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Abstract

Mobile ad hoc networks are infrastructure-lessnetworks
consistingof wireless,possibly mobile nodeswhich are
organizedin peer-to-peerand autonomousfashion. The
highly dynamic topology, limited bandwidthavailability
and energy constraintsmake the routing problema chal-
lengingone. In this paperwe take a novel approachto the
routing problemin MANETs by usingswarm inteligence-
inspiredalgorithms.TheproposedalgorithmusesAnt-like
agentsto discoverandmaintainpathsin aMANET with dy-
namictopology. Wepresentsimulationresultsthatmeasure
the performanceof our algorithmwith respectto the char-
acteristicsof aMANET, thevaryingparametersof thealgo-
rithm itself aswell asperformancecomparisonwith other
well-known routingprotocols.

1 Introduction

A substantialresearcheffort hasgoneinto thedevelopment
of routing algorithmsfor MANETs. A numberof routing
algorithmshave beenproposed.Someof theseareDSDV,
OLSR, CGSR,AODV, DSR, TORA, ZRP, LAR andsev-
eral others[11, 13, 14, 15]. Theseprotocolscan gener-
ally becategorizedaseitherproactiveor reactiveprotocols.
Proactive protocolsbuild routesin the network constantly,
even though there might not be packets to be transmit-
ted betweena certainsetof nodes.Reactive (on-demand)
protocols,on the other hand, attemptto establishmulti-
hop betweenpairs of nodesonly when thereare packets
to be exchangedbetweenthesepairs of nodes. Recently
there has beengreat interest in so called Swarm Intelli-
gence[1], [2]; a set of methodsto solve hard static and
dynamic optimization problemsusing cooperative agents
(usually called ants, sincethe methodwas inspiredfrom
collaborative efforts in insects). Ant-inspired routing al-
gorithmsweredevelopedand testedby British Telecomm
andNTT for bothfixedandcellularnetworkswith superior
results[3, 4, 5, 6, 7, 8, 9, 10]. AntNet, a particularsuch
algorithm, was testedin routing for datacommunication
networks [3]. The algorithmperformedbetterthanOSPF,
asynchronousdistributedBellman-Fordwith dynamicmet-
rics,shortestpathwith dynamiccostmetric,Q-Ralgorithm
andpredictiveQ-R algorithm[1, 3, 4, 5, 6, 7, 8].

MANETs operate in a distributed and asynchronous
manner. Inspired by the successof ant-agent algo-

rithms in routing and load balancingfor fixed commu-
nication networks we first proposedapplicationsof the
swarm-intelligenceideasfor dynamicadaptive routing in
in MANETs in the proposal[16]. We initiated research
on theseideassince October2000, and a first presenta-
tion of our resultswasgiven in the seminar[18]. Interest
in applicationsof ant-basedrouting in MANETs hasrisen
and several papershave appearedrecentlyon the subject
[17, 19, 20]. For instance,Guneset al. have proposedan
Ant-basedapproachto routing in MANETs in [19]. Their
approachusesants only for building routesinitially and
henceis a completelyreactive algorithm. They have also
shown someperformancecomparisonswith otherMANET
routingprotocolsbasedon thepausetime of mobilenodes.
Marwahaet al. [20] haveexploreda hybrid approachusing
bothAODV andAnt-basedexploration.

In our researchwe discovered early that there are
two central challengesin making the promising swarm-
intelligenceideaswork successfullyin thedifficult domain
of MANET routing. Thefirst is to get thecomputationsin
sucha form andimplementationsoasto to befastandfast
converging. This is necessarygiven the mobile natureof
MANETs andtheresultingchangingtopology. Thesecond
and most seriousis to reducethe overhead(OH) created
by theseproactive algorithms.Straightforwardapplication
of ant-basedrouting, like AnNet or other algorithmsthat
weresuccessfulin fixedtopologynetworks,doesnot work
well in MANETs due to a large OH. We addressedboth
challengesin our researchto dateon thisproblem.Thispa-
perdescribesprimarily new methodsandassociatedevalua-
tionsfor combatingthesecondandmostseriouschallenge.
We first describeanalgorithmbasedonswarm-intelligence
basedon unicastcommunicationsfor controlandsignaling
packets(ants). We comparethis algorithm(after improve-
ments)to AODV (apopularroutingalgorithmfor MANETs
[14, 15]) and show that the overheadrequirementof the
swarm-intelligencealgorithmsignificantlyharmsits com-
petitiveness.Thenwe describea new algorithmwhich uti-
lizes the inherentbroadcastnatureof wirelessnetworks to
multicastcontrolandsignallingpackets(ants).Thissecond
algorithm competeswell with AODV and we show here
several comparisonsby simluationsin a standardbench-
mark for MANETs [12, 15, 22]. We describeseveral ad-
ditional innovationswe have introducedin bothalgorithms
andin particularthe advantageo discovering, storingand
using multiple (ranked) pathsbetweensource-destination
pairs. For more detailson our new algorithmsand their



performanceevaluationwereferto [21].
Our approachandmethodologyhasa strongdistributed

optimization foundation, which leads towards promising
analyticaltreatment;work on this is underway andwill be
reportedelsewhere.In additionwe haveshown, in a differ-
entpartof our recentwork, that thesenew algorithmshave
superiorroutingsecurityproperties;a significantdiscovery
giventheweakstateof affairs regardingsecurityin all ex-
isting MANET routing protocolsand routing protocolsat
large. Our work in securityandtrust for MANETs hasin-
troducedan importantinnovationvia a novel optimization
framework for securityandtrust. For furtherdetailsabout
our resultson securityand trust in MANETs we refer to
[23, 24].

