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Abst rac t  nication constraints have also been studied [4, 5, 6, 71. 

It is of interest to understand the tradeoff between the 
communication resource comsumption and the achiev- 
able system performance in networked control systems. 
In this paper we explore a general framework for trade- 
off analysis and decision making in such systems by 
studying joint quantization, estimation, and control of 
a hidden Markov chain. Dynamic programming is used 
to find the optimal quantization and control scheme 
that minimizes a weighted combination of different cost 
terms including the communication cost, the delay, the 
estimation error, and the running cost. Simulation and 
analysis based on example problems show that this ap- 
proach is able to capture the tradeoffs among compet- 
ing objectives by adjusting the cost weights. 

1 In t roduct ion  

Networked control systems have (potential) applica- 
tions in defense, transportation, scientific exploration, 
and industry, with examples ranging from automated 
highway systems to unmanned aerial vehicles to MEhlS 
sensor and actuator networks. Communication in net- 
worked control systems is often limited due to the large 
number of subsystems involved, limited battery life and 
power, and constraints imposed by environmental con- 
ditions. Hence an important concern in the develop- 
ment of networked control systems is how to deploy 
and allocate the communication resources. Proper un- 
derstanding of the tradeoff between the communication 
resource consumption and the system performance will 
help to make such decisions. A great deal of effort has 
been put into the studies of control systems with com- 
munication constraints. In particular, stabilization of 
linear systems with quantized state/output/input has 
received much attention (see e.g., [l, 2, 31 and the refer- 
ences therein). Estimation and control under commu- 

In this paper we explore a general framework for trade- 
off analysis and decision making in networked control 
systems, by studying jointly optimal quantization, es- 
timation, and control of a Hidden Markov chain. Hid- 
den Markov chains form an important family of Hidden 
hlarkov Models (HMMs) [8], and have been widely used 
in speech processing, computer vision, computational 
biology, telecommunications, etc. Another reason for 
us to choose a hidden Markov chain is that numerical 
and even analytical solutions can be obtained relatively 
easily, which provides insight into the approach. 

Fig. 1 illustrates the problem setup. X ,  is the state 
of a homogeneous, controlled, hidden Markov chain 
taking values in X = { I C ~ , - - -  ,zs} for some S 2 1. 
The control U, takes values in U = {~1,-.. , I L K }  

for some K 2 1, and the output Y, takes values in 
7 = {yl,... ,ynr} for some AT 2 1. For U E U, 
1 5 i , j  I S, 1 5 k 5 M we denote 

A 
.i,(U) = PT[X,+* = x,IX, = IC,, U, = U ]  

PT[X,+I = SilX, = IC,, U, = U ,  x;-’, u0”-7, = 

where the notation 2:: denotes the sequence of random 
variables {Zn,, Znl+l, , Z,,}. The quantized infor- 
mation q, of the output is sent over a communication 
channel to a remote processor, where state estimation 
and control computation are performed (later on we 
shall justify the “separation” of estimation from control 
in Fig. 1). The control U, is then sent back through a 
communication channel to the HMM. To highlight the 
main ideas and simplify the analysis, we assume that 
the communication is noise free. 

’This research was s ~ p o r t d  by the Army R e s a ~ h  Office 
under the ODDRkE MURIOl Program Grant No. DAAD1g- 
01-1-0465 to the Center for Networked Communicating Control 
Systems (through Boston University), and under ARO Grant No. 
DAAD190210319. 

This paper is divided into two parts. In the first part 
we are collcerned only with joint quantization and es- 
timation, i.e., the loop in Fig. Sequen- is not 
tial vector quantization of Markov sources was consid- 
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Fig. 1: The setup for joint quantization, estimation, and 
control of an HMM. 

ered in [9], where a weighted combination of the en- 
tropy rate of the quantized process and the compression 
error was minimized. Such a "Lagrangian distortion 
measure" appeared earlier in [lo]. A similar approach 
for combined classification and compression was pro- 
posed in [ll]. We extend the work in [9] to the case 
of vector quantization with variable block length, and 
seek the optimal quantization scheme to minimize a 
weighted combination of the estimation error, the en- 
tropy of the quantized output, and the delay due to 
block coding. The problem is recast as a stochastic 
control problem and the corresponding value function 
satisfies a Dynamic Programming (DP) equation of a 
novel form. The DP equation is solved numerically and 
the effects of weighting coefficients on optimal quanti- 
zation schemes are studied through simulation. 

