
 
 

Abstract    — In this paper we propose a new statistical model for 
multi-scale traffic, and present an exact queueing analysis for the 
model. The model is based on the central moments and the 
marginal distributions of the cumulative traffic loads in different 
time scales. Only the first two moments are needed to characterize 
the traffic process, which greatly simplifies the representation and 
estimation. The queueing analysis uses a very general approach 
and can evaluate not only the steady state performance but also 
the transient queueing behavior. The analysis reveals that there 
exist two classes of packet losses, the absolute loss and the 
opportunistic loss, both of which can be examined exactly with the 
method. Based on the statistical model and the queueing analysis 
method, a compound model is constructed for the practical multi-
scale traffic, and its performance is evaluated from various 
aspects. This work provides a good basis for practical application 
of the mutli-scale traffic characterizations in network 
dimensioning and resource management. 
 

Index Terms— Traffic modeling, multi-scale traffic, queueing 
analysis, log-normal distribution, loss probability 

I. INTRODUCTION 

CALING and multi-scale behaviors, such as the long-range 
dependence, the self-similarity, and the multi-fractality, 

have been commonly viewed as the most significant 
characteristics of the Internet traffic today [11] [13] [18] [19] 
[20]. They are found not only in the wired networks but also in 
the wireless networks [21] [29], the Ad hoc networks [12], and 
the satellite networks [26]. These behaviors generally mean 
that the traffic is bursty in many time scales and among many 
orders of statistics. They make the network performance much 
worse than that in traditional Gaussian and short-range 
dependent traffic environment. Modeling of scaling and multi-
scale traffic is thus of great importance for planning, 
dimensioning, control, and performance guarantee of various 
types of networks.  
   Significant effort has been put on the research of scaling and 
multi-scale traffic in the last decade. Many important models 
have been proposed, such as the heavy-tailed on-off model [10] 
[14] and the factional Brownian motion [16] [27] for the 
scaling phenomenon, and the random cascade [8] and the 
multi-fractal wavelet model [24] for the multi-scale behavior. 
However, dealing with multi-scale traffic is a difficult task. 
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Generally speaking, the following difficulties are facing many 
models. First, few models can address the full range of 
behaviors of practical traffic. In the examples above, the 
former two are used for the long-range behavior while the latter 
two emphasize the small scale behavior. Second, multi-scale 
traffic models often involve a number of parameters, which 
make it difficult to measure or estimate them. Third, exact 
queueing analysis is hardly possible. The asymptotic queueing 
analysis has become the dominant approach, and sometimes the 
only approach available. These significantly limit the 
application of the traffic models for network performance 
optimization in practice. Especially, the third problem is most 
serious because the queueing analysis relating the traffic 
parameters with the network performance is a key part in 
performance engineering. The asymptotic approach often gives 
an oversimplified picture of the relations for a complex traffic 
process like the multi-scale traffic. Some parameters of 
practical importance may be ignored in the analysis. 
   In this paper we propose a new framework for formulating 
scaling and multi-scale behaviors, and present a corresponding 
queueing analysis method. The work is intended to avoid 
difficulties mentioned above, and pave the way for fully taking 
advantage of scaling and multi-scale behaviors in traffic 
management, control, and network design. Two basic 
requirements are borne in mind in developing the model. First, 
it should keep key characteristics of scaling and multi-scale 
processes that are important for the network performance. 
Second, it should allow exact queueing analysis rather than just 
asymptotic analysis, though specific analytical technique may 
be needed. These two requirements being fulfilled, the model 
should also involve as few parameters as possible. Thus the 
traffic measurement and parameter estimation are made easy. 
In short, it is intended to be an engineering-oriented, 
performance evaluation friendly model. 
   For scaling and multi-scale traffic, what are most important 
for the network performance are actually the power-law 
behaviors of different orders of statistics at many time scales. 
Based on this insight, we model the traffic by solely 
characterizing the different orders of moments. To make the 
model more practical, the marginal distributions at the time 
scales of interest are taken into account. Then the model can be 
completely characterized with only the first two orders of 
moments. It can be shown that higher-order statistics, though 
not explicitly defined, have the power-law like behaviors in 
nature, which resemble those of the real traffic very well. 
   An exact queueing analysis method is presented for the 
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statistical multi-scale traffic model. In fact, it uses a 
fundamental approach and applies to an even more general 
class of traffic. For a stationary traffic process, if only the 
distribution of the cumulative traffic load is known, the queue 
content distribution at any time can be obtained with our 
method. It is especially suitable for analyzing the multi-scale 
traffic specified by the distribution-plus-two-moments model. 
The queueing result is given in integral form, which can be 
computed numerically. Our method can evaluate not only the 
steady state loss probability, but also the transient queueing 
behavior. It reveals that the packet losses of scaling and multi-
scale traffic actually are of two types based on their origins: the 
absolute loss and the opportunistic loss. Behaviors of both can 
be examined with our method of analysis. As far as we know, 
this is the first time that an exact queueing analysis is presented 
for multi-scale traffic. 
   The paper is organized as follows. In Section II, the 
statistical model for scaling and multi-scale traffic is 
developed, and important properties of the model are studied. 
In Section III, queueing analysis of the traffic model is 
presented. Loss behaviors of building blocks of the model, 
persistent scaling and multi-scaling processes, are examined. 
Practical multi-scale traffic often combines scaling and multi-
scaling behaviors in one process. Section IV presents a 
compound multi-scale traffic model and evaluates its 
performance from various aspects, including steady state loss 
probability, transient queueing behavior, heavy-traffic 
performance, and effects of buffer size. Section V concludes 
the paper. 

