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Abstract

We examine the problem of negotiating access control
policies between autonomous domains. Our objective is
to develop software agents that can automatically negotiate
access control policies between autonomous domains with
minimal human guidance. In this paper we show a mathe-
matical framework that is capable of expressing many such
negotiation problems, and illustrate its application to some
practical scenarios.

1 Introduction

As computer systems become more and more intercon-
nected, many situations arise where different systems need
to share data or resources. For instance, a provider who
wants to offer a number of services over the web must de-
cide how much a remote user with a certain set of cre-
dentials is to be trusted. A more complicated example is
provided by collaborative computing in peer-to-peer net-
works, which frequently requires two or more autonomous
domains to share data or other resources to achieve a com-
mon goal. Often, the collaboration itself may generate new
data or resources, and these must also be shared.

In all the above situations, the domains involved must
agree upon an access control policy for their shared re-
sources. Currently, this is done by a variety of methods,
all of which require human intervention. Thus, many of
these methods are time-consuming, inflexible and error-
prone. For client-server scenarios such as the web services
scenario above, a policy might be set by a human adminis-
trator in advance assigning remote users to local roles. For
peer-to-peer networks such as military coalitions, negotia-
tions are carried out by human beings meeting in person,
through a tedious process of discussion and bargaining that
can take weeks or months to conclude.

We examine the problem of automating the negotiation
of access control policies between autonomous security do-
mains. Specifically, we examine the problem of negotiating

a shared access state, assuming all domains use an RBAC
policy model. We propose a mathematical framework in
which many such problems can be cast, and show that this
framework is expressive enough to deal with a large number
of practical situations. Further, our framework provides an
efficient means for auditing permissions in an access con-
trol system, and for checking access control states against
higher-level security policies.

In our target scenario, coalition formation would take
place as follows. First, administrators from a number of do-
mains would agree to try and set up a coalition to carry out a
mission important to all of them. Each domain would have a
software agent to help negotiate policy with other domains.
The administrators would program their individual agents
with some higher-level considerations, such as the mission
objective, the applications that must be run in the coalition
to achieve the objective, its importance to that domain, the
(real or perceived) trustworthiness of the other partners, and
so on. These software agents would then communicate with
each other and arrive at a common access control policy for
the coalition, which spelled out details such as the accesses
permitted to members of particular roles in particular do-
mains, the separation of duty relationships in the system,
and the permissions to be applied to new objects created
during coalition operation.

The novelty of our work lies in the fact that in our frame-
work, the automated negotiation agent can be guided not
only by hard constraints such as domain meta-policies, but
also by soft constraints which reflect the preferences of the
domain. This allows the agent to optimize; it is now looking
for the best access control policy compatible with its con-
straints, as opposed to looking for any policy that meets its
domain’s requirements.

In Section 2 we sketch the negotiation problem and pro-
vide an outline of our work. In Section 3 we provide some
theoretical background to our work. Section 4 discusses the
architecture of the negotiating agent. Section 5 describes
our mathematical framework, and its application to some
example scenarios. Finally, in Section 6 we consider some
directions for future research.
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Figure 1. Negotiation in multi-domain net-
works.

2 The Negotiation Problem

Consider a coalition such as the one in Figure 1. We as-
sume that negotiation is carried out between software agents
that are guided by human operators, and that each domain
has a single agent that acts as an authorized representative
for the domain. These agents must arrive at a set of ob-
jects to share and an access control policy for these objects.
This policy will then be implemented, perhaps subject to a
human operator’s approval.

We assume that each domain has its own access control
policies, and that the negotiated state must at least satisfy
the access control constraints of all the domains. For exam-
ple, if a domain requires a separation-of-duty relationship
between two privileges, then the final state must not have
any user with both privileges.

