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Abstract  

Decentralized control methods are appealing in coor- 
dination of multiple vehicles due to their low demand 
for long-range communication and their robustness to 
siugle-point failures. In this paper we explore a de- 
centralized approach to path generation for a group of 
vehicles in a battlefield scenario. The mission is to ma- 
neuver the vehicles to cover a target area while avoiding 
obstacles and threats during the maneuver. Each vehi- 
cle makes its moving decision by minimizing a poten- 
tial function that encodes information about its neigh- 
bours, obstacles, threats and the target. Preliminary 
analysis of vehicle behaviors is conducted. Simulation 
has shown that this approach leads to interesting emer- 
gent behaviors, and the behaviors can be varied by ad- 
justing the weighting coefficients of different potential 
function terms. 

1 Introduction 

Autonomous unmanned vehicles (AUVs) have poten- 
tially revolutionizing applications in defense, trans- 
portation, weather forecast, and planetary exploration 
[l]. These vehicles can be deployed in groups to per- 
form complicated missions. Communication is often 
limited in these applications due to the large number 
of vehicles involved, limited battery power, and con- 
straints imposed by environmental conditions or mis- 
sion requirements. Hence a decentralized approach to 
coordination and control of multi-vehicles is especially 
appealing. Another advantage of decentralized meth- 
ods over centralized ones is their robustness to single- 
point failures. 

Inspired by the emergent behaviors demonstrated by 
swarms of bacteria, insects, and animals, control meth- 
ods that yield desired collective behaviors based on 
simple local interactions have received great interest 
[2, 3 ,4 ,  5 , 6 ] .  Artificial potentials or digital pheromones 
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are often involved in such methods for multi-vehicle 
control, see e.g., [3, 7, 8, 41 and the references therein. 
The potential function method has been used in var- 
ious robotic applications 191, where the force or other 
input (e.g., the velocity) is derived from some poten- 
tial function that encodes relevant information about 
the environment and the mission. 

In this paper we explore a decentralized approach to 
path generation for a group of vehicles in a battle- 
field scenario using the potential function method. The 
mission is to maneuver the vehicles to cover a target 
area while avoiding obstacles and threats. At every 
time instant each vehicle evaluates its potential func- 
tion profile and decides its velocity using the gradient 
descent method. The potential function consists of sev- 
eral terms reflecting the objective and the constraints. 
It is constructed in such a "ay that only information 
about neighbouring vehicles, local information about 
dynamic threats, and some static information (about 
stationary threats, targets) are involved. Some quali- 
tative behaviors of the vehicles are discussed. In par- 
ticular, the behavior of a vehicle experiencing both at- 
traction from the target and repulsion from the obsta- 
cles is studied through the vector field analysis. Sim- 
ulation results have shown that the decentralized a p  
proach leads to interesting emergent behaviors, and the 
behaviors can be varied by adjusting the weighting co- 
efficients of diffrent potential function terms. 

The remainder of the paper is organized as follows. In 
Section 2 the problem setup is described and the poten- 
tial functions constructed. Analysis of vehicle behav- 
iors is performed in Section 3. Simulation results are 
reported in Section 4. Section 5 concludes the paper. 

2 Potential  Functions 

We study the kinematic planning problem for N vehi- 
cles moving on a (two dimensional) plane. Extension 
to three dimensional space is straightforward, although 
the analysis will be more complicated. The task for the 
vehicles is to move toward and then occupy a connected 
target area A C R2. They should avoid to crash into 
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obstacles that are distributed in the battlefield. There 
are also threats, both stationary ones and moving ones, 
that endanger the vehicles if they are close. It is as- 
sumed that each vehicle has the knowledge of locations 
of stationary threats. A vehicle detects a moving threat 
if the threat is within the distance a, and is destroyed 
by the threat if the distance between them is less than 
Re (< Rd). The vehicles can communicate with each 
other and exchange information about their positions 
if they are within the neighbouring distance R,. There 
is a desired inter-vehicle distance TO (less than R, ) for 
several reasons: staying t,oo close leads to small area of 
coverage, good chance of collision, and easy targeting 
by the enemy fire, while staying too far apart leads to 
loss of communication and coordination. 