II. STATISTICAL MODELING OF THE MULTI-SCALE TRAFFIC 

A. Scaling and Multi-Scaling Processes 
   A critical feature of the multi-scale scaling phenomena is that 
many orders of statistics of the traffic have power-law like 
behaviors that span many time scales. On one hand, this means 
the traffic has complex and strong dependence structures 
inherently. On the other hand, the traffic appears very bursty, 
and the burstiness looks similar at many time scales. These 
properties cause the network performance to be much worse 
than that in traditional Gaussian and short-dependent traffic 
environment. From the point of view of the stochastic analysis, 
the existence of the power-law like behaviors of the statistics is 
the key reason for this. Following this insight, we re-define the 
scaling and multi-scaling processes, and use them as 
components to construct the multi-scale process. We put the 
power-law like behaviors of statistics at the center of the 
formulation, and thus keeps the effects of the traffic on the 
network performance. 
   The definition is in terms of the central moments of the 
cumulative traffic load (CTL) process. Let X(t) be the traffic 
rate at t. Then ∫= t dttXtW 0 )()(  will be the arriving load up to t. 
Obviously, W(t) is a non-decreasing process. Denote by V(t, 

∆t) = W(t+∆t) − W(t). Assume the increment process is 
stationary, i.e., V(t, ∆t) = V(∆t). The average traffic rate is λ = 
lim∆t→∞(V(∆t) / ∆t). In the following description, y(p) ~ z(p) 
means limu→p(y(u) / z(u)) = c, where 0 < c < ∞ is a constant. 
   Definition 1: Given T > 0, W(t) is said to be a scaling process 
up to order L at time scale T if there exists an integer L > 0, a 
constant 0 < α(T) < 1, and a small constant ε > 0 such that for 
any τ ∈ (T−ε, T+ε) ∩ τ > 0 and any 0 < l ≤ L 

)(~]|)([| TllVE ατλττ −  (2.1) 
   For an applicable T, the scaling property of this process can 
be characterized with a vector (α(T), L). α(T) is the scaling 
exponent of the process.  
   Definition 2: Given T > 0, W(t) is said to be a multi-scaling 
process up to order L at time scale T if there exist integers L, M 
> 0,  a set Α = {αi(T): 0 < αi(T) < 1, i ≤ M}, a set Φ = {φi(T): 0 
< φ i(T) < 1, i ≤ M, ∑i=1-Mφ i(T) = 1}, and a small constant ε > 0 
such that for any τ ∈{τ : T−ε <τ <T+ε,  τ > 0} and any 0 < l ≤ 
L 

∑−
=

M

i

Tl
i

l iTVE
1

)()(~]|)([| ατφλττ  (2.2) 

   For a given T, a scaling property of this process can be 
characterized with (Α, Φ). Φ is a set of scaling exponents of 
the process. Obviously, a scaling process is a multi-scaling 
process with a single scaling exponent α(T). 
   Let c(l) be a coefficient on the right hand side of (2.2) (or 
(2.1)) for it to become an equality. c = (c(1), c(2), …, c (L)) is the 
vector of coefficients for all L orders of moments. Assume W(t) 
has multi-scaling properties (Α1, Φ1) and (Α2, Φ2) at two time 
scales T1 > 0 and T2 > 0 (T1 ≠ T2), and the coefficient vectors 
are c1 and c2, respectively. W(t) is said to be consistent at T1 
and T2 if c1 = c2 and (Α1, Φ1) = (Α2, Φ2).  
   Definition 3: Given a time scale section S: (t1, t2), W(t) is said 
to be a persistent multi-scaling process in S if it is consistent at 
any at two time scales T1 ∈ S and T2 ∈S (T1 ≠ T2). If only one 
scaling exponent exists for all time scales in S, it is called a 
persistent scaling process in S. A persistent multi-scaling 
(include scaling) process in (0, ∞) is simply called the 
persistent multi-scaling (include scaling) process. 
   Obviously, to specify the scaling property of a persistent 
multi-scaling process in a given section S also needs a vector 
(Α,Φ), the same as that for a time scale T ∈ S. 
   Using the scaling and the multli-scaling processes as 
components, we can construct the multi-scale process. It is 
always safe to say that a multi-scale process is a process that is 
multi-scaling at any valid time scale for it. But this does not 
help simplify the problem. Instead, we may construct the multi-
scale process in the following way, though other constructions 
may also be possible. 
   Definition 4: W(t) is said to be a multi-scale process if there 
exist a series of non-overlapped time scale sections Si: (ti,1, t i,2), 
i = 1, 2, 3, …, N, N > 0, such that W(t) is a persistent multi-
scaling (include scaling) process in section Si. To cover the 
whole time line, let t0,1 = 0 and tN,2 = ∞. The scaling properties 
at separate points ti,1 and ti,2 are defined as being consistent 
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with the sections on their immediate right sides except at tN,2, 
which is defined as being consistent with the section on its left 
side. 
   To define scaling and multi-scaling processes in terms of the 
central moment is the first important decision we made in this 
model. Based on previous expositions about scaling and multi-
scale phenomena [9] [23] [24], one may be tempted to use the 
moments about the origin instead of the central moments. 
However, this would cause some problem. Suppose we change 
the definition  (2.l) of the scaling process to the following 

)(~]|)([| Tll TTVE α  (2.1′) 
Then for l = 1, E[V(T)] ~ Tα(T) . When T → ∞, E[V(T)] / T ~ 
Tα(T)−1 → 0. But the practical traffic rate is a positive process. 
This conflict can be solved by using definition (2.1), from 
which we can get E[V(T)] / T  → λ. 
   The fractional Brownian motion (fBm) is an important model 
for self-similar traffic. As an example, the following theorem 
characterizes its scaling property in terms of above definitions. 
   Theorem 1: The fBm is a persistent scaling process. 
   Proof:  Write the fBm with Hurst parameter 0 < H < 1 as 

)()( tWaatW H
H

H = . Since its increment process is a stationary 

Gaussian process, we have V(∆t) = )( tWH ∆  = )1(H
HWt∆  and 

the mean is λ = 0. Therefore, ∀T  > 0, 
]|)([|]|)([| ll TVETTVE =− λ  

]|)1([|]|)([| l
H

Hl
H WTETWE ==  

]|)1([| l
H

lH WET=  (2.3) 
This completes the proof.  
� 
   The multifactal process used in [9] [23] [24] to model the 
small scale behavior can be viewed as a special case of the 
multi-scaling process defined here, i.e., a multi-scaling process 
up to infinite order at time scale T → 0. 