In addition to the domain policy, each domain’s admin-
istrator will have to provide the domain’s negotiating agent
with some information regarding the coalition that is to be
set up, such as what data or applications are to be shared,
or what services need to be available to coalition mem-
bers. Administrators can also provide information on fea-
tures they consider desirable in a coalition access control
state. However, the existing domain policy already contains
a lot of information about the domain’s preferences; for in-
stance, objects that are only accessible to top level managers
are presumably more valuable than objects that are accessi-
ble to any user in the system. By taking advantage of this
existing structure, we avoid duplication of administrator ef-
fort. At the same time, the administrator has the flexibility

to override selected constraints or to impose additional re-
quirements.

In any given situation, it may not be possible to find any
state that satisfies the policies of all the domains. Alterna-
tively, there may be a large number of states that do so. We
would like our negotiation agents to be able to find the best
possible solution in each case. If all policies cannot be sat-
isfied, we would like to find a state that satisfies as much of
the policies as possible; if many states exist that satisfy all
domain policies, we would like to pick the best among them
according to some criterion.

In many practical situations, access control policies are
themselves considered sensitive information. For example,
the access control policies of a corporation may reveal some
information about its internal business processes, or about
confidential relationships with other entities. As a result,
our negotiation agents will not have complete security poli-
cies to work with; instead, they will have to make do with
the limited knowledge gained during the negotiating pro-
cess. Additionally, the agents must also try to avoid reveal-
ing any more information than strictly necessary about their
respective domain policies.

There are situations in which no policies are sensitive.
For example, the coalition might consist of a single large
corporation, with different departments or divisions as its
member domains. Even in such cases, the negotiation prob-
lem is a hard one. If each policy consists of a set of Boolean
constraints, then finding a state to satisfy all the policies is
an instance of the satisfiability problem, which is known to
be NP-complete. Furthermore, this approach does not deal
gracefully with overconstrained problems (no possible so-
lution) or with problems where we must find the best of a
large number of feasible solutions.

In this paper we look at the case where policies and do-
main preferences are not considered sensitive. We confine
ourselves to Role Based Access Control (RBAC, [17]) sys-
tems, though our methods can be generalized to other ac-
cess control models. We show that the RBAC constraints,
which are derived from higher-level security policies, can
be expressed as constraints over an appropriate semiring.
We show two such formulations and compare their proper-
ties.

We do not attempt to develop a new language for speci-
fying access control policies, nor do we require that all do-
mains specify their policies in the same language. Instead,
our framework can be thought of as a useful internal rep-
resentation for the negotiating agents, to which constraints
from the domain policy languages can be easily translated.
In Section 5, we show that our representation is general
enough to subsume at least some existing policy languages.

We demonstrate the application of our method to two
types of scenarios: the multi-domain scenario described
above, and to the simpler case of a client-server system.
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In the client-server model, there are exactly two domains,
and all the shared resources belong to one of the domains
(namely, the server). Though much simpler, the client-
server model is important in practice because it represents,
for instance, web-based access to computing resources. It
also builds some intuition that is useful when investigating
the multi-domain case.

3 Background

3.1 Access Control Policies

The problem of resource sharing among autonomous do-
mains is a relatively new one in Computer Science. In most
classical work in resource sharing, all resources are part of
a single system, and there is a single mechanism enforc-
ing access control policies. By contrast, in coalition scenar-
ios, there are often multiple independent authorities (one or
more per domain) that perform security functions such as
authenticating users and enforcing access control policy.

The presence of multiple domain authorities and policy
enforcement points raises the question of how any domain
can trust the other domains in the coalition to correctly en-
force any coalition-wide access control policy. We will not
investigate this problem in any detail; we assume that some
form of joint administration is used, or there is some other
mechanism for monitoring the compliance of domains.

Role Based Access Control (RBAC) is a widely used
model for access control systems. RBAC policies are for-
mulated around the concept of a role. A complete RBAC
model [17] includes the following state variables:

� The sets U (users), R (roles), P (permissions) and S
(sessions).

� PA : R� 2P, a mapping from roles to their associated
permissions.