2 A swarm intelligence based unicast
algorithm for MANETs

In this section,we describea routing algorithm for Mo-
bile Ad Hoc Networks basedon the swarm intelligence
paradigmandsimilar to theswarm intelligencealgorithms
describedin [3, 9]. Thealgorithmusesthreekindsof agents
- regularforwardants,uniform forwardantsandbackward
ants.Uniform andregularforwardantsareagents(routing
packets)thatareof unicasttype. Theseagentsproactively
exploreandreinforceavailablepathsin thenetwork. They
createa probability distribution at eachnodefor its neigh-
bors. The probability or goodnessvalueat a nodefor its
neighborreflectsthelikelihoodof adatapacketreachingits
destinationby takingtheneighborasanext hop.Backward
antsareutilized to propagatethe informationcollectedby
forward antsthroughthe network and to adjust the rout-
ing tableentriesaccordingto theperceivednetwork status.
Nodesproactively andperiodicallysendout forwardregu-
lar anduniformantsto randomlychosendestinations.Thus,
regardlessof whetherapacketneedsto besentfrom anode
to anothernodein thenetwork, eachnodecreatesandperi-
odically updatestheroutingtablesto all theothernodesin
thenetwork.

Thealgorithmassumesbidirectionallinks in thenetwork
andthatall thenodesin thenetwork fully cooperatein the
operationof thealgorithm.

2.1 The Operation of the algorithm

2.1.1 Bootstrapping of the routing tables

Initializationandneighbordiscoveryis doneby single-hop,
broadcast

���������
messagesthat are transmittedperiod-

ically at an interval of
��������� 	�

�����������

seconds.
Thesemessagesareusedatnodesto build theneighborlist,
which is thenusedfor theinitializationof theroutingtable.
The initial bootstrappingof the routing tablesis doneat a
nodewhenthefirst forwardantis beingsentout to acertain
destination.

At this time, there are no routing table entries (i.e.
no probabilitiesfor next hops) for that particularsource-
destinationpair. The creationof the first forward ant at
a node for the source-destinationpair causesthe routing
table entries to be initialized with probabilities ��� 
 for

eachneighborasthenext hopfor therespectivedestination,
where



is thenumberof neighborsof thenodewherethe

routingtableis beingestablished.Theuniformprobabilities
assignedto all theneighborsindicatethatnothingis known
aboutthestateof thenetwork. Theseprobabilitiesarethen
adjustedby backward ants,whenbackward antsfrom the
destinationarereceivedat thesourcenode.

2.1.2 The routing table

The routing table at each node is organizedon a per-
destination basis and is of the form ���������� "!�#$�� &%'!�(
 ��)*�,+-%'.-(0/213%�4&#54" &67 8��9;: . It containsthe goodnessvalues
for a particularneighborto be selectedasthe next hop for
a particulardestination.Further, eachnodealsomaintains
a table of statisticsfor eachdestination< to which a for-
ward ant hasbeenpreviously sent;the meanandthe vari-
ance(=?>A@B(DCFE>G@ ) for the routesbetweensourcenode � and
destinationnode < .

Theroutingtablesthencontainthefollowing datastruc-
tures:H

Theprobability(goodnessvalue)of takingasnext hop
node I at a node! , /0JK @ to eventuallyreacha certain
destination< .H
The meanand the variance, �L= J @M($C J @5: at node ! to
reachdestination< .

2.1.3 Forward ants

Eachnodeperiodicallysendsforwardantsto randomlycho-
sendestinationnodesthroughoutthenetwork. At the time
of creationof theagent,if aroutingtableentryis notpresent
atthenodefor thatparticulardestination,aroutingtableen-
try is created.This is alsotrueof theforwardingof antsat
intermediatenodes. Eachforward ant packet containsthe
following fields:H

SourcenodeIP addressH
DestinationnodeIP addressH
Next hopIP addressH
StackH
Hopcount

Hence,the next hop of the forwardant is determinedat
thesendingnodeandtheforwardantis sentin unicastfash-
ion. That is, thoughthe forward ant is received at all the
neighboringnodes,it is accepted(at the MAC layer) only
by thenodeto which it hasbeenaddressed.

The stackof the forward ant is a dynamicallygrowing
datastructurethat containsthe IP addressesof the nodes
that the forward ant has traversedas well as the time at
which theforwardantreachedthesenodes.

Forwardantsareroutedon normalpriority queues,that
is, they usethe samequeuesasnormal datapackets. As
such,forwardantsfacethesamenetwork conditions(queu-
ing and processingdelays, network congestion)as data
packets.Forwardantsthereforecontaininformationregard-
ing theroutethatthey havetraversed.

2.2 Routing the Forward ants

Theforwardantis routedateachnodeaccordingto theper-
destinationprobabilitiesfor thenext hopin theroutingtable
at thecurrentnode.Thus,theforwardingof theforwardant



is probabilisticandallows explorationof pathsavailablein
thenetwork.