We order the vehicles and identify each vehicle wit.h 
its index. Each vehicle is treated as a point. De- 
note the position of the vehicle i at time t as p , ( t )  = 
( q ( t ) , g d ( t ) ) .  Let V ( t )  be the set of vehicles that 
are alive at t ,  and N(t )  be the neighbouring set of 
the vehicle i defined by & ( t ) ' =  { j  E V ( t )  : j # 
i, Ilpi(t)-pj(t)II 5 Rc}. From the previous discussions, 
there are multiple objectives/constraints when a vehi- 
cle makes the moving decision. To accomodate this a 
potential function is constructed for each vehicle that 
consists of several terms, each term reflecting a goal 
or a constraint. To be specific, the potential function 
J,,t(p,) for the vehicle i at t is expressed as 

A 

Ji,t@i) = A,J9(Pi(t)) + A n J i y P d t ) )  
A o J 0 @ i ( t ) )  f h J a @ i ( t ) )  + AmJFl@i(t)), (1) + 

where J9,J&,J",Js,J;" are the components of the 
potential function relating to the target, neighbour- 
ing vehicles, obstacles, stationary threats, and moving 
threats, respectively, and A,, A,, A,, A,,Am 0 are the 
corresponding weighting coefficients. The velocity pi is 
then given by 

a J i , t @ i )  pi ( t )  = 
api 

We now describe in detail the components of J,,*: 

(1) The target potential Jg. J9(p.) = f , ( p @ , , A ) ) ,  
where p(p , ,A)  = inf,,a Jlp, - all (the distance from 
p ,  to the target area A ) ,  f,(.) is a strictly increasing 
function, and f , (O) = 0. This guarantees that in the 
absence of other objects, the vehicle will move toward 
the target. For analysis and simulation in this paper, 
we choose f g ( r )  = 7'; 

(2) The neighbouring potential Jet. 

JttbJ = fn(llPt-P3(t)ll). 
J E N . ( t )  

where f n  : W+ + R is a differentiable function that has 
the following properties: a) f,(~) approaches infmity 
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as T + 0, and is strictly decreasing on [O,ro]; b) it is 
strictly increasing on [TO, R,] and % = 0 on [Rc, m). 
These properties enable two vehicles to keep the opti- 
mal distance in the absence of other objects, and make 
the transition of dynamics seamless when the neigh- 
bouring set of a vehicle is changing. An appropriate 
combination of 5 ,  (T  - TO)*, and - (T  - R,)' is used 
for fn in our simulation; 

(3) The obstacle potential J O .  An obstacle is a con- 
nected, closed set (could be a single point) that a vehi- 
cle cannot enter. Assume that there are afinite number 
of obstacles {Oj},"=.,. Let. Jo(p,) = C,"l Jo(p(pi,Oj)), 
where p(pi,O,) is the distance from pi to the set O,, 
and fo(.) : R+ + W is a strictly decreasing function 
that satisfies f0 (r )  + 00 as T + 0. In this paper fo is 
chosen to be f .  The information about obstacles can 
be obtained beforehand, or it can be available "on the 
fly" through detection; 

(4) The potential Ja due to stationary threats. Sta- 
tionary threats can be modeled similarly as obstacles, 
so that vehicles will tend to stay away from them. 
Anisotropic (direction-dependent) threats can also be 
included using appropriate potential functions; 

( 5 )  The potential J;" due to moving threats. A mov- 
ing threat is modeled as a moving point. Let M i ( t )  
be the set of moving threats that are within the detec- 
tion range of the vehicle i ,  and qj be the position of 
the threat j .  Let J;"@i) = C j E ~ i ( t ) f m ( l l ~ i  - qjll), 
where the function fm : (Re, M) -+ W is differentiable, 
strictly decreasing on (Re,&), constant on (Rd, m), 
and fm(r) + 03 when T + Re. With this potential 
function, a vehicle tends to keep at least a distance 
R, from moving threats, and its vector field remains 
continuous when moving threats enter or leave its de- 
tection range. A simple example for such fm(.) is 

& i f R e < r 5 y  

-+ i f r >  Rd 

i f ~ ~ < ~ R R d ,  
a: 8 2  OZ 

a 

{ 0 ,  

f m ( r )  = 

a where a1 = Rd - Re, and a2 = Rd + Re. 