In the second part of the paper the problem of joint 
quantization and control is discussed. Following the 
same spirit as in joint quantization and estimation, we 
seek the optimal quantization and control scheme to 
minimize a weighted sum of the communication cost 
and the cost relating to the system performance (the 
authors recently learned that a related work was re- 
ported in [7]) .  For illustrative purposes an example 
problem is solved analytically, which provides interest- 
ing insight into the approach. 

In both the joint quantization/estimation problem and 
the joint quantization/control problem, the separation 
principle [12] holds. Either problem is decomposed 
into an estimation problem, and a decision (quantiza- 
tion/control) problem based on the state estimation. 

The structure of the paper is as follows. In Section 2 
the joint quantization and estimation problem is for- 
mulated and solved. Numerical solution of the DP 
equation is discussed and simulation results reportfed 
in Section 3. The joint quantization and control prob- 
lem is studied in Section 4. Conclusions are provided 
in Section 5. 

2 Jo in t  Quantization and Es t imat ion  

2.1 P r o b l e m  formulation 
Vector quantization with variable block length is con- 
sidered. Let B > 1 be the maximum block length. 
Given the a priori information about X O ,  one deter- 

mines the length of the first data block Y;"' (nl < B )  
and the quantization scheme for Yy'. At time n1 the 
quantized qn' is sent, and one needs to determine the 
next data block Y",.,l (n1+ 1 < 722 2 n1+ B )  and the 
associated quantization scheme based only on the infor- 
mation available to the receiver (i.e., the information 
about X O  and the quantized Y;"'). This process goes 
on until the final time N 2 1 is reached. Time instants 
(e.g., 0, n1 in the previous discussion) when one makes 
decisions are called decision times. Each transmission 
is assumed to  complete instantly and the delay due to 
communication is assumed to be zero. 

To formulate the problem precisely, let he the space 
of admissible quantization decisions for YIN. Here by 
a quantization decision, we mean a scheme for both 
division of YIN into (variable-length) blocks and quan- 
tization of these blocks. A quantization decision is ad- 
missible if at each decision time, the length of the next 
data block and the corresponding quantization scheme 
are decided based solely on the information available to 
the remote processor by that time. This requirement, 
as adopted in [9], is an "equimemory" (for the encoder 
and the decoder) condition [7]. It makes the sender's 
decision transparent to the receiver, and eliminates the 
need to transmit the quantization scheme separately. 
On the other hand this imposes the requirement of cer- 
tain computation capability on the sender side, which, 
in some cases, is not feasible. 

Let IIo = (no(zl), . . . , no(z5)) be the a priori PXIF 
(probability mass function) for X O ,  where no(z,) = 
Pr[Xo = z,], 1 < i < S. Given no and w E 01, define 
the cost 

N 
J ( I I ~ ,  W )  = E[C J Q ( n )  + ~ d P ( n )  + x e ~ " ( n > l .  (1) 

n = l  

Here Ad, A, 2 0 are weighting coefficients, and JQ(n) ,  
J d ( n ) ,  J e (n )  are the cost terms relating to the commu- 
nication needs, the delay due to  block coding, and the 
estimation error at time n, respectively: 

(1) JQ((n) is the communication cost a t  time n .  In this 
section we assume that entropy coding [13] is used, so 
the (expected) number of bits required to transmit a 
random vector Z is bounded by H [ Z ]  + 1, where H [ Z ]  
denotes the entropy of Z. Hence 

7 (2) 
if no transmission a t  time n J q ( n )  = { O' H[Q,Ifi,] + 1, otherwise 

where Q,  represents the bits transmitted a t  time n, 
R, represents the bits sent before time n, and H[.l.] 
denotes the conditional entropy; 

