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Abstract

Mobile ad hoc networks are infrastructure-lessietworks
consistingof wireless, possibly mobile nodeswhich are
organizedin peerto-peerand autonomoudashion. The
highly dynamic topology limited bandwidth availability
and enepgy constraintsmake the routing problema chal-
lengingone. In this paperwe take a novel approactto the
routing problemin MANETS by usingswarm inteligence-
inspiredalgorithms.The proposedalgorithmusesAnt-like
agentgo discorerandmaintainpathsin aMANET with dy-
namictopology We presensimulationresultsthatmeasure
the performanceof our algorithmwith respecto the char
acteristicof aMANET, thevaryingparametersf thealgo-
rithm itself aswell as performancecomparisorwith other
well-known routing protocols.

1 Introduction

A substantiatesearcleffort hasgoneinto the development
of routing algorithmsfor MANETs. A numberof routing
algorithmshave beenproposed.Someof theseare DSDV,
OLSR, CGSR,AODV, DSR, TORA, ZRPR, LAR andser-
eral others[11, 13, 14, 15]. Theseprotocolscan gener
ally becatgyorizedaseitherproactiveor reactiveprotocols.
Proactve protocolsbuild routesin the network constantly
even though there might not be paclets to be transmit-
ted betweena certainsetof nodes. Reactve (on-demand)
protocols,on the other hand, attemptto establishmulti-
hop betweenpairs of nodesonly when there are paclets
to be exchangedbetweenthesepairs of nodes. Recently
there has beengreatinterestin so called Swarm Intelli-
gence[l], [2]; a setof methodsto solve hard static and
dynamic optimization problemsusing cooperatie agents
(usually called ants, since the methodwas inspired from
collaboratve efforts in insects). Ant-inspired routing al-
gorithmswere developedand testedby British Telecomm
andNTT for bothfixedandcellularnetworkswith superior
results[3, 4, 5, 6, 7, 8, 9, 10]. AntNet, a particularsuch
algorithm, was testedin routing for datacommunication
networks [3]. The algorithm performedbetterthan OSPFE
asynchronouslistributedBellman-Ford with dynamicmet-
rics, shortespathwith dynamiccostmetric, Q-R algorithm
andpredictive Q-R algorithm([1, 3,4, 5,6, 7, 8].

rithms in routing and load balancingfor fixed commu-
nication networks we first proposedapplicationsof the
swarm-intelligenceideasfor dynamicadaptve routing in
in MANETSs in the proposal[16]. We initiated research
on theseideassince October2000, and a first presenta-
tion of our resultswasgivenin the seminar[18]. Interest
in applicationsof ant-basedoutingin MANETS hasrisen
and several papershave appearedecently on the subject
[17, 19, 2Q]. For instance,Guneset al. have proposedan
Ant-basedapproacho routingin MANETSs in [19]. Their
approachusesantsonly for building routesinitially and
henceis a completelyreactve algorithm. They have also
shavn someperformanceomparisonsvith otherMANET
routing protocolsbasedon the pausetime of mobile nodes.
Marwahaetal. [20] have exploreda hybrid approachusing
bothAODV andAnt-basedexploration.

In our researchwe discovered early that there are
two central challengesin making the promising swarm-
intelligenceideaswork successfullyin the difficult domain
of MANET routing. Thefirst is to getthe computationsn
suchaform andimplementatiorso asto to be fastandfast
cornverging. This is necessargiven the mobile natureof
MANETSs andtheresultingchangingopology Thesecond
and most seriousis to reducethe overhead(OH) created
by theseproactie algorithms. Straightforvard application
of ant-basedouting, like AnNet or other algorithmsthat
weresuccessfuin fixedtopologynetworks, doesnot work
well in MANETSs dueto a large OH. We addressedboth
challengesn ourresearcho dateonthis problem.This pa-
perdescribegprimarily new methodsandassociatedvalua-
tionsfor combatingthe secondandmostseriouschallenge.
We first describeanalgorithmbasedn swarm-intelligence
basedon unicastcommunicationgor controlandsignaling
paclets(ants). We comparethis algorithm (afterimprove-
ments)to AODV (apopularroutingalgorithmfor MANETSs
[14, 15]) and show that the overheadrequirementof the
swarme-intelligencealgorithm significantly harmsits com-
petitiveness.Thenwe describea new algorithmwhich uti-
lizesthe inherentbroadcashatureof wirelessnetworksto
multicastcontrolandsignallingpaclets(ants).This second
algorithm competeswell with AODV and we shov here
several comparisonshy simluationsin a standardbench-
mark for MANETSs [12, 15, 22]. We describeseveral ad-
ditional innovationswe have introducedn bothalgorithms
andin particularthe advantageo discovering, storingand

MANETs operatein a distributed and asynchronous using multiple (ranked) pathsbetweensource-destination

manner Inspired by the successof ant-agentalgo-

pairs. For more detailson our new algorithmsand their



performancevaluationwe referto [21].