Theseagentsarehenceforthreferredto asRegular Ants,
similar to [9] to distinguishthem from Forward Uniform
Ants. Whena forward ant is received at a node,it checks
to seeif it haspreviously traversedthe node. If it hasnot
previously traversedthe node,the IP addressof the node
andthecurrenttime arepushedinto thestackof theant. In
casethe nodeIP addressis found in its existing stack,the
forwardanthasgoneinto a loop andis destroyed.

2.2.1 Uniform ants

Sinceforwardregularantsarerouteduniformly, andthere-
sultingbackwardantsreinforcethe routes,this canleadto
a saturationof the probabilities,that is the probabilitiesof
one(observedto bethebest)routegoto 1 andtheprobabili-
tiesof theotherroutesgoto 0. As aresult,new routesnever
get discovered. In a dynamicsituationwith thepossibility
of breakageof links andmobility of nodes,this meansthat
thealgorithmis unableto adaptto changesin thenetwork.

To make the algorithm fully adaptive to mobility and
topologychanges,we introduceanothersetof ants,called
uniform ants. Thesearesimilar to the agentsproposedin
[9]. N % of thetime, insteadof creatingregularants,each
nodesendsout uniform ants.Thesearecreatedin thesame
mannerasregularants,howeverthey arerouteddifferently.
Insteadof usingtheroutingtablesateachnode,they choose
the next hopwith uniform probability. If the currentnode
has



neighbors,then the probability of taking a neigh-

bor as the next hop is �O� 
 . This is in contrastto regular
antswhichprefertakingnext hopswith higherprobabilities
moreoften.

Uniform antsexplore and quickly reinforcenewly dis-
coveredpathsin thenetwork. Further, they ensurethatpre-
viouslydiscoveredpathsdo not getsaturated.

2.2.2 Backward ants

When a regular or uniform ant reachesits destination,it
generatesa Backward Ant. The backward ant inherits the
stackcontainedin the forwardant. The forwardant is de-
allocated.Thebackwardantis sentout on thehighpriority
queues.This ensuresthatbackwardantsarepropagatedin
thenetwork quickly, sothatthey canupdatetheinformation
regardingthestateof thenetwork withoutdelay.

The purposeof the backward ant is to propagateinfor-
mationregardingthe stateof the network gatheredby the
forwardants.Thebackwardantretracesthepathof thefor-
wardantby poppingthestack,makingmodificationsin the
routingtablesandstatistictablesat eachintermediatenode
accordingto oneof thefollowing learningrules:

1.

/ K @�PQ/ K @�RS1T���VUW/ K @5: (1)

/ J @�PX/ J @0UY13/ J @ (2)

Here1 is thereinforcementparameter.

2.

/ K @ P �A/ K @ZRS1T:���VRS1T: (3)

/ J @ P / J @���VRS1T: (4)

In boththeabovecases,thereinforcementparameter, 1 can
bedefinedasafunctionof somemetricor acombinationof
metrics,e.g.delayor thenumberof hops.

1\[ ]
I^��_$: ( ]
`ba (5)

Here I^�A_$: is a monotonefunction of the metric and
]

is a
constant.The backwardant alsoupdatesthe existing esti-
matesof theforwardtrip time at thesourcenodeaswell as
intermediatenodes. The trip time of this backward ant is
usedto updatethestatistics.

Themeanandthevariance,�c=?d @ (DCFEd @ : areupdatedusing
thefollowing updaterules:

= d @�Pe= d @�RYf;��% dhg @�U�= d @F: (6)

where =?d @ is the meanof the ant trip timesat the current
node,

]
, to the destinationnode, < . f is a constant,%Ddhg @

is the trip time of the ant from the currentnode
]

to the
destinationnode < .

and

C Ed @ PQC Ed @ RYf^����% dhg @�U�= d @F: E UWC Ed @ : (7)

whereCFEd @ is thevarianceof theanttrip timesat thecurrent
node,

]
, to thedestinationnode,< . f , % dhg @ and= d @ arethe

sameasabove.

2.2.3 Changes in routing tables due to node mobility

Whena nodeor nodesenterinto thetransmissionrangeof
anode,this createsthepossibilityof therebeingnew avail-
ableroutesto a destinationthat waseitherreachableby a
longer route or previously unreachable.The detectionof
a newly movednodeis throughthebeaconingmechanism.
TheHello messagesbroadcastby eachnodegive informa-
tion regardingtheavailability of anodeasa next hop.Sup-
posea node

�
movesinto the neighborhoodof a node i ,

thentheIP addressof
�

is addedto thelist of neighborsofi andvice versa.Node i thenadjustsits routing tableto
include

�
with a small probability. So, if node i hasex-

istingroutesto nodes<5jD(D< E ($klkLkL(D<�m , it adds
�

asanext hop
with asmallprobabilityfor eachof <Fj&($< E (DkLklkL(D<�m . Thus,the
probabilityof a forwardanttaking

�
is,

.3nW[po&(Do�qr� (8)

andtheprobabilityof theothernodes,! , !ts[ � becomes,

.Fuv[w.Fu�U o
 (9)

where



wasthenumberof i ’sneighborsbefore
�

entered
its transmissionrange.Thesumof theprobabilitiesremains
1. i.e. x u . u [t� .

Thisallowstheexplorationof new routesthroughnode
�

from nodei by regularants.If new andefficient routesare



foundwith node
�

asanintermediatenode,they arequickly
reinforcedandcanbeutilized for routingdatapackets.