� UA : U � 2R, a mapping from users to their roles.

� user : S�U , a mapping from sessions to the respec-
tive users.

� roles : S� 2R, a mapping from sessions to the set of
roles associated with each session.

� A partial ordering � on R which defines a role hierar-
chy. R1 � R2 implies that R1 inherits all the permis-
sions of R2.

� A collection of constraints which specify acceptable
combinations of values for PA, UA, user and roles.

In practice, the constraints form an important part of the
state; they can be used to specify high level organizational

policies, such as “no employee shall perform both consult-
ing and auditing services for the same client”. RCL2000 [1]
is a language for specifying such constraints in an RBAC
system. The authors show that RCL2000 is sound and com-
plete with respect to a restricted subset of First Order Logic.
They also argue that properties such as Separation of Duty
are better specified in terms of permissions than in terms of
roles.

A number of languages have been proposed for express-
ing access control policies, and in particular RBAC poli-
cies, efficiently and unambiguously. Ponder [7] is an object-
oriented and strongly-typed declarative language for RBAC
policies. It provides access control and obligation policies,
as well as facilities for policy composition. An interest-
ing feature of Ponder is its classification of constraints into
two types: basic constraints and meta-policies. Basic con-
straints apply to individual policies and limit the applicabil-
ity of the policy based on specific conditions. Meta-policies
apply to groups of policies, such as within a composite pol-
icy, and limit the permitted policies in the system. For ex-
ample, static separation of duty can be specified as a meta-
policy. All RCL 2000 constraints can be specified as meta-
policies. However, a weakness of Ponder is that more com-
plicated policies like dynamic separation of duty cannot be
specified without adding attributes to the objects regulated
by the policy.

The Tower policy specification language [13] was devel-
oped by applying a language-based approach to authoriza-
tion. Tower provides for set-valued variables and basic op-
erations on these variables. The structures supported are
privileges, permissions, roles, users, ownership and blocks.
Roles are specified in Tower along with constraints which
limit the roles a user may take on, as well as the roles that
a user may have active in the same or concurrent sessions.
The role definition also specifies the permissions associated
with a role. For users, a set of active role memberships and
sessions is maintained at all times. These properties allow
Tower to easily express even complicated constraints such
as dynamic separation of duty within role definitions.

Another interesting feature of Tower is its support for
joint ownership and administration of objects. Each object
may be owned by a user, a set of users, a role, a set of roles,
or some mix of the above. Tower can also specify how many
of these owners must agree if any operation requiring owner
approval is to be performed on the object, as well as the
ownership of any future objects created through use of the
object. For example, one can specify policies that decide
the ownership of future documents created by a text editor,
depending on which user’s access to the editor created the
document.

Bonatti et al. [6] propose an algebra for constructing an
access control policy out of simpler policies and show that
their algebra can be augmented to give a policy definition
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language. They analyze their language’s expressiveness
with respect to first order logic and show that the problem
of expression containment is decidable for a class of policy
expressions in their language.

Winsborough et al. [20] propose a mechanism called
“trust negotiation” which, given an access control policy,
provides an efficient way for domains to exchange creden-
tials to obtain a given access. However, they do not address
the question of how the access control policy was decided
upon. Further, their model is also of the client-server type,
where each resource is owned by a single domain, and the
other domains request access.

Shands et al. [18] propose an architecture for dynamic
coalitions which allows for distributed enforcement of a
coalition access control policy. They discuss the relation-
ships between the policy enforcement points in the various
domains and the requirements for disseminating coalition
policies to these enforcement points. Gligor et al. [12] dis-
cuss the negotiation of coalition policies among peer do-
mains. Khurana [15] proposes a mechanism and language
for negotiating coalition access control policies, and also
discusses the question of jointly-owned resources. How-
ever, none of these discusses the design of the negotiating
agent itself.