(2) J d ( n )  is the delay cost evaluated at time n. For 
simplicity. we assume that Jd(n)  is equal to the number 
of samples being delayed a t  time n. For instance, if one 
decided to quantize y-': as a block, then J d ( i  - 1) = 1 
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(since information about y-1 has not been transmitted 
at time i - l), J d ( i )  = 2 (since information about both 
x-1 and Y,  has not been transmitted at  time i), J d ( i +  
1) = 0 (no backlog at  time i + 1); 

(3) J e ( n )  is the cost reflecting the estimation error 
of X, due to the quantization. Assume that the in- 
formation of Yn is contained in the quantized block 
Y:>: denoted by Qn+iz for i , l , i 2  2 0. Let nn = 
( f i n ( X l ) , .  . . , * n ( X s ) )  he the conditional PMF of X ,  
given {I&, Rn-il, Qn+i2}, and let. f i n  be the conditional 
PMF of X, given {no, &+, Y:?:}. Note that full 
information about Y., is used in computing f i n .  Then 
we define Je(n , )  = p ( r I n , I I n ) ,  where p ( . ,  .) is some met- 
ric on the space of probabilities on X. In this paper 
the 11 metric on BS is used. Other metrics such as the 
Kullback-Liebler divergence can also be used. 

The joint quantization and estimation problem is to 
find w* E Q1, such that 

J(n0, w*) = min J ( I I0 ,  w) =: V(II0). (3) 
W E 0 1  

2.2 The dynamic programming equation 
The joint quantization and estimation problem can be 
recast as a stochastic control problem and be solved 
using dynamic programming, as done in [9]. The con- 
ditional PhlF nn is the information state for the new 
stochastic control problem while the quantization deci- 
sion w is the "control". One of the differences between 
this work and [9] is that only sequent,ial quantization 
is considered in the latter. 

As standard in dynamic programming, one can first 
define a sequence of joint quantization and estimation 
problems. For 1 _< i 5 N ,  let 

N 

Ji(IIi-1,Ui) = E[X ~ q ( n , )  + X ~ J ~ ( T Z )  + x ~ J ~ ( T z ) ~ ,  (4) 
n=i 

and K(IIi-1) = minwiEni Ji(rIi.-1, wi ) ,  where Ri is the 
space of admissible quantization decisions for the time 
period [ i , N ] ,  and ni-1 is the a priori PMF for Xi-1, 

i.e., the initial condition for the i-th problem. Clearly 
for i = 1, we recover the original problem formulated 
in the previous subsection. 

Denote by Oj  the space of quantization (encoding) 
schemes for a data block of length j ,  say, Y;+j-l for 
k 2 1. There are Adj possible outcomes for Y;+j-', so 
each Q E Oj partitions these Adj outcomes into groups 
and the group index will carry (compressed) informa- 
tion about Y;+j-'. In this paper we are concerned 
with the estimation of X ,  and not the reconstruction 
of Y,; however, considerations of decoding (to the space 
y )  and the associated compression error can be easily 
accomodated in the current framework once an appro- 
priate metric is defined on the discrete set y .  

A recursive formula exists for I In .  Assume tha.t for 
i 2 1, the data block X i + j - l  of length j is quantized 
with Q E O j  and transmitted at  time i+j-1.  Then the 
conditional marginal PMFs of Xf+j-l can be written 
in terms of f I i - 1  and Q(Y,Z+j-') by the Bayes rule: 

f j  , I  (I32 - 1 ,  Q (Y,i+j - ) 

f i i+j--l  jj,j(J?-l, Q(yZ+j-') ( ;i ) = (  ) 3 (5) 

for some functions {fj,l, . . . , fj:j} =: fj. The specific 
forms of fj for j = 1 ,2  can he found in [lil]. 

Proposition 2.1 The value functions {V,}gl satisfy: 

V N ( ~ N - ~ )  = 1 + &E01 min { H [ e ( Y N ) ]  

+ X e E [ p ( f l , l ( n N - l ,  Q ( y N ) ) , f i N ) ] } ,  (6)  

and for 1 5 i 5 N - 1, 

i + i - 1  

where V N + l ( ' )  0. 