Whena node
�

leavesthe transmissionrangeof a nodei ,
�

is removedfrom i ’s routingtable.Theprobabilityof
taking

�
asthenext hopis made0 for all destinationsfrom

node i . Theprobabilitydistribution is thennormalizedfor
all theothernodes,sothatthesumof theprobabilitiesis 1,
i.e. u . u [y� .
2.2.4 Routing data packets

Datapacketsarerouteddeterministicallybasedonthemax-
imumprobabilityateachintermediatenodefrom thesource
nodeto the destinationnode. As such,local information
(next hop probability at an intermediatenode) is usedin
sucha way that global information (a completeroutebe-
tweenthesourceandthedestination)emergesfrom it.

2.3 Algorithm parameters and other issues

Theunicastroutingalgorithmproposedherehasthreekey
parameters:H

The rate at which forward regular and uniform ants
are sent. This determineshow quickly the algorithm
discovers new paths, reinforcesexisting paths, de-
stroys unavailable pathsand adaptsto new network
topologies.H
Thepercentageof forward anduniformants. This de-
terminesthebalancebetweenreinforcingalreadydis-
coveredroutesanddiscoveringnew routes.H
The updatefunction and reinforcement, usedby the
backwardantsto reinforcetheroutingprobabilitiesat
eachnode.

2.3.1 Broadcast vs unicast in the MANET environment

Wirelessdatatransmissionoffersseveralchallengesandop-
portunitiesfor routing. Oneof the advantagesit offers is
the inherentbroadcastcapability, that is, all the neighbors
of a nodereceiveeachdatapacket transmittedby thenode.
However, the algorithmproposedabove doesnot take ad-
vantageof this inherentcapabilityof thewirelessenviron-
ment,andthoughit iswell suitedfor thewiredenvironment,
wenotethatthisalgorithmleadsto highoverheadandinef-
ficient routediscovery in thewirelessenvironment.As the
numberof nodesincreases,thenumberof antsrequiredto
find a pathto thedestinationalsoincreasesrapidly, leading
to very high overhead,high delaysaswell ashigh packet
losses.

Figure1 showsacomparisonof thegoodputrequiredfor
AODV andtheunicastalgorithmdescribedabove. Evenfor
a low mobility speedof 1 m/s,theoverheadrequiredis very
high for theunicastalgorithmwhencomparedwith AODV.

3 The Probabilistic Emergent Rout-
ing Algorithm (PERA) for Mobile
Ad Hoc Networks

In this section, we proposean algorithm basedon the
Swarm Intelligence paradigm that exploits the inherent

broadcastcapabilityavailablein the wirelessenvironment.
In this approach,the processof routediscovery is carried
out by using a flooding approachto obtain and maintain
pathsbetweensource-destinationpairsin thenetwork.

Routediscovery in the algorithm is doneby two kinds
of agentsor ants- forward and backward. Uniform ants
areno longer requiredor feasibleas the forward antsare
now broadcastrather than unicast. Theseagentscreate
and adjusta probability distribution at eachnodefor the
node’s neighbors.Theagentpackets,or Antsareof a rela-
tively small(variable)size.Theprobabilityassociatedwith
a neighborreflectsthe relative likelihoodof that neighbor
forwardingandeventuallydelivering the packet. Further,
multiple routesbetweenthe sourceandthe destinationare
created.

3.1 Bootstrapping the routing tables

As in the previous algorithm,neighbordiscovery is done
using‘HELLO’ broadcastmessages.However, therouting
tableentryfor adestinationis initializedatanodeonly after
receiving a backwardantfrom thedestinaiton.Therouting
tableis of thesameform asfor theunicastalgorithm.

Theinitializationof theroutingtableis doneby incorpo-
ratingall theneighborsof node! in theroutingtable.Each
nodeis assignedaninitial probability ��� 
 , where



is the

numberof neighborsof node! . Theroutingtablesarethen
modified to give a higherprobability to the nodethat the
backwardantjust camefrom, asdiscussedin section2.2.2,
establishinga pathtowardthedestination.

Whenthemetricunderconsiderationis delay, on there-
ceipt of the first backwardant, the valueof the time taken
by theantto travel to thedestinationfrom thecurrentnode,� J g @ is assignedto the mean,= J @ andthe variance,CFEJ @is assigneda valueof zero.Modificationsto �L= J @ ($CFEJ @ : are
madeuponthe arrival of laterbackwardantsbasedon the
learningrule as discussedin section2.2.2. On the other
hand, if the metric under considerationis the hop count
for instance,thebackwardantsaswell astheforwardants
travel on high priority queues,leadingto fasterdissemina-
tion of informationregardingthenetwork status.

Therouting tableandthe tableof local statisticsat each
nodecanbevisualizedasin Figure2.

z
{ z| z
} z
~ z
� z z
� { z

z { z z | z z } z z ~ z z � z z z� � � � � � � � � � � � � � � � � � � � � � �

� ��� � �
� � � � �

� � � �

Figure1: Goodputcomparisonof AODV and the unicast
swarmbasedalgorithmfor 20 nodesin anareaof 500mX
500mfor speedof 1 m/s.



3.2 Forward ants

To carry out the processof RouteDiscovery, forwardants
or agentsareused.Theforwardantsaresomewhatsimilar
to theRouteRequestpacketsusedby AODV [14] andDSR
[11] routingprotocols,but havesomesubtledifferences.