B. Model Restriction 
   To constrain the model with marginal CTL distributions is 
another important decision we made for the model. Analyses of 
real traffic traces have shown that the Internet traffic behaviors 
are time scale dependent. Two important time scales that are 
generally emphasized: the large or slow time scale from 100 
ms up to several minutes, during which the traffic shows long-
range dependence or self-similarity, and the small or fast time 
scale less than 100 ms, during which the traffic shows clear 
multi-scaling property. There may be a short transition phase 
around 100 ms, which is approximately the time scale of the 
roundtrip time. It is known that the increment process of the 
CTL is strongly Gaussian at the large scale and strongly non-
Gaussian at the small scale [1] [7] [9] [15] [23]. This property 
is robust and can be found in almost every trace. Based on the 
multiplicative formulation of the multi-scale process [9] [23], it 
can be deduced that the non-Gaussian distribution in the small 
scale is roughly log-normal. With this knowledge, the modeling 
of the multi-scale behaviors can be significantly simplified. 
This is because that knowing all orders of moments does not 

necessarily mean we know the distribution. Knowledge about 
the distribution can greatly confine the model. This would 
make the model more specific, more practical, and easier for 
performance analysis. 
   Given the CTL having normal or log-normal distribution, we 
need only know the first and the second-order moments to 
completely decide its moments of all orders. If only we define 
the first two orders of moments according to the scaling or the 
multi-scaling process, the traffic behavior of such processes are 
fully specified. They have at least second order scaling 
property.  Because both the distributions and the first two 
orders of moments can be validated in practice, this model 
gives us confidence that it is sufficient for practical traffic. The 
simple specification also has other advantages. First, it reduces 
the complexity of traffic estimation. Second, it avoids over-
modeling. Generally speaking, high-order statistics of practical 
traffic may not strictly conform to a scaling or multi-scaling 
process, though there is likeness. Specifying the higher-order 
moments may create the problem of over-modeling. The 
distribution-plus-two-moments model need not explicitly 
define the higher-order moments and thus avoids the problem. 
In the following we will give the formal definition of the 
model. We will still use the terms “scaling process” and “multi-
scaling process” but with restricted meanings. They will be 
used in this sense throughout the remaining part of this paper. 
Let µ and σ2 represent the mean and the variance of V(∆t). 
   Definition 5: Given T > 0, a cumulative traffic process W(t) is 
said to be a scaling process at time scale T if all of the 
following are satisfied: 
   i) W(t) has a stationary increment at time scale T, i.e., V(t, T) 
= V(T). 
   ii) V(T) has a normal distribution N(µ, σ2): 

]
2

)(exp[
2
1)( 2

2

)( σ
µ

σπ
−−= vvf tV  (2.4) 

 where µ  and σ2 satisfy the conditions iii) and iv). 
   iii) µ = λT (2.5) 
   iv) There exist a constant 0 < α(T) < 1 and a small constant ε 
> 0 such that for any τ ∈{τ : T−ε <τ <T+ε,  τ > 0} 

)(22 ~ Tατσ  (2.6) 
   Definition 6: Given T > 0, a cumulative traffic process W(t) is 
said to be a multi-scaling process at time scale T if all of the 
following are satisfied: 
   i) W(t) has a stationary increment at time scale T, i.e., V(t, T) 
= V(T). 
   ii) V(T) has a log-normal distribution L(ϖ, θ2): 

]
2

)(lnexp[
2
1)( 2

2

)( θ
ϖ

θπ
−−= v

v
vf tV  (2.7) 

where ϖ and θ are constants related with T. 
   iii) µ and σ2 satisfy the following conditions: 
      iii-a)  µ = λT (2.8) 
      iii-b) There exists an integer M > 0, a set Α = {αi(T): 0 < 
αi(T) < 1, i ≤ M}, a set Φ = {φi(T): 0 < φi(T) < 1, i ≤ M,       
∑i=1-Mφi(T) = 1}, and a small constant ε > 0 such that for any τ 
∈{τ : T−ε <τ <T+ε,  τ > 0} such that 
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iT
1

)(22 )(~ ατφσ  (2.9) 

 (2.9) means there exists a probability measure for Α, and αi(T) 
occurs with the probability φi(T). The continuous version of 
(2.9) is  

∫
∞
∞− ατασ α

Α df T
2

)(
2 )(~  (2.10) 

where )()( αΑ Tf  denotes the probability density function of the 
scaling exponent. This applies when infinitely many scaling 
exponents exist. 
   The parameters ϖ and θ of the multi-scaling process can not 
be directly measured. They can be decided through µ and σ2. 
We can write down µ and σ2 of the log-normal distribution as 

)2/exp( 2θϖµ +=  (2.11) 

]1))[exp(2exp( 222 −+= θθϖσ  (2.12) 
Therefore, 

)1ln(
2
1ln 2

2

+−=
µ
σµϖ  (2.13) 

)1ln( 2

2

+=
µ
σθ  (2.14) 

   With definition 5 and 6, new definitions of the persistent 
multi-scaling process and the multi-scale process follow, which 
are the same with definition 3 and 4 in words, but use restricted 
meanings of the scaling and the multi-scaling processes. 

C. Second-Order Moment of the Multi-scaling Process 
   Behaviors of scaling and multi-scaling processes depend on 
their first- and second-order moments. Their first-order 
moments, as given in (2.5) and (2.8), behave in the same 
manner. Their second-order moments, however, display 
significant difference. The second-order moment of the scaling 
process, as given in (2.6), is simple. We will examine the 
behavior of that of the multi-scaling process. The continuous 
version of the scaling exponent distribution in (2.10) will be 
used. The discrete version in (2.9) can be analyzed in a similar 
way. 
   Many traffic analyses [8] [15] [23] reveal that the scaling 
exponent set Α of a multi-scaling process spans a wide scope in 
[0, 1] and even goes beyond 1. There usually exists a central 
scaling exponent that holds the highest probability. The 
probability density function decreases rapidly on both sides 
symmetrically with the increase of the distance from the center. 
For simplicity, we assume the scaling exponents follow a 
normal distribution )~,~( 2σαN  at a time scale T, where α~  and 

2~σ  are the mean and the variance of the scaling exponents. 
We omit the subscript T for α~  and 2~σ here. Then for time 
scale T the integral (2.10) is 