Our approachand methodologyhasa strongdistributed
optimization foundation, which leadstowards promising
analyticaltreatmentwork on this is underway andwill be
reportedelsavhere.In additionwe have shavn, in a differ-
entpartof our recentwork, thatthesenew algorithmshave
superiormrouting securitypropertiesa significantdiscovery
giventhe weakstateof affairs regardingsecurityin all ex-
isting MANET routing protocolsand routing protocolsat
large. Our work in securityandtrustfor MANETS hasin-
troducedan importantinnovation via a novel optimization
framework for securityandtrust. For further detailsabout
our resultson securityand trustin MANETS we refer to
[23, 24].

2 A swarm intelligence based unicast
algorithm for MANETSs

In this section,we describea routing algorithm for Mo-
bile Ad Hoc Networks basedon the swarm intelligence
paradigmandsimilar to the swarm intelligencealgorithms
describedn [3, 9]. Thealgorithmuseghreekindsof agents
- regularforward ants,uniform forward antsandbackward
ants. Uniform andregularforward antsareagentqrouting
paclets)thatare of unicasttype. Theseagentsproactively
explore andreinforceavailable pathsin the network. They
createa probability distribution at eachnodefor its neigh-
bors. The probability or goodnessalue at a nodefor its
neighboreflectsthelik elihoodof adatapacletreachingts
destinatiorby takingthe neighborasa next hop. Backward
antsare utilized to propagatehe information collectedby
forward antsthroughthe network andto adjustthe rout-
ing tableentriesaccordingto the perceved network status.
Nodesproactively andperiodicallysendout forward regu-
lar anduniform antsto randomlychoserdestinationsThus,
regardlesof whethera packetneedso be sentfrom anode
to anothemodein the network, eachnodecreatesandperi-
odically updategheroutingtablesto all the othernodesin
thenetwork.

Thealgorithmassumesidirectionallinks in thenetwork
andthatall the nodesin the network fully cooperaten the
operationof thealgorithm.

2.1 TheOperation of thealgorithm
2.1.1 Bootstrapping of therouting tables

Initialization andneighbordiscoveryis doneby single-hop,
broadcastd ELLO messageshat are transmittedperiod-
ically at aninterval of HELLO_INTERV AL seconds.
Thesemessageareusedat nodeso build theneighbotlist,
whichis thenusedfor theinitialization of theroutingtable.
The initial bootstrappingdf the routing tablesis doneat a
nodewhenthefirst forwardantis beingsentoutto acertain
destination.

At this time, there are no routing table entries (i.e.
no probabilitiesfor next hops)for that particularsource-
destinationpair. The creationof the first forward ant at
a nodefor the source-destinatiopair causeshe routing
table entriesto be initialized with probabilities1/N for

eachneighborasthenext hopfor therespectre destination,
whereN is the numberof neighborsof the nodewherethe

routingtableis beingestablishedTheuniform probabilities
assignedo all the neighborgndicatethatnothingis known

aboutthe stateof the network. Theseprobabilitiesarethen

adjustedby backward ants,whenbackward antsfrom the

destinatiorarerecevedatthe sourcenode.

2.1.2 Theroutingtable

The routing table at each node is organizedon a per
destination basis and is of the form (Destination,
Next hop, Probability). It containsthe goodneswvalues
for a particularneighborto be selectecasthe next hop for
a particulardestination.Further eachnodealsomaintains
a table of statisticsfor eachdestinationd to which a for-
ward ant hasbeenpreviously sent;the meanandthe vari-
ance(usq, 02,) for the routesbetweensourcenode s and
destinatiomoded.

Theroutingtablesthencontainthe following datastruc-
tures:

e Theprobability(goodnessalue)of takingasnext hop
nodef atanoden , P, to eventuallyreacha certain
destinationd.

e The meanandthe variance,(ti,q, 0rq) @t noden to
reachdestination.

