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Abstract

Our research examines the problem of negotiating ac-
cess control policies between autonomous domains. Our
objective is to develop software agents that can automati-
cally negotiate access control policies between autonomous
domains with minimal human guidance. In this paper we
describe a mathematical framework that is capable of ex-
pressing many such negotiation problems, and illustrate its
application to some practical scenarios.

1 Introduction

As computer systems become ever more interconnected,
many situations arise where different systems need to share
data or resources. For instance, a provider who wants to
offer a number of services over the web must decide how
much a remote user with a certain set of credentials is to be
trusted. Collaborative computing in peer-to-peer networks
frequently requires two or more autonomous domains to
share data or other resources to achieve a common goal.
Often, the collaboration itself may generate new data or re-
sources, and these must also be shared.

In all the above situations, the domains involved must
agree upon an access control policy for their shared re-
sources. Currently, this is done by a variety of meth-
ods, all of which require human intervention and are time-
consuming, inflexible and error-prone. For client-server
scenarios such as the web services scenario above, a policy
might be set by a human administrator in advance assign-
ing remote users to local roles. For peer-to-peer networks
such as military coalitions, negotiations are carried out by
human beings meeting in person, through a tedious process
of discussion and bargaining.

We examine the problem of automating the negotiation
of access control policies between autonomous security do-
mains. Consider a coalition such as the one in Figure 1.
We assume that negotiation is carried out between software
agents that are guided by human operators, and that each

Domain A

Domain C

Figure 1. Negotiation in multi-domain net-

domain has a single agent that acts as an authorized repre-
sentative for the domain. These agents must arrive at a set
of objects to share and an access control policy for these
objects, and this policy will then be implemented (perhaps
subject to a human operator’s approval).

We assume that each domain has its own access control
policies, and that the negotiated state must at least satisfy
the access control policies of all the domains. For exam-
ple, if a domain requires a separation-of-duty relationship
between two privileges, then the final state must not have
any user with both privileges.

In any given situation, it may not be possible to find any
state that satisfies the policies of all the domains. Alterna-
tively, there may be a large number of states that do so. We
would like our negotiation agents to be able to find the best
possible solution in each case. If all policies cannot be sat-
isfied, we would like to find a state that satisfies as much
of the policies as possible; if many states exist that satisfy
all domain policies, we would like to pick the best among
them according to some criterion so that a human adminis-
trator can make an informed decision.

In many practical situations, access control policies are
themselves considered sensitive information. For example,
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the access control policies of a corporation may reveal some
information about its internal business processes, or about
confidential relationships with other entities. As a result,
our negotiation agents will have to make do with the lim-
ited knowledge gained during the negotiating process. They
must also avoid revealing any more information than strictly
necessary about their respective domain policies.

Even in situations where no policies are sensitive, the
negotiation problem is a hard one. If each policy consists
only of a set of Boolean constraints, then finding a state
to satisfy all the policies is an instance of the satisfiability
problem, which is known to be NP-complete. Furthermore,
this approach does not deal gracefully with overconstrained
problems (no possible solution) or with problems where we
must find the best of a large number of feasible solutions.

In this paper we look at the case where policies are
not considered sensitive. We confine ourselves to Role
Based Access Control (RBAC, [13]) systems, though our
methods can be generalized to other access control mod-
els. We show that RBAC constraints, which are derived
from higher-level security policies, can be expressed as con-
straints over an appropriate semiring. We sketch some ex-
amples and briefly compare the expressiveness of our for-
mulation with RCL 2000 [1].

2 Background
2.1 Access Control Policies

The problem of resource sharing among autonomous do-
mains is a relatively new one in Computer Science. In most
classical work in resource sharing, all resources are part of
a single system, and there is a single mechanism enforc-
ing access control policies. In coalition scenarios, there are
often multiple independent authorities (one or more per do-
main) that perform security functions such as authenticating
users and enforcing access control policy.

The presence of multiple domain authorities and policy
enforcement points raises the question of how any domain
can trust the other domains in the coalition to correctly en-
force any coalition-wide access control policy. We will not
investigate this problem in any detail; we assume that there
is some extra-technological reason for domains to want to
cooperate.