Eachforward ant containsthe IP addressof its source
node, the IP addressof the destinationnode,a sequence
number, a hop count field and a dynamically growing
stack. The stack containsinformation about the nodes
that the forward ant traversesand the times at which
these nodes have been traversed, ie. � 
�� � � 	 ��(
�� � � �����0�������v��� �,	� ¡� : .

Whenanodedoesnothavearecordof a routeto adesti-
nationto which it hasto senda packet, it createsa forward
antandbroadcastsit to all its neighbors.Beforebroadcast-
ing theforwardant,thenodepushesits own IP addressonto
thestackof theforwardantaswell asthetimeat which the
ant is created.Henceforth,thenodekeepssendingforward
antsperiodicallyto thedestinationfor aslong asa routeis
required.

When a node receives a forward ant, it checksin the
destinationIP addressfield if the addresscorrespondsto
its own IP address. If the forward ant is not directed
to the current node, the nodepushesits own IP address
and the time at which the ant was received at the node.
Also, the hop count field of the forward ant is decre-
mentedby 1. Each forward ant is uniquely identified
by the valuesof its sourcenode IP addressand the se-
quencenumber, i.e. the record � � %'¢T13_&� 	 /X#5<£<&13�¤�¤��(� �¤¥'¢¦��!�_&� 
 ¢-§w4&��1T: . The sequencenumber for each
ant is assignedat the sourcenodeand is uniquefor that
sourceand forward ant. Thus, eachnodestoresthe pair� � %'¢-13_&� 	 /¨#5<M<D13�¤���¤(   #$) � �¤¥'¢¦��!�_&��!�¢-§w4D�G1T: , where
the

  #$) � �¤¥'¢¦��!�_&�^!�¢-§w4&��1 is thehighestvalueof these-
quencenumberof an ant received from that sourcenode.
The nodedropsforwardantswith a sequencenumberless
than or equal to the

  #$) � �¤¥'¢¦��!�_&��!�¢T§©4&��1 that it re-
ceives from the sameprevious hop. This avoids the du-
plication of forward antsin the network aswell asthe es-
tablishmentof only the bestroute througha node. If the  #$) � �¤¥'¢¦��!�_&�2!�¢-§©4&��1 value is greaterthanthat previ-
ouslyrecordedby thenode,thenodeupdatesthisvalue.

An antwhich reachesanodethatit hasalreadytraversed
is destroyed in similar fashion. It has taken a circuitous

ª « ¬ ­ ® ¯ ° ­ ® ± ¯ ¬
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Figure2: The routing tableandlocal statisticsmaintained
at eachnode.

routeandis thereforenot allowedto contributeto thestore
of informationregardingthestatusof thenetwork.

It is importantto notethat theforwardantstravel on the
samequeuesas datapackets. In our experiments,these
queuesaremodeledasFIFO queues.Hence,the forward
antsexperiencethe samedelayandcongestionasthe data
packetswhenthemetricbeingusedis delay. Thisallowsus
to reinforcecertainroutesmorethanotherroutesdepending
on the currentnetwork statusasperceived by the forward
ants.

Whena forwardant reachesthenodethat is its intended
destination,the nodeextractsall the relevant information
from the forwardant. That is, the sourceaddress,the hop
countand the stack. The forward ant is then ‘killed’, i.e.
its memoryis deallocated.Theinformationobtainedby the
forwardant is thenusedby the nodeto createa backward
ant.

It is importantto note that sincethe the forward ant is
broadcastat the sourceand intermediatenodes,eachfor-
wardantwill causethebroadcastof multiple forwardants,
severalof whichmayfind differentpathsto thedestination,
generatingmultiplebackwardantswith thesamesourcese-
quencenumber.

Sinceforwardantsarere-broadcastatevery intermediate
node,creatingmultiple forward ants,it canbe seenthat a
forwardantbroadcastfrom thesourcenodemayfind more
thanoneroute to the destination,if more thanoneroutes
exist. In the casewhen the network is closelyconnected
andthenetwork diameter(definedastheminimumnumber
of hopsbetweenany two nodes)is small,asinglebroadcast
forwardant successfullyfinds several feasiblepathsto the
destinationnodefrom thesourcenode.

Further, the forward ant alsocollectsinformationabout
eachof thesepaths,that is, thenumberof hopson thepath
andthedelayontheintermediatesubroutesaswell asonthe
entireroute.It shouldbenotedherethattheRouteDiscov-
ery phaseis similar to thatof existing MANET algorithms
likeAODV andDSR,in thesensethataflooding-basedap-
proachis usedwhichusestheinherentlybroadcastmedium
of thewirelessenvironmentto its advantage.However, an
importantdifferenceis that our algorithm discovers a set
of routes.Further, we obtaininformationaboutthesepaths
andusethis informationasfeedbackto thealgorithm.

3.3 Backward ants

Whena forwardant reachesthe destinationnodethat it is
intendedfor, the destinationnodecreatesa new agent,a
backwardant.Thepurposeof thebackwardantis to retrace
thepathof thecorrespondingforwardant that triggeredits
creation. It usesthe informationcontainedin the forward
ant on the reversepathto changethe probability distribu-
tion ateachnodeandupdatetheroutingtablesto reflectthe
currentstatusof thenetwork moreaccurately.