2.1.3 Forward ants

Eachnodeperiodicallysendgorwardantsto randomlycho-

sendestinatiomodesthroughoutthe network. At thetime

of creationof theagentjf aroutingtableentryis notpresent
atthenodefor thatparticulardestinationaroutingtableen-

try is created.This is alsotrue of the forwardingof antsat

intermediatenodes. Eachforward ant paclet containsthe

following fields:

SourcenodelP address
DestinatiornodelP address
Next hopIP address

Stack

Hop count

Hence,the next hop of the forward antis determinecht
thesendingnodeandtheforwardantis sentin unicastfash-
ion. Thatis, thoughthe forward antis receved at all the
neighboringnodesiit is acceptedat the MAC layer) only
by the nodeto which it hasbeenaddressed.

The stackof the forward antis a dynamicallygrowing
datastructurethat containsthe IP addressesf the nodes
that the forward ant hastraversedas well as the time at
whichtheforwardantreachedhesenodes.

Forward antsareroutedon normalpriority queuesthat
is, they usethe samequeuesas normal datapaclets. As
such,forwardantsfacethe samenetwork conditions(queu-
ing and processingdelays, network congestion)as data
paclets.Forwardantsthereforecontaininformationregard-
ing theroutethatthey have traversed.

2.2 Routingthe Forward ants

Theforwardantis routedateachnodeaccordingo theper
destinatiorprobabilitiesfor thenext hopin theroutingtable
atthecurrentnode. Thus,theforwardingof theforwardant



is probabilisticandallows explorationof pathsavailablein
thenetwork.

Theseagentsarehenceforthreferredto asRegular Ants
similar to [9] to distinguishthem from Forward Uniform
Ants Whena forward antis receved at a node,it checks
to seeif it haspreviously traversedthe node. If it hasnot
previously traversedthe node, the IP addressof the node
andthecurrenttime arepushednto the stackof theant. In
casethe nodelP addresss foundin its existing stack,the
forwardanthasgoneinto aloop andis destrged.

2.2.1 Uniform ants

Sinceforwardregularantsarerouteduniformly, andthere-
sulting backward antsreinforcethe routes,this canleadto
a saturationof the probabilities,thatis the probabilitiesof
one(obsenedto bethebest)routegoto 1 andtheprobabili-
tiesof theotherroutesgoto 0. As aresult,new routesnever
getdiscovered. In a dynamicsituationwith the possibility
of breakagef links andmobility of nodesthis meanshat
thealgorithmis unableto adaptto changesn the network.

To make the algorithm fully adaptie to mobility and
topology changeswe introduceanothersetof ants,called
uniform ants. Theseare similar to the agentsproposedn
[9]. X % of thetime, insteadof creatingregularants,each
nodesendoutuniform ants. Thesearecreatedn thesame
mannerasregularants,howveverthey arerouteddifferently.
Insteadbf usingtheroutingtablesateachnode they choose
the next hop with uniform probability. If the currentnode
has N neighbors,thenthe probability of taking a neigh-
bor asthe next hopis 1/N. Thisis in contrastto regular
antswhich prefertakingnext hopswith higherprobabilities
moreoften.

Uniform antsexplore and quickly reinforce newly dis-
coveredpathsin the network. Further they ensurehatpre-
viously discoveredpathsdo not getsaturated.

2.2.2 Backward ants

When a regular or uniform ant reachests destination,it
generates Badkward Ant. The backward antinheritsthe
stackcontainedn the forward ant. The forward antis de-
allocated.The backwardantis sentout on the high priority
queues.This ensureghatbackward antsarepropagatedn
thenetwork quickly, sothatthey canupdatetheinformation
regardingthe stateof the network without delay

The purposeof the backward antis to propagatenfor-
mationregardingthe stateof the network gatheredby the
forwardants.The backwardantretraceghe pathof thefor-
wardantby poppingthe stack,makingmodificationsin the
routingtablesandstatistictablesat eachintermediatenode
accordingo oneof thefollowing learningrules:

1.

Ptq « Pgq+1(1 — Pfaq) (1)

Pnd — Pnd - T-Pnd (2)

Herer is thereinforcemenparameter

2.
(Pra+r)
Pra = (1+7r) 3)
-Pnd

In boththeabove casesthereinforcemenparameterr can
bedefinedasafunctionof somemetricor acombinationof
metrics,e.g.delayor the numberof hops.

L
f(e)

Here f(c) is a monotonefunction of the metricandk is a
constant.The backward ant alsoupdateshe existing esti-
matesof the forwardtrip time atthe sourcenodeaswell as
intermediatenodes. The trip time of this backward antis
usedto updatethe statistics.