3.2 Soft Constraints

Constraint solving has been an active area of research in
Artificial Intelligence. A Constraint Satisfaction Problem
(CSP, [16]) consists of a set of problem variables, a domain
of possible values for each variable, and a set of constraints,
each of which specifies an acceptable combination of values
for one or more of the problem variables. Therefore in a
CSP, each constraint is simply a set of tuples over some
subset of the problem variables. A solution for a CSP is
an assignment of values to the variables that satisfies all the
constraints of the problem.

Research in AI has largely focused on finite CSPs, where
the domain of each variable is a finite set. A number of tech-
niques have been used for solving CSPs, including back-
tracking, branch-and-bound, backjumping, forward check-
ing and arc consistency checking [16]. CSPs have been used
to represent many problems, such as machine vision, map
coloring, production scheduling and VLSI design.

CSPs cannot efficiently model soft constraints, which ex-
press preferences, or prioritized constraints, where certain
constraints can be sacrificed if the solution is good enough
with regard to some other criterion. Also, CSPs cannot
model partial knowledge, where some or all constraints are
unknown or partially known when the solution is computed.
Semiring-based CSPs (SCSPs, [3, 5]) are an extension of
CSPs wherein the constraints are not Boolean but defined
over an appropriate semiring. By using a specific class of

semirings which can naturally express partial orders, SCSPs
address all the above shortcomings of CSPs.

A semiring is a tuple � A�����0�1� where

� A is a set with 0�1 � A;

� �, the additive operation, is closed, commutative and
associative over A with 0 as its identity element;

� �, the multiplicative operation, is closed and associa-
tive over A with 1 as its identity element and 0 as its
absorbing element;

� � distributes over �.

A c-semiring (or constraint semiring) is a semiring such
that � is idempotent, � is commutative, and 1 is the ab-
sorbing element of �. The � operation of a c-semiring
then naturally defines a partial order over the elements of
the semiring; if S �� A�����0�1 � is a c-semiring with
a�b� A and a�b� b then we say that a�S b, which means
that b is better than a under this partial order over S. It is
easily shown that both � and� are monotone on the order-
ing �S.

An lc-semiring is a c-semiring for which A is finite and
the � operation is idempotent.

A semiring-based constraint system is a tuple �

S�D�V � where S is a semiring, D is a finite set and V is
an ordered set of variables. A constraint over such a system
is a tuple � de f �con� where con�V is known as the type
of the constraint, and de f : Dk � A (where k is the cardi-
nality of V ) is the value of the constraint. Thus de f assigns
a value from the semiring to each combination of values
of the variables in con. This value can be interpreted as a
strength of preference, a probability, a cost, or something
else depending on the problem. An SCSP is then a tuple
�C�v � where v�V and C is a set of constraints.

Given two constraints � de f1�con1 � and
� de f2�con2 � over the above constraint system, their
combination is defined as � de f �con ��� de f1�con1 �

�� de f2�con2 � where

� con� con1� con2

� de f � de f1�t �
con
con1

�� de f2�t �
con
con2

�, where t �con
coni

de-
notes the part of tuple t corresponding to variables in
coni.

Since the� operation is monotone in�S, we can see that
adding constraints can never increase the value associated
with any tuple t.

If c �� de f �con � is a constraint over a constraint sys-
tem defined as above, and I � V is a set of variables, then
the projection of c over I, denoted C 	 I , is the constraint
� de f ��con� � over the same constraint system with

� con� � I
 con
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� de f ��t �� � ∑�t�t�con
I�con�t�� de f �t�

The solution of an SCSP is the constraint obtained by
combining all the constraints in the SCSP and projecting
it over the set v of variables of interest. The best level of
consistency (blevel) of the SCSP is the projection of the
solution over the empty set. Thus the blevel represents
the highest valuation that can be attained by a tuple un-
der the constraints. In other words, the blevel gives the
maximum extent to which a given set of constraints can be
satisfied. Finding the best level of consistency is an NP-
complete problem, as is solving the SCSP. However, many
special cases can be solved efficiently. For lc-semirings, lo-
cal consistency algorithms yield approximate solutions effi-
ciently [3]. In some special cases (where� is not necessar-
ily idempotent), dynamic programming yields a solution in
O�n� time [3]. For many problems, Russian Doll Search,
which combines dynamic programming and branch-and-
bound techniques, converges quickly in practice [19].