Role Based Access Control (RBAC) is a widely used
model for access control systems. RBAC introduces the role
as the semantic concept around which access control policy
is formulated. A role typically represents one aspect of a
domain’s regular functions and brings together a transitory
collection of users and permissions to fulfill this function.
A complete RBAC model [13] includes the following state
variables:

o The sets U (users), R (roles), P (permissions) and S
(sessions).

e PA:R — 2, a mapping from roles to their associated
permissions.

e UA:U — 2R, a mapping from users to their roles.

e user : S — U, a mapping from sessions to the respec-
tive users.

e roles : S — 2%, a mapping from sessions to the set of
roles associated with each session.

e A partial ordering > on R which defines a role hierar-
chy. R, > R, implies that R, inherits all the permis-
sions of R,.

® A collection of constraints which specify acceptable
combinations of values for PA, UA, user and roles.

In practice, the constraints form an important part of the
state; they can be used to specify high level organizational
policies, such as “no employee shall perform both consult-
ing and auditing services for the same client”.

A number of languages have been proposed for ex-
pressing RBAC policies efficiently and unambiguously.
RCIL.2000 [1] is a language for specifying constraints on
roles in an RBAC system. The authors show that RCL2000
is sound and complete with respect to a restricted subset of
First Order Logic. Bonatti et al. [6] propose an algebra for
constructing an access control policy out of simpler policies
and show that their algebra can be augmented to give a pol-
icy definition language. They analyze their language’s ex-
pressiveness with respect to first order logic and show that
the problem of expression containment is decidable for a
class of policy expressions in their language.

If a domain uses RBAC, a natural approach to sharing
its resources with users from foreign domains is to set up
a mapping to assign the foreign users to local roles in the
domain. Herzberg et al. [9] present a language for express-
ing the policies to carry out this mapping, and implement
their policy engine as a library and as a web server exten-
sion. However, their work is based on a server-client model,
and does not extend easily to peer-to-peer networks of au-
tonomous domains.

Winsborough et al. [15] propose a mechanism called
“trust negotiation” which, given an access control policy,
provides an efficient way for domains to exchange creden-
tials to obtain a given access. Their model is also of the
client-server type. They do not address the question of how
the access control policy was decided upon.

Shands et al. [14] propose an architecture for dynamic
coalitions which allows for distributed enforcement of a
coalition access control policy. They discuss the relation-
ships between the policy enforcement points in the various
domains and the requirements for disseminating coalition
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policies to these enforcement points. Gligor et al. [8] dis-
cuss the negotiation of coalition policies among peer do-
mains. Khurana [11] proposes a mechanism and language
for negotiating coalition access control policies, and also
discusses the question of jointly-owned resources. How-
ever, the design of the negotiating agent is not discussed.

2.2 Soft Constraints

Constraint solving has been an active area of research in
Artificial Intelligence. A Constraint Satisfaction Problem
(CSP, [12]) consists of a set of problem variables, a domain
of possible values for each variable, and a set of constraints.
Each constraint is a set of tuples representing acceptable
combinations of values for some subset of the problem vari-
ables. A solution for a CSP is an assignment of values to the
variables that satisfies all the constraints of the problem.

Research in Al has largely focused on CSPs where the
domain of each variable is a finite set. Solution tech-
niques include backtracking, branch-and-bound, backjump-
ing, forward checking and arc consistency checking [12].
CSPs have been used to represent many problems, such as
machine vision, map coloring, production scheduling and
VLSI design.

Semiring-based CSPs (SCSPs, [5, 3]) are an extension of
CSPs wherein the constraints are not Boolean but defined
over an appropriate semiring. By using a specific class of
semirings which can naturally express partial orders, SCSPs
subsume all the above extensions of CSPs.

A semiring is a tuple < A, +, x,0,1 > where

e Aisaset with0,1€ A;

o +, the additive operation, is closed, commutative and
associative over A with 0 as its identity element;

e X, the multiplicative operation, is closed and associa-
tive over A with 1 as its identity element and 0 as its
absorbing element;

e x distributes over +.