∫
−−∞

∞− α
σ

αα
σπ

σ α dT 2
2

2
2 ]~2

)~(exp[~2
1~  (2.15) 

Let z = T2α. Then α = ln(z) / (2ln(T)), and dα / dz = dz / 
(2ln(T)z). Then (2.15) becomes 

∫
−−∞

0 2

2
2 ]

)~)ln(2(2
)~)ln(2()(ln(exp[

)~)ln(2(2
1~ dz

T
Tz

zT
z

σ
α

σπ
σ

 (2.16) 
The right hand side of (2.16) is nothing but the expectation of a 
log-normal distribution with parameter α~)ln(2 T  and 

2)~)ln(2( σT . In fact, if we view z = T2α as a random variable 
that is a function of the random variable α, it is easy to deduce 
that z has a log-normal distribution. With the property (2.11) of 
the log-normal distribution, we can immediately write down 

)]~)ln(~)(ln(2exp[])~)(ln(2~)ln(2exp[~ 222 σασασ TTTT +=+

      )ln(~2~2 2 TTT σα=  (2.17) 
Comparing (2.17) with (2.6), we see if a persistent multi-
scaling process and a scaling process have the same mean and 
the same average scaling exponent, the variance of the former 
is generally greater than that of the latter, especially when T is 
big. While the variance of the latter keeps a strict, constant 
scaling property, that of the former has a quasi, nonlinear 
scaling property, as can be seen clearly in figure 1. In the log-
log graph, the variance of the scaling process (“Var1”) is a 
straight line and that of the multi-scaling process (“Var2”) is a 
nonlinearly increasing curve. The latter deviates from the mean 
(“Mu”) faster than the former. Based on these differences, we 
may also expect that the multi-scaling process has worse 
network performance than the scaling process, as will be 
confirmed in Section III.  
   With (2.17) we can also decide the relations between the 
parameters ϖ and θ of the log-normal distribution and the 
scaling exponents and T. Referring to (2.13) and (2.14), we can 
write down 

]
1)/(

ln[
)ln(~2)~1(22 2

+
=

−− TTTc

T
σαλ

λϖ  (2.18) 

]1)/ln[( )ln(~2)~1(22 2

+= −− TTTc σαλθ  (2.19) 
where c is some finite constant. 

D. High-Order Moments 
   An important feature of practical scaling or multi-scale 

 

0 5 10 15 20 25 30
−10

0

10

20

30

40

50

60

70

log
2(.)

log
2
t

Mu
Var1
Var2
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traffic processes is that their high-order moments also show 
power-law like behaviors. Though not specifying it explicitly, 
the statistical multi-scale model holds this property inherently. 
Consider a normal random variable Z ~ N(µ, σ2). Its absolute 
central moments are 

∫
−−−=− ∞

∞− dzzzZE
l

l ]
2

)(exp[
2

||]|[| 2

2

σ
µ

σπ
µµ  (2.20) 

Let s = (z −µ)/σ. We get 

∫ −=− ∞
0

2

)
2

exp(
2

2]|[| dsssZE
l

ll

π
σµ  (2.21) 

The integral on the right hand side is a Gaussian integral which 
we denote as K(l). Then  

ll lKZE σµ )(]|[| =−  (2.22) 
Developing the Guassian integral we get 







=−
=−

= oddll
evenll

lK l

,]!2/)1[(2
,!)!1(

)( 2/

π
 (2.23) 

Therefore, for a scaling process at time scale T, using (2.5) and 
(2.6) we can write down 

)()(~]|)([| Tll TlKTTWE αλ∆ −  (2.24) 
So the scaling process still keeps the scaling property strictly in 
high order moments. 
   Now let us see the multi-scaling process. Consider a log-
normal random Z ~ L(ϖ,θ2). We still use µ and σ2 to represent 
its mean and variance. Its high order non-central moments are 

)2/exp(][ 22θϖ llZE l +=  (2.25) 
With the relation between the central moments and the non-
central moments, we can write 

∑ −=−
=

−l

k

klkkk
l

l ZECZE
0

][)1(])[( µµ  (2.26) 

where ))!(!/(! klklC k
l −= . For simplicity, we test only even 

order central moments, which equal to the absolute central 
moments of same orders. Inserting (2.11) and (2.25) to (2.26), 
for an even l, we get 

∑
−++−=−

=

l

k

kk
l

l klklCZE
0

2
2

2 ]
2

)(
2

exp[)1(]|[| ννϖµ  (2.27) 

Replacing ϖ and θ  with (2.13) and (2.14), we have 

∑ +−=−
=

−−−l

k

klkl
lkk

l
l CZE

0

2
)()(

2

2 2

)1()1(]|[|
µ
σµµ  (2.28) 

Therefore, for a multi-scaling process with µ and σ2 given in 
(2.8) and (2.9), we can write 

]|)([| lTTWE λ∆ −  

∑ +∑−=
=

−−−

=

−−l

k

klklM

i

T
i

kk
l

ll iTTcCT
0

2
)()(

1

))(1(2
2

2

)1)(()1( αφ
λ

λ  (2.29) 

where c is some constant. Obviously, when fully developed, 
(2.29) is the sum of a power series of T, which has a similar 
form as (2.9), though the set of exponents here is richer. This 
suggests that the high-order moments preserve the quasi multi-
scaling property. 
   To see the high-order moment behaviors visually, we 
calculate them numerically for the persistent scaling and multi-
scaling processes, and draw their changes with t on a log-log 
graph, as shown in figure 2 and 3, respectively. Comparing 
them with those from real traffic data [8] [9] [23], which have 
been viewed as the main evidence of the multi-scale behavior, 
we see they are extremely similar. In figure 2, every moment 
vs. time is a straight line with a slope proportional to its order. 
They share the same scaling exponent i.e., the Hurst parameter 
of the process.  In figure 3, the curves are not completely 
straight but all have scaling trends, which demonstrates the 
existence of the multi-scaling property.  