SCSPs have also been used in a variety of applications.
For instance, Bella and Bistarelli [2] used them to model the
Needham-Schroeder protocol and showed that the model
can be used to “discover” a well-known attack on this pro-
tocol.

Constraint Logic Programming (CLP, [14]) incorporates
the notion of constraints into Logic Programming, by re-
placing term equalities with constraints, and unification
with constraint solving. This allows much more concise
representation of problems; it also allows for more efficient
implementations of constraint solvers, as it provides addi-
tional information that helps guide the search for a solution.

Semiring-based CLP (SCLP) generalizes CLP to soft
constraints. The syntax and semantics of SCLP programs
are described in [4]. Briefly, an SCLP program consists of a
set of clauses of the form H :�B. We say this clause holds
in an interpretation I iff for any ground instantiation of H,
say Hθ , we have I�Hθ ��S I��Bθ �.

A number of CLP solvers are available. A useful pro-
gramming language for SCLP is clp�FD�S� [11], which is
based on an extension to Prolog; software tools are freely
available on the web [10]. The language is restricted to lc-
semirings, and uses local consistency techniques for effi-
ciency.

4 Building a Negotiating Agent

The central idea of this paper is that a domain’s access
control constraints can be written as a set of constraints in
the SCSP framework. Equivalently, these constraints can
be formulated as an SCLP. This is not surprising, since
access control constraints that are expressed in First Or-
der Logic can be translated to logic programs in languages
such as Prolog, and SCLP is a generalization of Logic Pro-

Compiler
Constraint

Constraint

Evaluation

Optimization Response

Proposal

Figure 2. Structure of negotiation agent.

gramming. However, this simple idea has powerful con-
sequences - in particular, it leads to an elegant method for
solving the negotiation problem.

We start by observing that given a set of domains,
each with its access control constraints and preferences ex-
pressed as an SCSP, the most desirable coalition state can
be found by combining all the domain SCSPs into a single
SCSP and finding a maximal (i.e. highest valued) solution
to this large SCSP. However, the resulting SCSP can be very
large and hard to solve. The domain SCSPs may also be
large, and collecting them in one place may not be practi-
cal. Also, we would like a process that allows administra-
tors to specify some basic constraints to start the negotiation
process, and then fine-tune it by adding more constraints as
they are needed.

A simple solution is to implement a round robin negotia-
tion protocol: domains take turns proposing coalition states,
and other domains can either accept or make a counter-
proposal. A coalition state is committed when it is agreed
to by all domains.

A sketch of our negotiation agent is shown in Figure 2.
The agent consists of three main parts: a constraint com-
piler, a constraint evaluator and an optimizer. These may
be thought of as different interfaces to a common un-
derlying SCLP solver. The constraint compiler translates
the domain’s policy constraints, as well as additional con-
straints and preferences specified by the administrator, into
an SCLP. The constraint evaluation engine takes a proposed
coalition state and translates it into a goal clause which
it then evaluates against this SCLP. The optimizer finds a
maximal solution to the current policy SCLP.

The agent also has an interface to the administrator,
which is not shown in Figure 2. The nature of this inter-
face depends on how much human interaction is desired. If
completely automatic negotiation is the goal, then the inter-
face simply asks for the administrator to specify the coali-
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tion mission and the domain preferences, and returns the
outcome of the negotiation. If a greater degree of human
involvement is desired, the agent can be used as a decision
support tool. As an instance of this approach, the admin-
istrator could be shown each proposal made, and its value
according to the constraint evaluator. She could then accept
it or add more constraints to guide her agent’s next proposal.