Sketch of proof. For i = N ,  no delay is possible and 
one quantizes YN only, which leads to (6). For i = N - 
1, one has the choice to (a) quantize Y N - 1  alone first 
and then quantize YN based on the quantized Y N - 1 ,  

or (b) hold on until N and quantize Y"_l in one shot. 
Minimizing over the choice (a) and then the choice (b) 
leads to (7). Similar arguments can be used to  prove 
the cases for i < N - 2. 0 

In solving (6) and (7) one obtains the optimal quanti- 
zation policy for each stage. Concatenating the opti- 
mal quantization schemes (with variable block length) 
yields the optimal quantization decision for the original 
problem (3). 

3 Numerical Results 

3.1 Numerical solution of the DP 
To solve the DP equations numerically, one needs 
to  enumerate and compare all partition (encoding) 
schemes for the finite, discrete sets yj ,  1 5 j 5 B ,  
where yj is the product space of j copies of y .  Each 
partition for Yj  corresponds to an element of O j .  For 
a discrete set D, the number of partitions grow rapidly 
with the cardinality ng of D. How to enumerate all 
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partitions without repetition is an important issue since 
repetitions might substantially add to  the computa- 
tional complexity. 

An effective method is developed here to eliminate all 
redundant partitions. The procedure consists of two 
steps. In the first step a tree-structured algorithm is 
used to find all the partition patterns. In the second 
step we list corresponding partitions for each pattern, 
during which any remaining redundant partition is re- 
moved by comparing the ”characteristic numbers” of 
partitions. 

By the partition pattern for a (disjoint) partition of the 
set D ,  we mean a nonincreasing sequence of positive 
integers where each integer corresponds to the cardi- 
nality of one cluster in the partition. For example, if 
we partition a 7-element set into 3 clusters, one with 
3 elements and the other two with 2 elements each. 
Then the partition pattern is (3 2 2). A tree is con- 
structed to list all patterns. Each node of the tree 
has two attributes, “current value” and “remainder”. 
The root node has “current value“= 0 and “remain- 
der” = ng. The root has n D  children whose “cur- 
rent va1ue”s are n D , n D  - l , . . .  , l, respectively. The 
“remainder“ of each node equals its parent node’s “re- 
mainder” minus its own “current value“. For a non- 
root node with “current value” il and “remainder” i2, 
it will have io = min(i1,iZ) children whose “current 
va1ue”s are io, io - 1, .  . . ,1, respectively. A node is a 
leaf if its “remainder” is 0. Every path from the root to 
a leaf is identified with a partition pattern if one reads 
off the “current values” of the nodes (except the root) 
along the path. 

Given a pattern, we generate all the corresponding par- 
titions by choosing appropriate numbers of elements 
from D and putting them into groups. However, if an 
integer number greater than 1 occurs more than once 
in a pattern, repetitive enumeration of certain parti- 
tions will occur. Such redundancies can be virtually 
removed using the characteristic numbers defined for 
partitions (for details, please refer to [14]). 

3.2 Simulation results 
We have conducted calculation and simulation for a 
two-state, two-outpu t hidden Markov chain. The fol- 
lowing parameters have been used: B = 2, N = 10, 

0.2 0.4 0.3 0.7 
= [ 0.8 0.6 ] ’ ( c z J )  = [ 0.1 0.9 ] ’ 

By varying the weighting constants Ad and A,, we com- 
pute and store a family of optimal quantization poli- 
cies. For the initial condition I& = (0.9,0.1), 50 sample 
output trajectories are obtained by simulation. Each 
quantization policy is applied to these output trajecto- 
ries, and the average accumulative cominunication cost 
j q ,  delay jd ,  and estimation error j e  are calculated. 

0 5 -  

Fig. 2: Weighted combination of communication cost and 
delay us. estimation error (points with lower esti- 
mat.ion error corresponding to higher A,). 

Fig. 3: Weighted combination of communication cost and 
estimation error us. delay (points with smaller de- 
lay corresponding t.0 higher &). 