A c-semiring (or constraint semiring) is a semiring such
that + is idempotent, x is commutative, and 1 is the ab-
sorbing element of +. An Ic-semiring is a c-semiring for
which A is finite and the x operation is idempotent. The
+ operation of a c-semiring naturally defines a partial order
over the elements of the semiring; if S =< A, +,%,0,1 > is
a c-semiring with a,b € A and a + b = b then we say that
a <¢ b, i.e., bis better than @ under this partial order over S.
It is easily shown that both + and x are monotone on the
ordering <.

A semiring-based constraint system is defined as a tu-
ple < S,D,V > where S is a semiring, D is a finite set and
V is an ordered set of variables. A constraint over such a
system is a tuple < def,con > where con C V is known as

the type of the constraint, and def : D¥ — A (where k is the
cardinality of V') is the value of the constraint. Thus def
assigns a value from the semiring to each combination of
values of the variables in con. This value can be interpreted
as a strength of preference, a probability, a cost, or some-
thing else depending on the problem. An SCSP is then a
tuple < C,v > where v C V and C is a set of constraints.

Given two constraints < defj,con; > and
< def,,con, > over the above constraint system, their
combination is defined as < def,con >=< def,con; >
® < def,,con, > where

e con = con;Ucon,

o def =def|(t ¢gg:]) x def,(t ,ngﬁz), where ¢ [50" de-
notes the part of tuple ¢ corresponding to variables in

con;.

If c =< def,con > is a constraint over a constraint sys-
tem defined as above, and I C V is a set of variables, then
the projection of ¢ over I, denoted C {},, is the constraint
< def',con’ > over the same constraint system with

e con' =INcon
b def’(t’) - Z{miﬂq‘%n:ﬂ} def(t)

The solution of an SCSP is the constraint obtained by
combining all the constraints in the SCSP and projecting
it over the set v of variables of interest. The best level of
consistency (blevel) of the SCSP is the projection of the so-
lution over the empty set. Thus the blevel represents the
highest valuation that can be attained by a tuple under the
constraints. Finding the best level of consistency is an NP-
complete problem, as is solving the SCSP. However, many
special cases can be solved efficiently. For lc-semirings, lo-
cal consistency algorithms yield approximate solutions ef-
ficiently. In some special cases (where X is not necessar-
ily idempotent), dynamic programming yields a solution in
O(n) time [3]. For many problems, branch-and-bound tech-
niques converge quickly in practice.

Bella and Bistarelli [2] used SCSPs to model the
Needham-Schroeder protocol and showed that the model
can be used to “discover” a well-known attack on this pro-
tocol.

Constraint Logic Programming (CLP, [10]) incorporates
the notion of constraints into Logic Programming, by re-
placing term equalities with constraints, and unification
with constraint solving. This allows much more concise
representation of problems; it also allows for more efficient
implementations of constraint solvers, as it provides addi-
tional information that helps guide the search for a solution.
Semiring-based CLP (SCLP, [4]) generalizes CLP to soft
constraints.

A number of CLP solvers are available. A useful pro-
gramming language for SCLP is cIp{FD,S) [71, which is
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Figure 2. Example of a role hierarchy.

based on an extension to Prolog. The language is restricted
to lc-semirings, and uses local consistency techniques for
efficiency.

3 Expressing Negotiation problems as SCSPs

RBAC constraints can be expressed as SCSPs, which can
then be solved using SCLP methods. This section outlines
the process.

3.1 Choosing a Semiring

The choice of semiring is important, and has a substan-
tial effect on the economy of problem representation, as
well as on the complexity of the resulting SCLP. Choosing
an optimal semiring in general is an interesting open prob-
lem. However, in an RBAC system, two partial orders are
naturally present: the hierarchy of roles and the hierarchy
of permissions. We use these to derive semirings and use
them to illustrate our framework.

An example of a role hierarchy is shown in Figure 2.
Note that higher roles inherit all the privileges of their de-
scendants, while lower roles inherit all the users of their
ancestors in the hierarchy. We assume that there is always
arole R., that is the ancestor of all other roles (this is typi-
cally an administrator role), and that there is a role R, that
is a descendant of all roles (this is typically a "Guest” or
”User” role, and is present, at least implicitly, in all RBAC
systems).