Themeanandthevariance 4, 07,) areupdatedising
thefollowing updaterules:

L k>0 (5)

r =

Pkd < Hkd + 1(0k—d — Hkd) (6)

where .y is the meanof the anttrip timesat the current
node, k, to the destinationnode,d. 7 is a constanto .4
is the trip time of the ant from the currentnodek to the
destinatiomoded.

and

(7)

whereo?, is thevarianceof theanttrip timesatthe current
node,k, to thedestinatiomode,d. 1, ox_.4 andyuq arethe
sameasabove.

Org — g+ 1((0k—d — 1rd)” — Thg)

2.2.3 Changesin routing tables dueto node mobility

Whena nodeor nodesenterinto the transmissiorrangeof
anode,this createghe possibility of therebeingnew avail-
ableroutesto a destinationthat was eitherreachableby a
longer route or previously unreachable.The detectionof
anewly movednodeis throughthe beaconingnechanism.
The Hello messagebroadcasby eachnodegive informa-
tion regardingthe availability of anodeasa next hop. Sup-
posea node A movesinto the neighborhoodf a node B,
thenthelP addres®f A is addedto thelist of neighborsof
B andvice versa.Node B thenadjustsits routing tableto
include A with a small probability. So, if node B hasex-
istingroutesto nodesd , da, ..., d,,, it addsA asanext hop
with asmallprobabilityfor eachof dy, ds, ..., d,,. Thus,the
probability of aforwardanttaking A is,

pa=60<1 (8)

andthe probability of the othernodesy, n # A becomes,
)

Pi=Pi— 5 (9)

whereN wasthenumberof B’sneighbordeforeA entered

its transmissiomange.Thesumof theprobabilitiesremains
Thisallowstheexplorationof new routesthroughnode A

from nodeB by regularants.If new andefficientroutesare



foundwith nodeA asanintermediatanode they arequickly
reinforcedandcanbe utilized for routing datapaclets.
Whena node A leavesthe transmissiomangeof a node
B, Aisremovedfrom B’sroutingtable. The probability of
taking A asthenext hopis madeO for all destinationgrom
nodeB. Theprobability distribution is thennormalizedfor
all theothernodes sothatthe sumof the probabilitiesis 1,

2.2.4 Routing data packets

Datapacletsarerouteddeterministicallypasednthe max-
imum probabilityateachintermediatenodefrom thesource
nodeto the destinationnode. As such, local information
(next hop probability at an intermediatenode)is usedin

sucha way that global information (a completeroute be-
tweenthe sourceandthe destinationemegesfrom it.

2.3 Algorithm parametersand other issues

The unicastrouting algorithmproposecherehasthreekey
parameters:

e Therate at which forward regular and uniform ants
are sent This determineshow quickly the algorithm
discovers new paths, reinforcesexisting paths, de-
stroys unavailable pathsand adaptsto new network
topologies.

e Thepercentae of forward and uniformants This de-
terminesthe balancebetweerreinforcingalreadydis-

coveredroutesanddiscoveringnew routes.
e The updatefunction and reinforcement usedby the

backward antsto reinforcethe routing probabilitiesat
eachnode.

2.3.1 Broadcast vsunicastintheMANET environment

Wirelessdatatransmissiomfferssereralchallengesindop-
portunitiesfor routing. One of the advantagest offersis
the inherentbroadcastapability thatis, all the neighbors
of anodereceie eachdatapaclettransmittedby the node.
However, the algorithm proposedabore doesnot take ad-
vantageof this inherentcapability of the wirelesserviron-
ment,andthoughit is well suitedfor thewiredervironment,
we notethatthis algorithmleadsto high overheadandinef-
ficientroutediscovery in the wirelessenvironment. As the
numberof nodesincreasesthe numberof antsrequiredto
find a pathto the destinatioralsoincreasesapidly, leading
to very high overhead high delaysaswell ashigh paclet
losses.

Figurel shavs acomparisorof thegoodputrequiredfor
AODV andtheunicastalgorithmdescribedbove. Evenfor
alow mobility speeddf 1 m/s,theoverheadequireds very
high for theunicastalgorithmwhencomparedvith AODV.