In Fig. 2, each curve shows the variation of combined 
communication cost and delay us. the estimation er- 
ror as A, is changed (Ad is fixed for each curve). The 
vertical axis is j q  + A d J d  and the horizontal axis is p. 
We have also found that (not shown in the figure), for 
Ad = 5.0, the accumulative delay cost = 0 (exclusively 
sequential quantization); for Ad = 0.9, the accumula- 
tive delay cost = 5.0 (exclusively block-coding of length 
2); while for Ad = 1.15, variable-length block coding 
is observed. Fig. 3 shows the variation of combined 
communication cost and estimation error vs. the delay 
as Ad is changed, where the vertical axis is Jq + A,Je 
and the horizontal axis is jd.  &om the figures we see 
that jointly optimal quantization decisions vary with 
the weighting coefficients, and by appropriately choos- 
ing these coefficients we can achieve the desired trade- 
offs among different objectives. 
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4 Joint Quantization and Control 

4.1 Problem formulation 
Recall Fig. 1. We now restrict ourselves to sequen- 
tial vector quantization of Y,, i.e., Y, is quantized 
and transmitted at every n,. Denote the quantization 
scheme at n as Q, E 01, and let qn = Qn(Yn)- Let 
6, = (Qn,Ulz) .  We call (6,) jointly admissible if U,  
depends only on (ITo, q g ,  U;-'>, and Qn depends only 
on {IIo,q~-l,U~-'}. Fix N 2 1, and let A0 be the 
space of jointly admissible quantization schemes and 
controls for the time period [O,  N - 11. Given I Io  for 
X O  and Eo f Ao, the cost function is defined as 

N-1  

n=O 

and the value function is defined as 

( 9 )  

where A, 2 0 is a weighting constant, and J Q ( n )  and 
JP(n) are the costs relating to communication and per- 
formance at time n., respectively. P(n)  takes the form 
in Section 2 if the entropy coding for qn is used, and 
P ( n )  = loga(q,,I if a plain coding for qn is used, where 
Jqn] denotes the number of possible outcomes of 4,. In 
the following we let J Q ( n )  = h(q,) for some suitable 
function h(-) .  Assume that JP(n) depends on the state 
and the control, P ( n )  = g7z(Xn, U,), for some function 
gn(*, -1. 
4.2 The dynamic programming equation 
Denote by f i i  = {%i(zl), . . . ,%i(zs)} the conditional 
PMF of X i  given IIo, qi-' (and the corresponding 
quantization schemes), and Ut-'. A recursive formula 
for f i i  can be derived: 

%+I = f(%, 42, Vi), (10) 

for some function f(., ., -). To be specific, for 1 5 1 5 S, 

s A4 

~s (ui)~i(~s >( 1 ( ~ i  (ym> = qz )csm) 
m=l 

M 
f i Z + ] ( Q )  = s=l 

S 7 

t= l  m=l  
(11) 

where 1(-) denotes the indicator function. For 0 _< 
i 5 N - 1, let A, be the space of jointly admissible 
quantization schemes and controls for the time period 
[i, N - 11. For & E A,, define 

N - 1  

~z(nz,tz) = E[C Aqh(Qn(Yn)) + g n ( X n ,  un)], 
n=z 

and K(IIz) = Jz(II,, &), where II, is the initial 
condition for the i-th problem. Following a standard 
DP path one can prove: 

Proposition 4.1 For Q E 01, denote by dQ the space 
of functions mapping the range of Q to U .  The value 
functions {v,}:;' satzsfy: 

VN-I(nN-1) = min min E[Aqh(G"-l)  
QN-I€QI  a r y - i E d @ , - ,  

+E[L?N-l(XN-l, aN-l(qN-1))IqN-l] 1, (12)  

where q N - 1  = Q N - ~ ( ~ N - I ) ,  and f o r  0 5 i 5 N - 2, 

K(nz) = min min E[A,h(q,) + 
Q,EQ1 a,EAe, 

E[gz(Xz, az(q2))lqzl + Vz+l(f(nz, 42, Q z ( Q * ) ) ) l r  (13) 

where q, = Q,(K). Fkom the solutions { (Q;,a;)}z i l  
to  (12) and (13) one can construct the jointly optimal 
quantization and control schemes. 

Similar to the joint quantization/estimation problem, 
the separation principle holds. The conditional PMF n, of X ,  is the information state, and the optimal 
quantization/control scheme depends only on f i n .  

