) .  Denote 
2 : PC([O,T]) x 'D + C([O,T],9) the state evolution 
map for (3),  i.e., for I ( . )  E PC([O,T] )  and $IO] E 9, 

Definition 4.1 (Reachability and Approximate 
Reachability for (3)) W e  say $2 E 'D is reachable 
f i om $1 E 'D if 3T < w, and I ( . )  E PC((O,T]), such 
that qh2 = 3[I(.) ,$l](Z') .  W e  say ljl2 E 9 is approxi- 
mately reachable fmm $1 E 9 if for any E > 0,3 $e E 9 
such that $, is reachable from $1 and 11 $e ~ $2 115 E .  

The state space 9 is reachable (approximately reach- 
able, resp.) i f  any state is reachable (approximately 
reachable, resp.) from any other state. 

$It] = e [ ~ ( . ) , $ [ o l l ( t ) .  

Definition 4.2 (Observability for (3)) W e  say 
E 9 is distinguishable from $2 E 9, if there ex- 

ists T < w and I ( . )  € PC([O,T] ) ,  such that Hi ( t ' )  # 
H2(t ')  OT M l ( t ' )  # M2( t ' ) ,  for some t' E [O,T]. The 
system (3) is observable if any state $ E 9 is distin- 
guishable from any other state. 

The proofs for the following results are omitted due to  
space limitation. 

Proposi t ion 4.4 [12] Let the Preisach measure be 
nonnegative and nonsingular. The state space CJ for 
(3) is not reachable, but approximately reachable. 

Remark  4.2 The difference between Proposition 4.4 
above and Theorem 3.2 an 1141 is  that the latter was 
concerned about Teachability and approximate reacha- 
bility of the Preisach operator alone. 

Proposi t ion 4.5 [12] Let the Preisach measure be 
nonnegative and nonsingular with density p. The sys- 
tem (3) is observable i f  and only if V$l,$2 E CJ and 
$1 # $ z ,  J,P(P,~)IC,(B,Q) -Cw2(B,a)ldBda > 0. 

5 Existence of Periodic  Solutions 

Theorem 5.1 Let the Preisach measure be nonneg- 
ative and nonsingular. Define J I  = [&,hi. 
Let I E C~,([o,w)) be T-periodic, i.e., I"pt + 57 = 
I ( t ) ,  Vt  2 0. Let z : C([O,m)) x 9 + C([o,w),9) 
be the state evolution map for (3). Then there exists 
$0 E 9, such that e [ I ,$o] ( t  + T )  = e [ I , $ o ] ( t ) ,  W 2 0. 

Sketch of proof. Denote L1([0, T O ] )  the Banach space of 
integrable functions on [O,ro]. First one can show that 
V is a closed subset of L~([O,TOI) [12]. For $o E 9 and 
T-periodic I E C~~([o,co)), we have E[I ,$o]( t )  E 9, 
W 2 0 ,  from Proposition 4.2. We then define the map 
ST: Q + 9 by 

(12) %(GO) = e [ I , $ o ] ( T ) ,  V$o E 9. 

It's easy to  verify that % is continuous. Also ZT is a 
compact mapping since 9 itself is compact. Finally 9 
is a convex set. Therefore ZT has a fixed point by the 
Schauder fixed point theorem, and this completes the 
proof. 0 

Remark 5.1 Theorem 5.1 implies that the c o w -  
sponding solution {IT(.), M ( . ) }  is also periodic. 

Remark 5.2 W e  observe a periodic motion of the ac- 
tuator head when a periodic input is applied. Existence 
of periodic solutions to (3) under periodic forcing par- 
tially validates the model. This result also provides a 
theoretical basis for the parameter identification method 
in /13]. 
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6 Numerical Integration of the Model 

Numerically solving (3) helps to predict behaviors of 
the model, verify theoretical analysis, and validate the 
model by comparing the simulation result to the exper- 
imental measurement. Given the memory curve $[ to]  
at time t o  and the input I ( . ) ,  approximate values of H 
and M at t o  + h can be computed by an Euler method: 

C l ( I ( t 0 )  - T) #(ta+/i)-H(tn) + & l ( t o + / ~ ) - M ( t 0 )  = 
h 

k ( t o  + h )  = r[p(to + h),$[to]] 
{ h  (13) 
where h is the time step size. Eq. (13) can be solved 
by adapting the inversion schemes for r [12]. The fol- 
lowing holds [12]: 

Proposition 6.1 Assume that the Preisach measure 
is nonnegative, nonsingular with a piecewise continuous 
density b .  Assume the input I ( . )  is continuous and 
bounded. Consider the algorithm (13). Let the true 
solution to (3) be { H ( . ) ,  M ( , ) } .  Assume %($[ to] ,+)  
and the derivatives of H ( t )  and M ( t )  at t o  exist. Then 

IB(tu + h )  - H(to + h)l = O ( h 2 ) ,  
IU(to + h) - M(to + h)l = O ( h 2 ) .  

(14) 
(15) 

We call (13) the ezplzcit Eulerscheme since f i( lo+h) is 
not involved on the right-hand side of the first equation 
in (13). We obtain the implicit scheme by replacing 
I(to) and H(t2 )  on the right-hand side of (13) with 
I(to + h) and H(to + h ) ,  respectively. We note that the 
implicit scheme here requires no more computational 
effort than the explicit one, but it’s much more stable 
and can provide meaningful solutions even when h is 
not very small [12]. 

7 Conclusions 

This paper has been devoted to analysis of a rate- 
dependent hysteresis model. By introducing a new hys- 
teretic operator E’, we have transformed the model 
into a more familiar form and gained deeper insight into 
the model. Various system-theoretic properties have 
been examined for this infinite-dimensional hysteretic 
system. We have proved the existence of periodic sc- 
lutions under periodic forcing. Numerical schemes for 
simulation of the model have also been discussed. 
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