E. Parameter Characterization 
   Now the multi-scale traffic is modeled with scaling or multi-
scaling processes in a series of time scale sections. Once the 
sections are known, the characterization of the traffic can be 
done efficiently. For a scaling section, what we need to know 
are three parameters (λ, α, c1). Here λ and α are the average 
traffic rate and the scaling exponent for that section. c1 is the 
coefficient on the right hand side of (2.6) for it to become an 
equality. As can be seen from (2.5) and (2.6), these three 
parameters completely decide µ, σ2, and all high order 
moments of the scaling process. For a multi-scaling section, 
one more dimension is needed, i.e., the scaling structure (Α,Φ) 
or )()( αΑ Tf . With the Gaussian assumption of the scaling 
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Fig.2. Log-log graph of different orders of central moments vs. time scale for 

the persistent scaling process (bottom-up: orders 1 ~ 30). 
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exponents, this is to require α~  and 2~σ . So a compact 
representation of the multi-scaling section is (λ, c2, α~ , 2~σ ). c2 
is the coefficient on the right hand side of (2.9) for it to become 
an equality. For performance evaluation purposes, the real 
traffic may be simply approximated with only two time scale 
sections, i.e., the large scale section and the small scale section. 
Given the stationarity of the process, λ can be estimated 
without distinguishing the sections and shared by both. 
Considering the complexity of the multi-scale behavior, this 
characterization is very compact and convenient for 
performance modeling. It makes the multi-scale traffic model 
quite accessible for engineering network design. 

F. Model Validation 
   From previous arguments, two conditions are sufficient to 
decide the model. Both the normal or the log-normal CTL 
distribution and the behaviors of the first two orders of 
moments can be validated in practical traffic. There exists a lot 
of work related with this in literature [7] [13] [15] [23] [24] 
[28]. So we will not repeat them here. In Section IV we will 
demonstrate that the queueing analysis results based on this 
model match the performance of real traffic very well. This 
further validates the model. 

III. A GENERAL APPROACH FOR PERFORMANCE ANALYSIS 

A. General Analysis of the Fluid Queue 
   Exact queueing analyses of the scaling and the mutli-scaling 
processes are very difficult. Common queueing analysis 
techniques like M/M/1, M/G/1, even G/G/1 does not help much 
here. The main approach used so far is asymptotic analysis, 
especially the technique of large deviations [5] [6]. However, 
the limitation of the asymptotic approach is obvious: it 
generally does not apply to the finite buffer; it is usually only 
related with the scaling exponent and can not evaluate the 
effect of other parameters. In short, as a limiting bound, it is 
more useful for qualitative evaluation rather than as a 
quantitative means. Moreover, to our best knowledge, the 
queueing analysis taking into account the multi-scale property 
has only been considered in one paper [22], where a loose 
higher bound for a wavelet-based multi-scale traffic model is 
given. In this Section, we will present a general approach for 
exact analysis of the fluid queue fed by multi-scale processes. 
The basic idea dates back to Benes [2], and has been adopted 
in performance evaluation of broadband networks [17] [25]. 
We provide a new interpretation of it, and apply it to analyze 
the scaling and the multi-scaling processes. The method is 
especially suitable for the traffic model presented in Section II. 
   Consider that we want to evaluate the queueing performance 
of a general traffic process. To do so, we go back to the 
fundamental relations of the queueing system. For a single 
server fluid queue running in the stable region and having 
enough space to buffer the transient bursts, we have the 
following balance equation: 

)()()()( 000 ttOtQttVtQ −+=−+  (3.1) 
Here Q(t) is the queue length at t, V(t − t0) = W(t) − W(t0) is the  
CTL arriving in the period (t0, t),  and O(t − t0) denotes the 
traffic load leaving in (t0, t). It simply states that for any period 
(t0, t) the arriving CTL plus the queue content at time t0 is equal 
to the amount of the traffic load leaving the queue in the same 
period plus the content remaining at time t. Assume V(t) = 0 
and Q(t) = 0 at time t = 0. Let t0 = 0. Then we get the following 
relation: 

+−= )]()([)( tOtVtQ  (3.2) 
where the operator [⋅]+ means max(⋅, 0). It is used to emphasize 
the fact that Q(t) is non-negative at any time t. Let C be the 
constant service rate of the queue. It is easy to see that O(t) is 

))(()( tItCtO −=  (3.3) 
Where I(t) is the total server idle time up to t. Let Λ(t) = C⋅I(t), 
which is the maximum amount of traffic the server could serve 
in time I(t) if the traffic load were available. We call it the 
“virtual” traffic load (VTL) up to t. Let CttVtY −= )()( . This 
is the “net” traffic load (NTL) that W(t) owns beyond Ct (it can 
be negative in general). With (3.2) and (3.3) we get 

++ +=+−= )]()([)]()([)( ttYtCttVtQ ΛΛ  (3.4) 
For a queue length q > 0, using the law of total probability we 
then get 

])(,)()([])([ qtYqttYPqtQP >>+=> Λ  
         ])(,)()([ qtYqttYP ≤>++ Λ  
      )]()()([])([ ttYqtYPqtYP Λ+<≤+>=  (3.5) 
Physically, (3.5) means the overflow probability above q is the 
sum of the probability that NTL exceeds q and the probability 
that NTL does not exceeds q but NTL plus VTL exceeds q. 
This actually indicates two different origins of packet losses. 
Based on the difference, we call the first term on the right hand 
side of (3.5) the absolute loss probability, and the second term 
the opportunistic loss probability. They are denoted as Pabs(t) 
and Popp(t), respectively. 
   The absolute loss probability is  

])([)( qtYPtPabs >=  

     ])([ qCttVP +>= ∫= ∞
+qCt tV dvvf )()(  (3.6) 

Denote the integral on the right hand side as  
∫= ∞

+qCt tVt dvvfqCJ )(),( )(  (3.7) 

The opportunistic loss probability is more complex. With the 
result by Benes [2, Chapter 2], we can write down 

)]()()([)( ttYqtYPtPopp Λ+<≤=  

     ∫ =≤−
∂
∂= t duuQquYtYP
q 0 ]0)(,)()([   

     ∫ ==≤−
∂
∂= t duuQPuQquYtYP
q 0 ]0)([]0)(|)()([  (3.8) 