Whena nodereceivesa forwardant that is intendedfor
it, thenodecreatesanew agent,abackwardant.TheIP ad-
dressof thesourcenodeof this agentis thedestinationad-
dressof thebackwardantandthecurrentnodeis thesource
of the backward ant. The backward ant is similar to the
forwardant,it containsthefollowing fields:



H
DestinationIP address: The IP addressof thesource
of theforwardant,H
SourceIP address: TheIP addressof thecurrentnode,
i.e. thenodecreatingthebackwardant,H
Hop count,H
Thestackof theforwardant,H
The sequencenumberof the forward ant - this is not
uniqueanymorefor thesetof backwardants.

The backward ant travels in unicastfashionbackto the
sourcenode. It is forwardedon high priority queues.The
stackof theforwardantis usedto routeit. Usingtheaddress
at thetop of thestack,thenodeforwardsthebackwardant
to thecorrectnext hop.

Supposethataforwardantfrom sourcenode� is received
at node < . Node < generatesa backward ant. When the
backward ant is received at the next hop (also the penul-
timatehop of the correspondingforwardant), node I , the
stackof the backward ant is poppedonce. The resulting
informationis thefollowing:H

TheIP addressof thecurrentnode I ,H
The


÷� � � �,	� ¡�
, the time at which the corre-

spondingforwardantwasreceivedat node I .H
The time at which the backward ant was createdat
its sourcenode < , �0
\� �,	ø ¡�

. Then, the time
takento reachthedestinationof the forwardant from
the currentnode is the difference

�0

� �,	� ¡� U
�� � � �,	� ¡�
,H

The numberof hopsfrom the currentnode I to the
destination< arecalculatedby subtractingthevaluein
thehopcountfield from thenetwork diameter.

Thesevaluesare usedto updatethe routing and local
statisticstablesat theintermediatenodesI .

If routing tableentriesfor destination< do not exist at
node I , new onesarecreatedwith the neighborlist of the
node I . All the neighboringnodesaregivena probability
of �O� 
 , where



is the numberof neighborsof the nodeI . The routing tablesarethenreadjustedaccordingto the

probabilityrulesdiscussedin section2.2.2.
If routingtableentriesfor < alreadyexist at node I , they

are updatedso as to increasethe probability (goodness,
preference)of takingasthenext hop,thenodefrom which
thebackwardanthasjustbeenreceived,nodeI to reachthe
destination< .

Theupdaterulesusedarethesameasthoseusedfor the
previously discussedunicastalgorithmandhave beende-
scribedin section2.2.2.

To further illustratethe functioningof the algorithmfor
individualantsaswell asindividualnodes,Figure3 depicts
thealgorithmflow for eachant,while Figure4 depictsthe
algorithmflow at eachnode.

Thechangesrequiredto theroutingtablesdueto mobility
of nodesarethesameasfor theunicastalgorithmandhave
beendiscussedin section2.2.3

3.4 Routing data packets

Thedatapacketscannow beroutedvia a numberof possi-
bleschemes:

ù ú û ü ú
ý þ ÿ � � ÿ � � � � � ÿ � � � � � � þ � � 	 
 þ ÿ � ÿ þ � � � � � þ� � � � 
 � � � 
 þ � þ � � � � � � ÿ � � � � � � 	 � � � � � �

� � ÿ þ � � � � � � � þ 	 
 � � þ �� þ ÿ � � ÿ � � � � � þ � � 
 � � � þ ÿ �� � � 
 � 
 � 
 
 � � � � � � � � � �� � ÿ þ � � � � � � � � � þ � � þ ÿ � � 
 � � � � � �

� � �
� � �  ! " # � $
%  ! � � & �
' ( #

) * + , * - . / * 0 1 2 0 3 4 - * / 5 0 / 1 0 6 4/ 7 2 7 8 9 7 1 0 4 6 7 8 : ; . * / 8 6 : 6 * 1 7

< 7 3 4 8 6 0 4 8 * 6 =
> * ? 7 3

> * 1 7 @ A 0 1 1 / 7 3 3 0 1 1 7 14 * 0 6 4 3 4 0 2 B 0 6 1 0 6 4 8 3/ 7 . / * 0 1 2 0 3 4 4 * 6 7 8 : ; . * / 3 ) * + , * - - * / 5 0 / 1 0 6 4 8 3 B 8 C C 7 1

D 7 6 7 / 0 4 7 0 . 0 2 B 5 0 / 1 0 6 4 4 * * / 8 : 8 6 0 4 * /* - - * / 5 0 / 1 0 6 4 0 6 1 3 7 6 1 5 8 4 ; ; 8 : ;+ / 8 * / 8 4 ,
A * + 6 7 E 4 6 * 1 7 - / * F 4 ; 7 0 6 4 3 4 0 2 B0 6 1 : * 4 * 6 7 E 4 6 * 1 7 8 6 G 6 8 2 0 3 4 - 0 3 ; 8 * 6

H + 1 0 4 7 / * G 4 8 6 : 4 0 . C 7 3 0 46 * 1 7

Figure3: Algorithm for eachant.
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Figure4: Algorithm at eachnode.



1. Thedatapacketscanberoutedonthebasisof thehigh-
estprobability for the next hopat a nodefor the data
packet’s eventualdestination.This createsa complete
globalrouteby usinglocal information.