4.3 An example problem 
We take the machine repair problem from [15] (pp. 190) 
as an example. A machine can be in one of two states 
denoted by P (Proper state) and P (Improper state). If 
the machine starts in P and runs for one period, its new 
state will remain P with probability $, and if it starts 
in P,  it will remain in I' with probability 1. At the 
beginning of each time period, one takes an inspection 
to  help determine the machine's state. There are two 
possible inspection outcomes denoted G (Good) and B 
(Bad).  If the machine is in P,  the inspection outcome 
is G with probability 4; if the machine is in P ,  the in- 
spection outcome is B with probability :. After each 
inspection, one of two possible actions can be taken, 
C (operate the machine for one period) or S (stop the 
machine and perform maintenance, then operate the 
machine for one period). The running cost for one pe- 
riod is 2 units if the machine is in state P ,  and is 0 if 
it is in P. The action S makes sure that  the machine 
is in P but it costs 1 unit. 

To relate this problem to the joint quantization/control 
problem discussed earlier, we assume that  the inspec- 
tion outcome needs to be sent to  a remote site for ac- 
tion decision. A plain coding scheme requires one bit to 
send the information G or B. The only other quantiza- 
tion scheme is to cluster G and B,  which requires 0 bit 
for communication. A, now carries an interpretation of 
communication cost per bit. 

Given the a priori PMF of the machine state a t  time 0, 
the problem is to decide at  the beginning of each time 
period whether to communicate the inspection outcome 
and what action to take based on the received informa- 
tion, so that the total cost is minimized. One can show 
that the value function of this problem is concave and 
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I . . . .  

Fig. 4: Running and maintenance costs usus. communication 

piecewise linear. We have obtained the explicit solu- 
tion for N = 2 .  Tale Pr[Xo = P] = $. Then one of 
the following four joint quantization/control strategies 
becomes optimal depending on the value A,: 

(a) [A, 5 A] At time 0, send the inspection outcome 
YO, and let U0 = C(S,  resp.) if YO = G(B,  resp.); At 
time 1, send Yl, and let U1 = C(S, resp.) if Y1 = 
G(B,  resp.); 

(b) [A < A, 5 $1 At time 0, send YO, and let U0 = 
C(S, resp.) if YO = G(B,  resp.); At time 1, if YO = G, 
send Y1 and let U1 = C(S,  resp.) if Y1 = G(B,  resp.), 
and if YO = B ,  let U1 = C without sending Yl; 
(c) [& 5 A, < g] At time 0, send Yo, and let U0 = 
C(S,  resp.) if YO = G(B,  resp.); At tinie 1, let U1 = C 
without sending Yl; 
(d) [A, 2 g] At time 0, let U0 = C without sending 
Yo; at time 1, let 171 = S wit,hout sending Y1. 

In Fig. 4 the expected accumulative running and main- 
tenance cost us. tlre expected bits of communication 
for these four strategies is shown. The thresholds of 
A, for switching of the optimal strat)egy correspond to 
the negative slopes of the line segments connecting the 
neighboring points in Fig. 4. Hence when the com- 
munication cost per bit increases, the optimal strategy 
tends not to transmit the inspection outcome. 

bits for jointly optimal strategies. 

5 Conclusions 

In this paper the problem of joint quantization, es- 
timation, and control of a hidden Markov chain has 
been studied. MJe first investigated the joint quanti- 
zation and estimation problem, where vector quantiza- 
tion with variable-block length was considered. Then 
the joint quantization and control problem was for- 
mulated and solved. The common theme for these 
two problems is that a weighted combination of dif- 
ferent costs is minimized. By varying the weighting 
coefficients, one can obtain a family of optimal quan- 
tizationlcontrol schemes that reflect different tradeoff 
strategies. Simulation and a simple example have been 
used to illustrate the results. 

The framework presented in this paper can be extended 
to cont.inuous-range systems. The case of noisy com- 
munication can also be incorporated. Finally we note 
that, as a drawback of the approach, the “curse of di- 
mensionality“ of DP applies when the number of states 
gets large. 
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