Assume Q(t) is stationary. Define the network utility as 
C/λη = . Let  

Ct
tY

t
tV

C tt

)(lim)(lim111
∞→∞→

−=−=−= ηρ  (3.9) 
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Then the following relation holds almost surely [3]. 
ρ== ]0)([ uQP  (3.10) 

So (3.8) becomes 

)(tPopp ∫ ≤−
∂
∂= t duqutYP
q 0 ])([ ρ   

     ∫ +≤
∂
∂= t duqCuuVP
q0 ])([ρ   

     ∫= +=
t

qCuvuV duvf0 )( |)(ρ  (3.11) 
The integral in (3.11) is a function of C and q when t is fixed. 
Denote 

∫= +=
t

qCuvuVt duvfqCG 0 )( |)(),(  (3.12) 
Use Ploss(t) to represent the total loss probability. With (3.5), 
(3.6), (3.7), (3.11), and (3.12), we can write down 

)()()( tPtPtP oppabsloss += ),(),( qCGqCJ tt ρ+=  (3.13) 
This is a general formula for the exact queueing behavior of 
virtually any type of traffic. Given C and q, the loss probability 
of scaling and multi-scale processes at any time can be 
evaluated through numerical computation. Since (3.13) 
calculates the loss probability directly using the CTL 
distribution, it is almost customized for the multi-scale traffic 
model developed in Section II. In fact, that is the main motive 
that we use this approach. Finally, the loss probability of the 
persistent scaling process is 

)(tPloss dv
ct
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tcqCt∫

−−= ∞
+ ]

2
)(exp[
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αα

λ
π

 

      + du
cu

quCu
ucC

t
∫

+−−− 0 2

2

]
2

)(exp[
2

1)1( αα
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π

λ  (3.14) 

The loss probability of the persistent multi-scaling process is 
)(tPloss
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vttc

ttc
tttcv

qCt
t

t

t

∫
⋅+

+

−+
−

= ∞
+

−−

−−

−−

]1)/ln[(2

]
]1)/ln[(2

)]ln()1)/([ln(
exp[

)ln(~2)~1(22

)ln(~2)~1(22

2)ln(~2)~1(22

2

2

2

σα

σα

σα

λπ

λ
λλ

 

+

du
qCuuuc

uuc
uuucqCu

C
t

u

u

u

∫
+⋅+

+

−++
−

−
−−

−−

−−

0
)ln(~2)~1(22

)ln(~2)~1(22

2)ln(~2)~1(22

)(]1)/ln[(2

]
]1)/ln[(2

)]ln()1)/()[ln((
exp[

)1(
2

2

2

σα

σα

σα

λπ

λ
λλ

λ

 (3.15) 

B. Behavior of the Absolute Loss 
   The absolute loss probability in (3.6) has been widely used as 
an approximation of the overall loss probability or as the lower 
bound of it. Looking closely at it, we have the following 
theorem about its behavior. 
   Theorem 2: If λ < C, the absolute loss probability Pabs(t) of a 
persistent scaling or multi-scaling process goes to zero when t 
→ ∞. 

   Proof: For a persistent scaling process, with (2.4) and (3.7) 
),( qCJ t  can be written as 

),( qCJ t = ]
)(2

)([
2
1

2
1

t
tqCterf

σ
µ−+−  (3.16) 

where µ(t) and σ(t)  are µ and σ  in(2.4), and erf(z) is the error 
function  

∫= −z u duezerf 0

22)(
π

 (3.17) 

The term inside erf(⋅) in (3.16) is 
)()(1

)( 222
tt

t
t

c
qt

c
C

ct
tqCtz αα

α

λλ −− +−=−+=  (3.18) 

In the stable regime of the queueing system, i.e., λ < C, when t 
→ ∞ the first term on the right hand side of (3.18) → ∞ and the 
second term → 0, thus z → ∞. This makes erf(z) → 1, and 

),( qCJ t  in (3.16) → 0. This means that the absolute loss for 
the persistent scaling traffic will eventually be zero, and the 
long-term packet loss rate is governed by the opportunistic 
loss. 
   For a persistent multi-scaling process, with (2.7) ),( qCJ t  is 

),( qCJ t = ]
)(2

)()ln([
2
1

2
1

t
tqCterf

θ
ϖ−+−  (3.19) 

where ϖ(t) and θ(t) are ϖ and θ  in(2.7). This time the term 
inside erf(⋅) in (3.19) is 
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 (3.20) 
With a similar analysis, we can see that when t → ∞, the first 
term on the right hand side of (3.20) goes to ∞ and the second 
term goes to 0. This again results in z → ∞, then erf(z) → 1, 
and then ),( qCJ t  → 0. So the long-term loss behavior of the 
multi-scale traffic is also governed by the opportunistic loss. 
However, the convergence speed in this case is exponentially 
slower than that of the scaling traffic.  
� 
   Because Pabs(t) goes to zero when t → ∞, it is generally 
improper to use it to approximate the overall loss probability. 
However, we will show in Section IV that it converges 
extremely slowly for heavy traffic. In that situation it is a good 
approximation before the steady state is reached. 

C. Behavior of the Opportunistic Loss 
For the opportunistic loss probability, we have the following 

theorem. 
   Theorem 3: If λ < C, the opportunistic loss probability of a 
persistent scaling or multi-scaling process increases 
monotonically with t and converges to qCGt

t
,(sup

0>
ρ ) when t 
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→ ∞. 
   Proof: If λ < C, the opportunistic loss probability is 
obviously bounded above by 1. Because )()( vf uV  > 0, from 

(3.11) the integral function ),( qCGt  is a monotonically 
increasing function of t. So if only )()( vf uV  is a valid 

probability distribution function, ),(sup 0 qCGtt>  exists and 
),(sup 0 qCGtt>ρ  ≤ 1. Therefore, for a persistent scaling or 

multi-scaling traffic, Popp(t) increases monotonically converges 
to ),(sup 0 qCGtt>ρ . 
� 
   We immediately get the following theorem about the steady 
state performance.  
   Theorem 4: The total loss probability in the steady state, 
Psteady, is 

),(sup)(lim
0

qCGtPP t
t

losststeady
>∞→

== ρ  (3.21) 

   Proof: From theorem 2 and 3, Pabs(t) → 0 and Popp(t) → 
qCGt

t
,(sup

0>
ρ ) when t → ∞. So )(lim tPP losststeady ∞→

=  

),(sup)(lim
0

qCGtP t
t

oppt >∞→
== ρ . 