3 Qualitative Analysis of Vehicle Behaviors 

3.1 Equilibrium formations 
It  is important to study vehicle behaviors under inter- 
vehicle interactions only. This is especially relevant 
after the vehicles enter the target area. 

Proposit ion 3.1 Let N be the number of vehicles. 
Then 

(1) the configuration of vehicles converges to some equi- 
librium; 



w (b) 

Fig. 1: Equilibrium configurations for N = 3. 

(2) for N = 2, if IIpl(0) -pz(O)ll < R,, the vehicles 
maintain a distance of r~ in the equilibrium configura- 
tion and the equilibrium is globally asymptotically sta- 
ble; 

(3) for N = 3, if Ilpi(0) - Pj(0)ll < Rc, 1 5 
i , j  5 3, the vehicles either form an equilateral triangle 
(Fig. I(.)), or form a line at the equilibrium. If % 
is strictly increasing on (0, TO], the collinear configum- 
tion is equally spaced with spacing r' (Fig. l (b)) ,  where 
$Q < r' < rg and %(r') = -%(2r'). Furthermore, if 
% is strictly increasing on [rg, 2~01, such r' is unipe. 
The collinear configuration is unstable, while the equi- 
lateral configuration is locally asymptotically stable. 

Sketch of pmof. Take the sum J of the neighbouring 
potentials as a candidate Lyapunov function. Claim 
(1) follows from LaSalle's Invariance Principle. Claims 
(2) and (3) can be proved by explicitly deriving the 
condition for = 0. 0 

We note that similar results for the cases N = 2, 3 
also appeared in [SI where the second order dynamics 
and a quadratic potential were considered. For general 
N > 3, one can design the potential function properly 
so that certain configurations (or fonations) become 
equilibria that are locally asymptotically stable (also 
refer to [3] for a discussion on designing stable flocking 
and schooling motions using "virtual leaders"). For in- 
stance, if we design the function fn wit.h R, = &, 
then lattices of equilateral triangles wit,h length r g  are 
such equilibria. These equilibria- are often desirable: 
for instance, in the scenario of this paper, the vehi- 
cles would provide good area coverage while maintain- 
ing optimal inter-vehicle distance. However, due to 
the existence of multiple locally asymptotically sta- 
ble equilibria, one cannot guarantee the convergence 
to a particular desired configuration. Although the 
ambiguity (of the final formation) can be eliminated 
using t,he structural potential functions [7), the latter 
approach requires explicit specification of the commu- 
nication topology. Such requirement, unfortunately, is 
not feasible in our scenario, where some of the vehicles 
might get destroyed during the mission. 

' Despite the ambiguity problem, extensive simulation 
appears to support that the final format.ion is usually 
well "organized" under the purely local interactions. 
Fig. 2 shows the final formation of 30 vehicles starting 
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Fig. 2: Formation of 30 vehicles under local interactions: 
(a) random initialization; (b) final formation. 

ObSLBClC 2 ohlade I Oktacle 2 

Vehicle 

Fig. 3: (a) The setup of two obstacles and one target; (b) 
The vector field on they axis. 

from a random initialization. 

3.2 Vector field analysis 

Scenario I: In this subsection we analyze the 
behavior of a vehicle when it experiences both the at- 
traction from a target and the repulsion from obsta- 
cles. Two scenarios are considered. In the first one 
(illustrated in Fig. 3(a)), the (point) target is located 
at the origin (O,O), and two (point) obstacles are lo- 
cated symmetrically about the y axis with coordinates 
(-R, 4) and (U, -b), respectively (R, b > 0). The pw 
tential function in terms of (5, y) is 

and the associated vector field is 

where t,he weighting constant for obstacles equals 1. 
Consider a vehicle initially located on the y axis. We 
want to know whether it will move toward the target 
under the vector field (4) when y < 0 (the case y > 0 
is simpler and can be studied similarly). Due to the 
symmetry, x = 0, so the real question is whether 0 > 0. 
When z = 0, 
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and y' = 5' - b. Then 

(1) If X > A', y > 0, Vy < -b; 

(2) If X = A*, y > 0 for y E (-m,-b) except at y* 
where y = 0; 

(3) If X < A*, there exist y:,y$ dependent on A, y i  < 
y' < yf, such that 

j ,  > 0, if Y E (-m v i )  
B < 0, if E (Y$, Y:) 
li > 0, if E (Y?, -b) ' 1 y = O ,  i f y = y :  o r y i  

as illustrated in Fig. 3(b). Furthermore, as X decreases 
from A' to 0, y: increases from y* to -b, and y i  de- 
creases from y* to -ca. 