We then define the Role
< R,+p, Xp, R, Ry >, where

Semiring S, as

o Ris the set of roles in the system.

o The + operation is defined as follows: (R, +zR;) is
the highest common descendant of roles R, and R, in
the role hierarchy.

e The x, operation is defined as follows: (R, XzR,) is
the lowest common ancestor of roles R, and R, in the
role hierarchy.

® R, and R.. are as defined above.

It is easy to see that both +5 and X, are idempotent.
Therefore, since R is finite, S, is an lc-semiring.

Note that under this definition, more privileged roles are
assigned lower semiring values. Therefore solving an SCSP
over the Role Semiring gives us the lowest role in the hier-
archy that satisfies all the constraints of the problem. Ex-
changing the roles of the +, and x ; operations and making
R, the zero element and R.. the absorbing element gives a
new lc-semiring, which we will call the Role™ Semiring;
any SCSP over this semiring gives the highest role in the
hierarchy that satisfies all the constraints.

Another obvious candidate for the semiring is the per-
missions hierarchy. In many access control systems, the
permissions hierarchy forms a total lattice, which means
there is a permission R.. that dominates all other permis-
sions and a permission F, that is dominated by all other per-
missions. We can therefore define the Permissions Semiring
Sp as < P,+p, X p, P, Py >, where

o P is the set of permissions in the system.

o The +p operation is defined as follows: (P, 4, P,) is
the highest permission that is dominated by both P,
and P,.

The X p operation is defined as follows: (P, xp P,) is
the lowest permission that dominates both P and P,.

e F, and P.. are as defined above.

Once again we see that both +, and X p are idempotent.
Therefore, since P is finite, Sp is an lc-semiring. Analo-
gous to the Roles™ Semiring, we can define a Permissions™
Semiring by exchanging the additive and multiplicative op-
erations of the semiring.

In more complex problems such as those with multi-
domain peer-to-peer networks, it is useful to define more
complicated semirings, and the following result is useful.

Proposition 1 If S, S,, ... S, are semirings, with §; =<
Aj+iX;50,1, > and if A = Ay X A, X ...A, (i.e. each ele-
ment of A is a vector with the ith position occupies by an el-
ement of A;), then S =< A, +¢, X4,04,1¢ > is also a semir-

ing, where
® 0, =<0,,0,,..0, >
o 1o=<1,1,,...1;>

e Ifa=<a,,a,,..an, >€Sand b =< b,b,,...b, >ES
thena+g¢b=<a;+ b,a,+,b,,...an+n by >
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o Ifa=<a,,a,y,..a0 >E S and b =< b,,b,,...b, >ES
thenaxgb=<a, x,by,a, X,b,,...an Xp b, >

Further, if S, S,, ... Sy are lc-semirings, S is an lc-semiring.

Proof: Follows from the semiring properties of S, S,, ...
S,. B

3.2 Formulating and Solving the SCLP

In practice, the SCLP can be formulated and solved us-
ing an SCLP language like c/p(FD,S) [7]. In this section
we will describe SCLP formulations for some example ap-
plications.

In general, the procedure for formulating and solving a
problem in the SCSP framework is as follows:

e Collect all the constraints of the problem and represent
them as constraints over an appropriate semiring.

o Write the above SCSP in an SCLP language.

o Run the solver to obtain the solution or blevel of the
SCSP, as required.

Example 1 Web services. A server offers clients the ability
to run an application remotely. The application needs ac-
cess to a number of other objects (data and applications)
to run. The remote user has supplied sufficient credentials
to be authenticated to role R,. The server uses RBAC, and
must decide if the user should be allowed to run the appli-
cation remotely.

In this case, we need to assign the remote user to an ex-
isting local role, therefore the Roles Semiring is a natural
choice. We pick the constraint system < R, P,O0 > where R
is the Roles Semiring, P is the set of permissions and O is
the set of all objects required by the application to run.