� 
   In particular, for the persistent scaling process the steady 
state loss probability is  
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For the persistent multi-scaling process, it is 
        steadyP = 
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D. Examples 
   Figure 4 to 6 shows the absolute, the opportunistic, and the 
total loss probabilities of a persistent scaling process (PS1) and 
a persistent multi-scaling process (PS2). The two processes 
have the same average arrival rate and share the same link 
speed and buffer size. PS2’s average scaling exponent equals 
to the only scaling exponent of PS1. Just as we analyzed above, 
the absolute loss goes to zero eventually. But it first reaches to 
a peak value before going down. The opportunistic loss 
increases monotonically and converges to a limit. It dominates 
the total loss probability, and the latter follows the same trend 
and goes to the steady state. Most strikingly, the figures show 
the performance difference between the two processes is huge: 
Psteady of PS1 is about 0.5% while that of the PS2 is four times 
higher, about 2.5%. This means that if the traffic is a multi-
scaling process in the large scale, the packet losses would be 
very high. Fortunately, it is just a theoretical case that has not 
been seen in real situations. The practical traffic generally 

holds the multi-scaling property only in the small scale, and 
always turns into the scaling process in the large scale. Its 
performance will be specifically studied in next Section. 
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Fig.5. Behaviors of the opportunistic packet losses of persistent scaling and 
multi-scaling processes. 
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Fig.6. Behaviors of the total packet losses of persistent scaling and multi-
scaling processes. 
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Fig.4. Behaviors of the absolute packet losses of persistent scaling and multi-

scaling processes. 
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IV. PERFORMANCE EVALUATION OF PRACTICAL MULTI-SCALE 
TRAFFIC 

A. Loss Probability of the Multi-scale Traffic 
  The Internet traffic behaviors are different at the large time 
scale and the small scale. These two time scales are also of 
most interest as far as the queueing performance is concerned. 
In different hours of a day a clear drift of the level of the traffic 
load may be observed. However, it occurs in the administrative 
time sale and generally does not affect the assumptions and 
conclusions of the queueing analysis. 
   We separate two time scale sections accordingly in our 
analysis. Let [0, tI] and [tI, tII] be the small time scale section 
and the large time scale sections, respectively. Here tII = ∞. 
Define 





<
≥

=
0,0
0,1

)(
t
t

tU  (4.1) 

Let fI(w) and fII(w) denote the log-normal and the normal 
distributions given in (2.7) and (2.4), respectively. Then V(t)’s 
distribution at any time scale t is 

)]()()[()()( IItV ttUtUvfvf −−=  
     )]()()[( IIIII ttUttUvf −−−+   (4.2) 
   Represent the integrals in (3.7) and (3.12) for the multi-
scaling traffic as ),( qCJ I

t  and ),( qCG I
t , and those for the 

scaling traffic as ),( qCJ II
t  and ),( qCG II

t . Based on (4.2) and 
(3.7) and (3.12), we can show that the integrals for the overall 
traffic are 

)]()()[,(),( I
I
tt ttUtUqCJqCJ −−=  

     )]()()[,( III
II
t ttUttUqCJ −−−+  (4.3) 

and 
)]()()[,(),( I

I
tt ttUtUqCGqCG −−=  

     + )]()()][,(),(),([ III
I
t

II
t

II
t ttUttUqCGqCGqCG

II
−−−+−  (4.4) 

Denote the loss probabilities in (3.15) and (3.14) for the multi-
scaling traffic and the scaling traffic as )(tP I

loss  and )(tP II
loss , 

respectively, and the opportunistic loss probabilities of them as 
)(tP I

opp  and )(tP II
opp . We finally get 

)(tPloss  = )]()()[( I
I

loss ttUtUtP −−  

     + )]()()[( III
II

loss ttUttUtP −−−  

     − )]()()][()([ IIII
I

oppI
II

opp ttUttUtPtP −−−−  (4.5) 
This formula means that the multi-scaling property solely 
affects the transient queueing behavior in the small scale, and 
also contributes to the large scale loss probability. However, 
the contribution is rather limited if tI is small. Then the steady 
state performance is governed by the scaling property in the 
large scale. With (4.5) and the results in Section III, we can 
compute the loss probability at any time for the multi-scale 
traffic.  

B. Steady state performance 
   To calculate the steady state loss probability based on the 
model, we estimate the model parameters for the large scale 
described in Section II-E from the real traffic trace, and apply 
them in formula (4.5). It is an approximate calculation because 
we ignore the multi-scaling property in the small scale, which 
will be examined specifically in Section IV-C. Generally, it is a 
fairly mature subject to estimate the scaling exponent and the 
parameters of normal and log-normal distributions, for which 
we will not get into details in this paper. The real traffic data 
we use is the well-known trace LBL-TCP-3 [30] from 
Lawrence Berkeley Laboratory, which has been used as a 
representative for scaling and multi-scale behaviors [23] [28]. 
With an average rate of 282.12Kbps, the traffic generates a 
network utility of 28.21% on the 1Mbps Ethernet link on which 
it was captured. 

Figure 7 shows the total loss probability and its components 
based on the model for the real trace, and compares the steady 
state loss probability with the simulation result. The constant 
value indicated by the top plain line is the average loss 
probability measured in the simulation, in which the real trace 
is fed into a FIFO queue. The maximum queue length is set as 
300KB. We see the absolute loss and the opportunistic loss 
behave like we described in Section III: the absolute loss 
eventually vanishes and the opportunistic loss ends up in a 
steady state. The convergence of the total loss probability is 
fairly quick and the final state is quite stable. The value in the 
steady state is so close to the result from the simulation that we 
can only see a difference of 0.002%. Thus the queueing 
analysis just taking into account the large scale scaling 
behavior can provide a very good prediction for the steady 
state loss performance. 