Proof. Let h ( f )  = *. Since 

(8 )  
dh 4(a2-3@*) 
df - (a2 + f2)2 ' 

h(5)  is strictly decreasing on (-ca,-%), and strictly 
increasing on (-",O). From (8), f is also strictly in- 
creasing on (--&,O). Graphical analysis reveals that 
there exists a unique A', such that the line l (5 )  = 
2X*(f - b)  is tangent to the curve h ( f )  at a unique 
5' E ( - 3 , O ) .  After algebraic manipulations, one can 
show that 5' satisfies (6) and A* is defined by (7). 
The remaining claims of the proposition follow from 
the graphical analysis. 0 

From Proposition 3.2, the weight X determines whether 
the vehicle can pass the obstacle potential valley and 
get to the target. 

_ -  

J;i 

Scenario 11: Next we investiaate the motion of 

Fig. 4: Vector field analysis for the caSe of one obstacle and 
one target. (a) x-component; (b) y-component; (c) 
total vector field. 

We will discuss i and i separately. Denote by CA the 
cjrcle with radius centered at (0, -b), C; the region 
inside CA, and C; the region outside CA. Then clearly 

i > 0, if z < o,(x,y) EC: or x > o,(x,y) EC, 
j. < 0, i f z  > o,(x,y) EC: or z < o,(z,y) EC; , { L = 0, if x = 0 or (z,y) E CA 

as shown in Fig. 4(a). 

For jr, it's straightforward to  verify 

y > 0 if (z,y) EC; o r y  2 -b. 

However, the analysis is more involved when y < -b 
and (x, y) E Cy. The proof of the following result can 
be found in [lo], and it shares the spirit of the proof 
for Proposition 3.2: 

Proposition 3.3 Let 5 = y + b. For each x, there 
exists a unique fz E (-$IXI,O) satisfying 

4f3 - 36f2 + bzZ = 0, 

fz = and 5" strictly decreases as 1x1 increases. 
Let y' = i" - b. For X > 0,there is an itA > 0 with 
(iA,yiA) E C;, and two continuous functions y;" and 
y;" of x defined on [O,itA], dependent on A, that satisfy 
the following: 

(1) y;" decreases as 1x1 increases, y;," = y;*, , y1 2 
yz where the equality holds only at x = 0 and x = ?'; 
(2) y;'A increases as 121 increases, y;," = y ~ " ' ~ ,  y;.' 5 
yz where the equality holds only at x = 0 and x = eA. 

A =,A 

- 
a vehicle in the presence of one point target (0,O) and 
one Doint obstacle fO.-b). Here no constraint on the Denote the region enclosed by the graphs of y;" and 

~, I 

vehicle position is imposed except that we focus on the 
region y < 0 (the case y > 0 is simpler and be. 
analyzed similarly). The vector field is 

as %, Then for  the case Y < 0, Y 5 0 8 and 
only if (X,Y) E DA, where the equality holds only at the 
boundary of Vi. 

Fig. 4(b) illustrates Proposition 3.3 and sketches the 
y-component of the vector field. The total vector field (9) ' 
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Fig. 5: The simulation scenario. 

is shown in Fig. 4(c). The only point where i = y = 0 
is (0, y?'),. But this is an unstable equilibrium as one 
can tell from the figure. We can also verify that the 
linearized system at (0, &*) has a positive eigenvalue. 
Hence for any A > 0, the vehicle will not get blocked 
by the obstacle potential; but the larger A, the less 
"detour" it takes before it moves towards the target. 