The administrator may have an additional interface to
the constraint evaluator for running checks against a pro-
posed state. For example, an administrator might want to
run some sanity checks on a proposed state before accepting
it. Such checks are important in practice, since specifying
the preferences has been left to a human administrator and
is hence an error-prone task. Since running such checks
also involves checking an appropriate goal clause against
the domain’s SCLP, the constraint evaluator can easily be
extended to handle it.

5 Expressing Negotiation problems as SCSPs

5.1 Expressiveness of SCLP Framework

We start by showing that the semiring-based constraint
logic programming framework is expressive enough to rep-
resent a large class of interesting policies. In particular, it is
easy to show that the SCLP framework is at least as expres-
sive as RCL2000 [1].

Proposition 1 Any set of RCL 2000 constraints can be ex-
pressed as an SCLP.

Proof: Any set of RCL 2000 constraints can be trans-
lated into RFOPL [1]. Any RFOPL program can
be written in Prolog, which is a subset of CLP. A
CLP program is just an SCLP over the semiring �

�True�False������False�True�. �

While this result establishes the expressiveness of SCLP,
it does not mean that constructing an SCLP in this way is
a particularly good idea. The above transformation does
not take advantage of the power of the SCLP framework at
all; to do that one would have to choose a particular semir-
ing that allows us to express the policy more economically
while also providing a quantity for optimization. Transla-
tions to SCLP are also much harder to obtain for more com-
plicated languages like Ponder and Tower.

5.2 Choosing a Semiring

The choice of semiring is important, and has a substan-
tial effect on the economy of problem representation, as
well as on the complexity of the resulting SCLP. How to
choose an optimal semiring in general is an interesting open

Director

Software project leader

Software developer Software tester Hardware developer Hardware tester

Hardware project leader

Hardware EngineerSoftware Engineer

Engineering

Employee

Accounting

Figure 3. Example of a role hierarchy.

problem. However, in an RBAC system, two partial orders
are naturally present: the hierarchy of roles and the hierar-
chy of permissions. We use these to derive semirings and
use them to illustrate our framework.

An example of a role hierarchy is shown in Figure 3.
Note that higher roles inherit all the privileges of their de-
scendants, while lower roles inherit all the users of their
ancestors in the hierarchy. We assume that there is always
a role R∞ that is the ancestor of all other roles (this is typi-
cally an administrator role), and that there is a role R0 that
is a descendant of all roles (this is typically a ”Guest” or
”User” role, and is present, at least implicitly, in all RBAC
systems).

We then define the Role Semiring SR as
� R��R��R�R∞�R0 �, where

� R is the set of roles in the system.

� The �R operation is defined as follows: �R1 �R R2� is
the highest common descendant of roles R1 and R2 in
the role hierarchy.

� The �R operation is defined as follows: �R1 �R R2� is
the lowest common ancestor of roles R1 and R2 in the
role hierarchy.

� R0 and R∞ are as defined above.

Note that each node in the hierarchy is both an ancestor
and a descendant of itself. It is easy to see that both �R
and �R are idempotent. Therefore, since R is finite, SR is an
lc-semiring.

Note that under this definition, more privileged roles are
assigned lower semiring values. Therefore solving an SCSP
over the Role Semiring gives us the lowest role in the hier-
archy that satisfies all the constraints of the problem. Ex-
changing the roles of the �R and�R operations and making
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Figure 4. Example of a permissions hierarchy.

R0 the zero element and R∞ the absorbing element gives a
new lc-semiring, which we will call the Roles� Semiring;
any SCSP over this semiring gives the highest role in the
hierarchy that satisfies all the constraints.

Another obvious candidate for the semiring is the per-
missions hierarchy. In many access control systems, the
permissions hierarchy forms a total lattice, which means
there is a permission P∞ that dominates all other permis-
sions and a permission P0 that is dominated by all other per-
missions. For example, a permission hierarchy that uses the
standard UNIX permission bits is shown in Figure 4.