¢ (Initial SCSP) Express the domain’s access control
state as an SCSP. Note that due to our choice of con-
straint system, we assign roles to different configura-
tions of permissions on the objects. So to each tuple of
permissions on objects, we assign the least powerful
role that has at least those permissions.

o (Application Constraints) List the operations the appli-
cation needs to perform, and for each operation, add a
constraint to the SCSP which assigns the value R* to
the set of permissions required for that operation.

e Find the blevel of the resulting SCSP. Call it R, ;.

e IfR ;. is dominated by R, then grant the request. Oth-

erwise deny the access request.

Thus the above algorithm gives us a way to tell whether
a given set of credentials is sufficient to run a given applica-
tion.

Example 2 Multi-domain coalition. A number of au-
tonomous domains wish to collaborate on a mission. They
each have their own access control policies, and they need
to run some common applications. They need to create a
shared workspace for the coalition, which requires all do-
mains in the coalition to have certain access rights to a set
of shared objects. The domains have agreed upon a set of
domain-wide roles, to which they assign certain domain-
local roles. They need to check whether a certain assign-
ment of domain-local roles to coalition roles is sufficient to
achieve the shared workspace.

This is a much more complicated case. We use a
composite lc-semiring based on the Permissions™ Semir-
ing. Each member of this semiring is a tuple whose ele-
ments represent the domain common permissions on each
of the coalition’s shared objects. The constraint system is
< P,R,L > where P is the semiring described, R is the set
of domain-wide roles and L is the set of domain-local roles.
The domains then proceed as follows:

o (Initial SCSP) Express the domain policies as an SCSP.
To each assignment of users to roles, assign the semir-
ing value that reflects the shared permissions.

o (Sharing constraints) For each object that is required
to be shared, assign the corresponding semiring value
to the tuple that represents the negotiated role assign-
ment.

e Find the blevel of the SCSP. If this is the same as the
desired permission set for the shared workspace, then
the role assignment was correct, otherwise not.

3.3 Expressiveness of SCLP Framework

The semiring-based constraint logic programming
framework is expressive enough to represent a large class
of interesting policies. In particular, it is at least as expres-
sive as RCL2000 [1].

Proposition 2 Any set of RCL 2000 constraints can be ex-
pressed as an SCLP.

Proof: Any set of RCL 2000 constraints can be trans-
lated into RFOPL [1]. Any RFOPL program can
be written in Prolog, which is a subset of CLP. A
CLP program is just an SCLP over the semiring <
{True,False},V,A,False,True >. B

While this result establishes the expressiveness of SCLP,
it does not mean that constructing an SCLP in this way is
a particularly good idea. The above transformation does
not take advantage of the power of the SCLP framework at
all; to do that one would have to choose a particular semir-
ing (such as the Role Semiring or the Permissions Semir-
ing) that allows us to express the policy more economically
while also providing a quantity for optimization.
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4 Research Directions

In this paper we have taken some initial steps toward
formalizing a mathematical framework for negotiating a
common access control state between multiple domains in
a peer-to-peer network. The techniques shown here are
promising, but many issues remain for future research. The
question of how best to choose a semiring for the problem
must be addressed in any practical implementation. For in-
stance, we need to address the issue of how best to formulate
the SCLP when each constraint is assigned a priority and
we want to satisfy higher priority constraints before lower
priority ones. We are also exploring the expressiveness of
the semiring framework with regard to access control poli-
cies. We are trying to characterize the SCLPs generated by
our negotiation problems, in order to quantify the computa-
tional complexity of our approach.

In military coalition scenarios, access control policies of
domains are often considered sensitive information. In such
cases, domains must negotiate based on their beliefs or es-
timates of other domains’ policies, and must be careful not
to reveal too much of their own policies in the negotiation.
This may have a substantial effect on negotiating strategy,
as it introduces an element of bargaining; a domain can use
the other domains’ lack of knowledge about its policies to
negotiate a coalition policy more favorable to itself.

Finally, the question of designing an efficient negotiation
mechanism in the general case remains open. For example,
the negotiation protocol could require domains to take turns
in proposing a final state for the coalition, until a state is
proposed that all domains agree upon. Another possibility
is to allow domains to propose states in any order, while
requiring that any domain not accepting a proposal must
make a counter-offer. More complicated mechanisms are
possible, such as protocols allowing for partial acceptance
of proposed states.
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