4 Simulation Results 

Fig. 5 shows the simulation scenario. There are ten 
vehicles (represented by the pentagons) randomly dis- 
tributed in the left lower corner at t = 0. Two cir- 
cular obstacles (with radii 3 and 5, respectively) sit 
between the vehicles and the target (also circular, with 
radius 1.5). Eight moving threats (represented by the 
crosses), uniformly distributed around the target, pro- 
tect the target from invasion by the vehicles. Each 
threat moves with angular velocity 0.03 rad/sec and 
radius 3 (linear speed O.OS/sec), while each vehicle's 
maximum speed is O.OG/sec. There is no stationary 
threat in the field. The optimal inter-vehicle distance 
TO is 0.5, the communication range & = $, the detec- 
tion range Rd for moving threats is 3, and the killing 
range Re = 0.5. If a vehicle is inside the target area, 
it's motion is not affected by the threats and the ohsta- 
cles. To guarantee the vehicles are distributed around 
the target center after they successfully enter the target 
area, an additional attractive potential from the target 
center is also included. The simulation was conducted 
in Matlab, where the function "fmincon" was used to 
solve the constrained minimization problem for each 
vehicle. 

Fig. 6 shows the effect of the weighting constant A, for 
the potential due to moving threats. Other weights are 
fixed for Fig. 6(a) through (d): A, = 1000, A, = 200, 
and A, = 1000. When A, = 10 (very small), the ve- 

hicles paid least attention to the threats and four of 
them were destroyed because of getting too close to 
the threats (Fig. 6(a)); when A, = 50, only one vehi- 
cle was destroyed while the others entered the target 
(Fig. 6(b)); when A, = 200, all vehicles entered the 
target successfully and in a timely manner (Fig. 6(c)); 
when A, = 2000, some vehicles were not able to enter 
the target because more attention was put on evasion 
from the threats (Fig. 6(d)). We note that in all cases, 
the vehicles inside the target area displayed certain for-' 
mations. 

(4 (4 
Fig. 6: Effects of the weighting coefficient A, for the mov- 

ing threat potential. (a) A, = 10; (b) A, = 50; 
(c) A, = 200; (d) A, = 2000. 

Fig. 7 demonstrates the effect of the weighting con- 
stant A, for the obstacle potential. Other weighting 
constants used are: A, = 50, A, = 200, A, = 200. 
When A, = 1000, one group of vehicles took the shorter 
path to pass the obstacle valley (Fig. 7(a)); but when 
A, = 5000, no vehicle took the shortcut (some actually 
took the detour), as shown in Fig. 7(b). 

From the simulation results, we see that the decen- 
tralized approach based on potential functions lead to 
some emergent behaviors of vehicles. In addition, we 
can modify the behaviors by appropriately changing 
the weighting constants. 
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Fig. 7: Effects of the weighting coefficient A, for the o b  
stacle potential. (a) A, = 1000; (b) A, = 5000. 

5 Conclusions 

In this paper we have explored a decentralized ap- 
proach to coordination and control of multi-vehicles us- 
ing potential functions. A battlefield scenario was con- 
sidered, in which the vehicles were required to occupy 
a target area (or point), avoid obstacles, evade threats, 
and maintain reasonable inter-vehicle distances. Sta- 
bility of the equilibrium formations was briefly dis- 
cussed. The behavior of a single vehicle was analyzed 
in the presence of an attractive target and (one or two) 
repulsive objects, and the effect of the weighting coef- 
ficient was studied. Simulation was conducted and in- 
teresting emergent behaviors were observed. We note 
that the analysis based on the vector field cannot be 
easily extended when two or more vehicles interact. 

The most important advantage of this approach is 
its simplicity since only local or static information is 
needed in the path generation. It is also flexible and r e  
bust, which is of vital importance in complex, dynamic 
environments such as the battlefields. The drawback 
of the approach is that the possibility of being trapped 
in local minima exists. This has been a long time con- 
cern in the studies of the potential function method 
[ll]. Practically interactions between vehicles and dy- 
namic changes in the environment may prevent a ve- 
hicle from being trapped. Artificially introduced per- 
turbation will also help to resolve this problem [12]. 
Another alternative is to incorporate other obstacle 
avoidance schemes based on, e.g, the contact dynamics 
models [13\. 

As shown in the simulation results, the choice of the 
weighting coefficients for different potential functions 
has a decisive impact on the vehicle behaviors and the 
mission outcome. Our future work will study how to 
design these weights in a systematic manner given the 
mission requirements. 
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