We can therefore define the Permissions Semiring SP as
� P��P��P�P∞�P0 �, where

� P is the set of permissions in the system.

� The �P operation is defined as follows: �P1 �P P2� is
the highest permission that is dominated by both P1
and P2.

� The �P operation is defined as follows: �P1�P P2� is
the lowest permission that dominates both P1 and P2.

� P0 and P∞ are as defined above.

Once again we follow the convention that every permis-
sion is dominated by itself. We see that both �P and �P
are idempotent. Therefore, since P is finite, SP is an lc-
semiring. Analogous to the Roles� Semiring, we can de-
fine a Permissions� Semiring by exchanging the additive
and multiplicative operations of the semiring.

In more complex problems such as those with multi-
domain peer-to-peer networks, we often have multiple cri-
teria for measuring the goodness of a coalition state, and we
need to do as well as possible on all criteria. To model such
situations, it is useful to define more complicated semirings,
and the following result is useful.

Proposition 2 If S1, S2, ... Sn are semirings, with Si ��
Ai��i��i�0i�1i � and if A � A1�A2� ���An (i.e. each el-
ement of A is a vector with the ith position occupied by

an element of Ai), then S �� A��S��S�0S�1S � is also a
semiring, where

� 0S �� 01�02� ���0n �

� 1S �� 11�12� ���1n �

� If a �� a1�a2� ���an �� S and b �� b1�b2� ���bn �� S
then a�S b �� a1�1 b1�a2�2 b2� ���an�n bn �

� If a �� a1�a2� ���an �� S and b �� b1�b2� ���bn �� S
then a�S b �� a1�1 b1�a2�2 b2� ���an�n bn �

Further, if S1, S2, ... Sn are lc-semirings, S is an lc-semiring.

Proof: Follows from the semiring properties of S 1, S2, ...
Sn. �

5.3 Formulating the SCSP

In practice, domain constraints can often be translated
quickly to an SCLP language such as clp�FD�S�, and the
solver for that language can be used to generate proposed
coalition states. However, in this section we focus on the
formulation of the underlying SCSP, in the hope that it will
provide more insight.

In general, the procedure for formulating and solving a
problem in the SCSP framework is as follows:

� Choose an appropriate semiring.

� Collect all the constraints of the problem and represent
them as constraints over the chosen semiring.

� Run the solver to obtain the solution or blevel of the
SCSP, as required.

The process is generally fairly straightforward. We il-
lustrate with some examples, each of which illustrates an
aspect of the negotiation problem.

Example 1 Web services - login. A web server offers
clients the ability to access a service remotely. It does this
by assigning remote clients to local roles depending on cre-
dentials supplied by them. A remote client has supplied a
set of credentials C�. The web server needs to deduce which
role he is assigned to.

In this case, the Roles Semiring is a natural choice. We
pick the constraint system � R�V�C � where R is the Roles
Semiring, C is the set of credential types known to the sys-
tem, and V is the set of values these credential types can
take. Then, the server’s authorization policy can be ex-
pressed as an SCSP - for each rule that specifies a role r
to be assigned when presented a certain set of credentials c,
add a constraint that assigns the value r to the tuple c and R0
to all other tuples. The solution to this SCSP is a constraint.
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The value of the tuple C� under this constraint is the role to
be assigned to the user.

In the SCLP framework, each rule in the authorization
policy would be represented as a clause. The credentials C �

would be facts added to this SCLP, and the solution gives
the role to be assigned. �

Example 2 Web services - access rights. A web server of-
fers clients the ability to access a service remotely. It does
this by assigning remote clients to local roles. The service
needs access to a number of objects (data and applications)
to run. What is the minimum local role required to run the
service?

Once again, the Roles Semiring is the obvious choice. We
choose the constraint system � R�P�O � where R is the
Roles Semiring, P is the set of permissions and O is the
set of all objects required by the application to run.