2.
°

The datapacketscanalsobe routedprobabilistically.
Previousresults[3] for swarmintelligencealgorithms
show excellent resultsfor this methodin the caseof
staticnetworkswith relatively smalltopologies.How-
ever, thismightnotbeasuitablemethodfor MANETs
with rapidtopologychanges.

4 Simulation Results

Network Simulator2 [22] discreteeventsimulatorwasused
to simulateouralgorithm.At thephysicallayer, radioprop-
agationdistancefor eachnodewas set to ±³² a § and the
channelcapacitywas ±   4".-� . Our modeldoesnot support
radio capture[15] so, in the caseof packet collisions all
packetsaredropped. The IEEE 802.11DistributedCoor-
dinationFunction(DCF) [12] asimplementedin NS2was
usedastheMediumAccessControl (MAC) protocol. The
communicationmedium is broadcastand nodeshave bi-
directionalconnectivity. Eachsimulationwasrun for 900
seconds.Multiple runswith differentseedvalueswerecon-
ductedfor eachscenarioandthe collecteddatawereaver-
agedover thoseruns. The algorithm was developedas a
separateNS2 routing layer protocol. The mobility model
usedwastheRandomWaypointmodel.

We usethethroughput,thegoodputandtheaverageend-
to-endpacket transmissiondelayfor comparisons.All the
simulationswere carried out with the sameseedfor the
given simulationscenarioandhencethe resultscanbe di-
rectly comparedfor theroutingalgorithms.

´ %�%�<D.B¢-�0[ ��#$�D#2.-#5_ ] ���D�^13��_D�G ¶µ��¤<Z#$� 13%'¢-�D��1F�¸·,� aMa� %'�D#56¤.ø#£_ ] ���D�^13�¤_&�� ¶µø�¤<Z#$� 13%'¢T�D��13�
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� +B1F%'¢º¹�+O.M¢T� [ ��#$�D#�.-#5_ ] ���D�;13�¤_¶µø<�#$��<£�¤�G�� "!�#$�� &%'!��»·,� aMa��#$�D#2.-#5_ ] ���D�2�¤�G!��2I£1F%'§ �¤%'¢-1F_D���
(11)

The end-to-enddelay is the interval betweenthe instanta
sourcegeneratesa packet and the time at which the des-
tination receives the packet. The end-to-enddelay is ag-
gregatedfor eachpacket for eachsource-destinationpair.
The averageper packet end-to-enddelay throughtime in-
tervals of 100 secondsis thencalculatedasthe numberof
source-destinationpairsandthenumberof packetsreceived
is known.

4.1 Hop count based optimization

In theseexperiments,we usedthe hop count as the met-
ric for operationof the algorithm(insteadof delay). The
network consistedof ± a nodes,randomlyplacedin anarea
² aMa § x ² aMa . ¼ sourceand destinationpairs were ran-
domlychosenfrom these± a nodes.Eachsourcetransmitted�?.ø#£_ ] ���D�B�¤�¤_ . Nodesin thesimulationweremobile.

4.2 Mobility speed

In theseexperiments,themobility speedwasvariedbetweena
to ± a §©�B� , i.e., . (0,5,10,20,15,20)§w�M� .
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Figure5: Variationin goodputwith mobility.

Figure 5 shows the goodputas a function of the node
mobility speed.It is seenthat the goodputdecreaseswith
increasein mobility. This is to be expectedsincewith an
increasein mobility, a largernumberof forwardantsarere-
quiredto besentto discovernew routesandmodify andup-
dateexistingrouteswhicharenolongeravailablefor packet
transmission.
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Figure6: Percentagepacket lossfor varyingmobility.

Figure6 showsthepercentagepacketlossasafunctionof
themobility. With

a
andlow mobility ( ��§©�B� ), thepacket

loss is
a
. With speedsof ² §©�B� , the packet loss is under

±ºñ . However, with increasingmobility, the packet loss
increaseslinearly. Thus,even the increasedrateof send-
ing ants(asevidencedby thedecreasedgoodput)doesnot
serve to maintaina low percentageof packet loss. To keep
thepacket losseslow, therateof sendingantshasto be in-
creasednon-linearly.

4.3 Rate of sending forward ants

In theseexperimentsthe rateof sendingforward antswas
variedfor differentmobility speedsandthebehavior of the
algorithmwasstudied.

Table1 shows the variation in goodputandpercentage
packet lossasa function of the

��

� 	ø
\���������0�
(the

time periodbetweenthe transmissionof two forwardants)
for ± a nodesin an areaof ² aMa § Nò² aMa § with speedsof



ANT INTERVAL Goodput % PacketLoss
15 7.92 4.39
25 11.44 10.37
50 7.92 11.60
100 19.24 15.59

Table 1: Goodput and % Packet Loss with
ANT INTERVAL with mobility of 10 m/s.

ANT INTERVAL Goodput % PacketLoss
50 12.12 3.67
100 9.29 5.45
150 8.37 5.45

Table 2: Goodput and % Packet Loss as functions of
ANT INTERVAL for mobility of 5 m/s.� a §w�M� anda pausetime of ² a �¤�¤_&� . For a high valueof�0

� 	�

�����Z���0�

, the packet loss is high. This is ex-
plainedby the fact that information regardingthe current
stateof the network is not updatedrapidly. The algorithm
fails to adaptin many casesresultingin high packet loss.
However, as the period betweenthe sendingof two con-
secutive forwardantsis decreased,the packet lossreduces
significantly. This shows that the algorithm adaptsto the
changesin the network quickly as the numberof forward
antsbeingsentincreases.With a valueof 15 secondsfor
the

��

� 	ø
\���������0�
, thepacket lossis ¼*k ó³ôõñ .