C. Transient Behavior 
Now that the scaling behavior alone determines the steady 

state queueing performance, what is the role of the multi-
scaling behavior? With the performance analysis model we can 
show that it has effect on the transient behavior. The transient 
behavior indicates the change of the loss probability in the 

 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
−3

P los
s

t

Total loss
Absolute loss
Opportun. loss
Simulation

 
 
Fig.7. Comparison of the analytical and the simulation results for the steady 

state loss probability of the multi-scale traffic. 
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transient period, i.e., the period before the steady state is 
reached. Figure 8 illustrates the early transient period of the 
loss probability for trace LBL-TCP-3. In this analysis, tI is 
identified1 and parameters for both the large scale and the 
small scale are first estimated. Then the loss probabilities at 
different times are computed with (4.5). Different from that of 
the persistent scaling process in figure 6, the total loss 
probability goes down sharply at tI after an initial quick start, 
and then evolves like a normal scaling process. We claim that 
this initial jump of loss probability is exactly the consequence 
of the multi-scaling behavior. As we have known from Section 
III, a multi-scaling process performs much worse than a scaling 
process if they have similar (average) scaling exponents. So the 
multi-scaling phase builds up a higher loss probability before tI 
than if it were a scaling process in that phase. After tI the loss 
probability follows that of a scaling process so it drops down to 
a corresponding level and then develops on that basis. We see 
the dramatic change is mainly due to the absolute loss. The 
opportunistic loss keeps increasing across tI. Clearly, this 
transient behavior does not affect the performance in the large 
scale much. 

D. Heavy Traffic Behavior 
From (3.9), when η → 1, then ρ → 0, and the opportunistic 

loss would be close to zero. We also know the absolute loss in 
the steady state is zero, too. Thus the total loss would go to 
zero for the heavy load traffic. This is intuitively incorrect. So 
we guess the loss behavior in this case must be different from 
what we observed so far. Figure 9 gives the answer to this 
seeming contradiction. It shows the absolute, the opportunistic, 
and the total loss probabilities under the load η = 0.9. We see 
that at such a high load, the value of the opportunistic loss 
indeed is very small. On the contrary, the value of the absolute 
loss is large. Mathematically, it is not difficult to verify these 
with the equations (3.6) and (3.11). So the thing is, although 
the opportunistic loss still increases with time and the absolute 

 
1 A simple approximate way to identify tI is through the log-log graph of σ2 

vs. time scale. This graph generally gives a good indication of the traffic 
behaviors at different time scales. tI is the time scale beyond which the graph 
is roughly a straight line and below which it is obviously nonlinear. 

loss still decreases, both of them converge extremely slowly. In 
the practical measurement of a limited period, we are likely to 
find that the total loss is non-zero, and is approximately the 
absolute loss. So in the heavy load case, the absolute loss can 
be used as an approximation of the total loss. This is consistent 
with the analysis in Section III. 

E. Loss Probability vs. Buffer Size 
As we have mentioned in Section I, the queueing 

performance evaluation for the scaling and the mutli-scaling 
processes usually uses the asymptotic approach, i.e., pursues 
the limiting result when the buffer size q → ∞. Then the result 
is applied to the finite buffer for an approximate analysis, 
which may give a very poor prediction. A well-known result 
for the scaling process is that Psteady ~ q−2(1−H) for q → ∞ [4] 
[15], where 0 < H < 1 is the Hurst parameter, i.e., the sole 
scaling exponent of the process. Our queueing model in this 
paper, however, is an exact analysis and can give numerical 
result for the finite buffer. We will evaluate the effect of the 
buffer size on the loss probability with the model, and compare 
the result with those from the simulation and the asymptotic 
approach2. Figure 10 gives the results for the trace LBL-TCP-
3. The simulation data indicate that the loss probability 
decreases quickly with the increase of buffer size for moderate 
buffer sizes. The change can be predicted very well with our 
queueing analysis, while the asymptotic method performs 
poorly. The results also testify that using bigger buffer is 
actually more beneficial than expected with the power law or 
the asymptotic approach if the buffer size is in the moderate 
range.  

V. CONCLUSION 
Scaling and multi-scale phenomena of network traffic have 

important impacts on various aspects of network design, 
control, and management. However, existing models are often 

 
2 The asymptotic formula used is Psteady = βq−2(1−H), where the coefficient β 

needs to be decided. Because the formula is supposed to be able to predict the 
loss probabilities accurately for very large buffer sizes, we collect sample loss 
probabilities from simulations using very large buffers, and estimate β based 
on the samples. 
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Fig.9. Loss behavior of the multi-scale traffic under heavy load η z= 0.9. 
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Fig.8. Transient loss behavior of the multi-scale traffic. 
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very complex and not suitable for performance analysis, which 
greatly limit their applications for network optimization. This 
paper proposes a new statistical model for scaling and multi-
scale traffic, and presents a general queueing anlaysis 
technique for it. The statistical model employs the central 
moments and the marginal distributions of the cumulative 
traffic load process. Only the first two orders of moments are 
needed to define the process. At the same time, all high-order 
moments have the power-law like properties inherently. Thus 
the model provides a good approximation of the multi-scale 
behavior while maintaining the simplicity for measurement and 
estimation. Unlike most of the queueing techniques used for 
scaling and mutli-scale processes so far, the queueing analysis 
presented in this paper is neither an asymptotic approach nor a 
bounding approximation. It is a general fluid queueing analysis 
method that can give numerical result. Two types of packet 
losses, the absolute loss and the opportunistic loss, are 
identified with the method, and their behaviors are determined. 
The analysis can evaluate not only the steady state performance 
but also the transient queueing behavior. Various dimensions 
of performance of scaling and multi-scale traffic, such as the 
heavy-traffic performance and the loss probabilities for 
different buffer sizes, can be easily evaluated with the analysis 
method. 

The traffic model and the queueing analysis method pave the 
way for taking full advantage of the scaling and multi-scale 
properties in practical network planning, dimensioning, and 
traffic control and management. Our future work will focus 
their applications in these issues. 
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Fig.10. Steady state loss probabilities for different buffer sizes. 
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