Consider the server’s authorization policy for the re-
quired objects. For each rule in this policy that assigns a
tuple t of access rights to a role r, associate value r with the
tuple t of access rights. The result is an SCSP. The value of
the required access rights under this SCSP is the lowest role
that is required to access the service.

For the SCLP equivalent, we translate the authorization
policy to SCLP clauses, then assert the required rights as
facts and find the solution. �

Example 3 Web services redux. A server offers clients the
ability to access a service remotely. The service needs ac-
cess to a number of other objects (data and applications) to
run. The remote user has supplied a set C of credentials.
The server uses RBAC, and must decide if the user should
be allowed to access the service remotely.

This combines Example 1 and Example 2. Solve those two
problems, let the solutions be R1 and R2 respectively. Then
if R1 dominates R2 the user is allowed, otherwise not. �

The preceding examples illustrate a general method of
checking that a certain policy satisfies a given set of higher-
level constraints. The approach involves solving two sepa-
rate SCLPs over two different constraint domains with the
same semiring. The idea is to use the semiring to find the
highest level of privilege granted by the policy in question.
We then use the semiring to find the highest level of privi-
lege granted when all the constraints are applied. By com-
paring the two we can tell whether or not the policy violates
the constraints.

Example 4 Multi-domain coalition. A number of au-
tonomous domains (more than two) wish to collaborate on

a mission. They each have their own access control con-
straints, and they need to run some common applications.
They need to create a shared workspace for the coalition,
which requires all domains in the coalition to have certain
access rights to a set of shared objects. The domains have
agreed upon a set of domain-wide roles, to which they as-
sign certain domain-local roles. They need to check whether
a certain assignment of domain-local roles to coalition roles
is sufficient to achieve the shared workspace.

This is a much more complicated case, and we need to use a
more complex semiring (see Proposition 2). We use a com-
posite lc-semiring based on the Permissions Semiring. Each
member of this semiring is a tuple whose elements represent
the domain common permissions on each of the coalition’s
shared objects. The constraint system is � P�2L�R � where
P is the semiring described, R is the set of domain-wide
roles and L is the set of domain-local roles.

� Proceeding as in Example 1, use the SCSP induced by
the domains’ assignments of permissions to local roles
to find the permissions associated with this particular
assignment of global roles to local roles. Call it P1.

� Proceeding as in Example 2, build an SCSP describing
the access rights required to use the shared workspace.
Call the resulting set of privileges P2.

� If P1 dominates P2 then the shared workspace is
achieved, otherwise not. �

6 Conclusion and Future Work

In this paper we have taken some initial steps toward
formalizing a mathematical framework for negotiating a
common access control state between multiple domains in
a peer-to-peer network. The techniques shown here are
promising, but many issues remain for future research. The
question of how best to choose a semiring for the problem
has not been answered. For instance, we have not addressed
the issue of how best to formulate the SCLP when each con-
straint is assigned a priority and we want to satisfy higher
priority constraints before lower priority ones. We have also
not explored in any detail the expressiveness of the semir-
ing framework with regard to access control policies. We
have not characterized the SCLPs generated by our nego-
tiation problems, and so we do not know how efficient the
computations will be in general.

We have also not addressed here the case when access
control policies of domains are considered sensitive. In
such cases, domains must negotiate based on their beliefs
or estimates of other domains’ policies, and must be careful
not to reveal too much of their own policies in the negotia-
tion. This may have a substantial effect on negotiating strat-
egy, as it introduces an element of bargaining; a domain can
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use the other domains’ lack of knowledge about its policies
to negotiate a coalition policy more favorable to itself.

Finally, the question of designing an efficient negotiation
mechanism in the general case remains open. For example,
the negotiation protocol could require domains to take turns
in proposing a final state for the coalition, until a state is
proposed that all domains agree upon. Another possibility
is to allow domains to propose states in any order, while
requiring that any domain not accepting a proposal must
make a counter-offer. More complicated mechanisms are
possible, such as protocols allowing for partial acceptance
of proposed states.
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