Table2 showssimilar resultswith speedsof ²�§©�B� . For a
low valueof

�0
\� 	ø

� �������0�
, thepacket lossis lower

thanfor a highervalue.Further, it is importantto notethat
thepacket lossfor valuesof

�0
\� 	ø

� �������0�
100and

150arethesame.This is becausethe increasein thenum-
ber of forward antsthat aresentis not sufficient to cause
anincreasein performancein termsof goodputandpacket
loss.Thegoodputthereforegoesdown sincethepacketloss
remainsconstant.

Table3 showssimilar resultswith speedsof �h§w�M� . Since
themobility is very low, theadaptivity requiredof thealgo-
rithm is relatively low. Even by sendingantsat a higher
rate,thereis nochangein thepacketloss,sinceasinglefor-
ward ant sentat the startof the simulationobtainsenough
datafor all datapacketsto besuccessfullyrouted.

4.4 Reinforcement

The learningrule usedin our experimentis rule 2 in sec-
tion 2.2.2,which allows usinga costfunction, I^��_$: asde-
scribedin section2.2.2. In this experimentthevalueof the
reinforcementusedto updatetheroutingtablesat thenodes
is variedbetween0.1 and0.5 (0.1, 0.15,0.20,0.30,0.40,
0.50).

Figure7 shows thevariationof thegoodputasa function

ANT INTERVAL Goodput % PacketLoss
300 17.23 0
900 19.18 0

Table3: Goodputand% PacketLossasfunctionsof mobil-
ity with 1 m/s.

of thevalueof thereinforcement.Thespeedsof thenodes
are ² §w�M� and � a §©�B� . The goodputis higher for speed
²Z§w�M� , dueto the fewer numberof antpacketsrequiredto
discoveravailableroutes.

Figure8 showsthevariationof thepercentagepacketloss
asafunctionof thevalueof thereinforcementfor speedsof
² §©�B� and � a §©�B� . Asexpected,thepacketlossis lowerfor
lowerspeedof movement.However, it is importantto note
thatwith an increasingvalueof the reinforcementapplied,
the packet lossfirst increasesand thendecreases.This is
becausea weak(small) appliedreinforcementimplies that
routesdo not getpositively reinforcedto a sufficiently high
degree. In the situationwheremobility exists in the net-
work, this reducesthe adaptivity of the algortihm,leading
to staleroutesbeingusedfor thetransmissionof datapack-
ets. If thereinforcementappliedis increasedbeyonda cer-
tainvalue,it causestheroutesto bereinforcedtoofast.This
leadsto routesthatmaynotactuallybethebestroutesbeing
usedfor thetransmissionof datapackets.

5 Comparison with AODV

We comparedthe algorithm proposedin section 3 with
AODV [14, 15] in termsof throughput,delayandgoodput.

5.1 Goodput comparison

Figure 9 shows a comparisonof the goodputfor AODV
and PERA for a scenariowith 20 nodesin an area of
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Figure7: Variationin goodputvs reinforcementparameter.
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Figure 8: Percentagepacket loss with varying reinforce-
mentparameter.



² aMa § N ² aBa § with the nodesmoving with speedsof��§©�B� anda pausetime of � aBa �¤�¤_&� . Sincethe mobility
is low, theoverallgoodputfor bothalgorithmsis high.
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Figure9: Goodputcomp.of PERAandAODV at1 m/s.

Figure10 shows a comparisonof PERAandAODV for
the samescenarioasabove, but with a mobility speedof� a §©�B� . The goodputis observed to be lower than that
of AODV. This is becauseforward antsaresentmorefre-
quentlyto allow quickadaptationto thenetwork conditions.
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Figure10: Goodputcomp.of AODV andPERAat10 m/s.

5.2 Throughput

Figures11 and 12 show the throughputcomparisonsfor
AODV andPERAfor mobility speedsof �ø§©�B� and � a §©�B�
andpausetime � aBa ���¤_&� . At the lower speed,thethrough-
put is thesamefor bothAODV andPERA,however, at the
higher speed,the throughputis slightly lessfor PERA in
somecases.This is becausewith mobility, PERA adjusts
graduallyto thechangesin topology.

5.3 Delay

Figures13and14show thecomparisonof delayfor AODV
and PERA. Both algorithms show a large initial delay,
which is requiredfor routesto be set up. Subsequently,
AODV showslargedelaysagainin situationswith highmo-
bility. PERA on the other hand,shows low delaysin all
cases,asinsteadof bufferingdatapacketsuntil a new route
id found, PERA deliversthe datapacket throughan alter-
nateroute.
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Figure11: Throughputcomp.AODV/PERA,1 m/s.
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Figure12: Throughputcomp.AODV/PERA,10 m/s.
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Figure13: Delaycomp.of AODV andPERAat1 m/s.
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6 Conclusion

In this paperwe have proposeda setof routingalgorithms
for MANETs basedon the swarm intelligenceparadigm.
In our experimentswe observe that end-to-enddelay for
swarmbasedrouting is low comparedto AODV. However,
thegoodputfor thesealgorithmsis lower thanfor AODV in
scenarioswith high mobility.
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