3 The Probabilistic Emergent Rout-
ing Algorithm (PERA) for Mobile
Ad Hoc Networks

In this section, we proposean algorithm basedon the
Swarm Intelligence paradigmthat exploits the inherent

broadcastapabilityavailablein the wirelesservironment.
In this approachthe processof route discovery is carried
out by using a flooding approachto obtain and maintain
pathsbetweersource-destinatiopairsin the network.

Routediscovery in the algorithmis doneby two kinds
of agentsor ants- forward and backward. Uniform ants
are no longerrequiredor feasibleasthe forward antsare
now broadcastrather than unicast. Theseagentscreate
and adjusta probability distribution at eachnodefor the
nodes neighbors.The agentpaclets,or Antsareof arela-
tively small(variable)size. The probabilityassociateavith
a neighborreflectsthe relative lik elihood of that neighbor
forwarding and eventually delivering the paclet. Further
multiple routesbetweenthe sourceandthe destinationare
created.

3.1 Bootstrapping therouting tables

As in the previous algorithm, neighbordiscovery is done
using‘HELLO’ broadcastessagestHowever, therouting
tableentryfor adestinatioris initialized atanodeonly after
receving a backwardantfrom the destinaiton.Therouting
tableis of the sameform asfor the unicastalgorithm.

Theinitialization of theroutingtableis doneby incorpo-
ratingall theneighborsof noden in theroutingtable.Each
nodeis assignedninitial probability1/N, whereN is the
numberof neighborof noden. Theroutingtablesarethen
modified to give a higher probability to the nodethat the
backwardantjust camefrom, asdiscussedn section2.2.2,
establishinga pathtowardthedestination.

Whenthe metricunderconsiderations delay on there-
ceiptof thefirst backward ant, the value of the time taken
by theantto travel to the destinatiorfrom the currentnode,
T, _q is assignedo the mean,u,, 4 andthe variance,aid
is assignedh valueof zero.Modificationsto (i, o2,;) are
madeuponthe arrival of later backward antsbasedon the
learningrule as discussedn section2.2.2. On the other
hand, if the metric under considerationis the hop count
for instancethe backward antsaswell asthe forward ants
travel on high priority queues)eadingto fasterdissemina-
tion of informationregardingthe network status.

Theroutingtableandthetableof local statisticsat each
nodecanbevisualizedasin Figure?2.
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Figure 1: Goodputcomparisonof AODV and the unicast
swarm basedalgorithmfor 20 nodesin anareaof 500mX
500mfor speedof 1 m/s.



3.2 Forward ants

To carry out the processof RouteDiscovery, forward ants
or agentsareused. The forward antsare someavhat similar
to theRouteRequespaclketsusedby AODV [14] andDSR
[11] routing protocols but have somesubtledifferences.

Eachforward ant containsthe IP addressof its source
node, the IP addressof the destinationnode, a sequence
number a hop count field and a dynamically growing
stack. The stack containsinformation about the nodes
that the forward ant traversesand the times at which
these nodes have been traversed, ie. (NODE_ID,
NODE_TRAVERSALTIME).

Whenanodedoesnot have arecordof arouteto a desti-
nationto which it hasto senda paclet, it createsa forward
antandbroadcast# to all its neighbors Beforebroadcast-
ing theforwardant,thenodepushests own IP addres®nto
the stackof theforwardantaswell asthetime atwhichthe
antis created.Henceforththe nodekeepssendingforward
antsperiodicallyto the destinatiorfor aslong asa routeis
required.

When a node receves a forward ant, it checksin the
destinationIP addresdfield if the addresscorrespondgo
its own IP address. If the forward ant is not directed
to the currentnode, the node pushesits own IP address
and the time at which the ant was receved at the node.
Also, the hop count field of the forward ant is decre-
mentedby 1. Each forward ant is uniquely identified
by the valuesof its sourcenode IP addressand the se-
quencenumber i.e. the record (Source IP address,
Sequence Number). The sequencenumber for each
antis assignedat the sourcenode and is unique for that
sourceand forward ant. Thus, eachnode storesthe pair
(Source IP address, Max Sequence number), where
the Max Sequence number is thehighestvalueof the se-
quencenumberof an ant receved from that sourcenode.
The nodedropsforward antswith a sequenceaumberless
than or equalto the Max Sequence number thatit re-
ceives from the sameprevious hop. This avoids the du-
plication of forward antsin the network aswell asthe es-
tablishmentof only the bestroute througha node. If the
Max Sequence number valueis greaterthanthat previ-
ouslyrecordedby the node thenodeupdateghis value.

An antwhich reaches nodethatit hasalreadytraversed
is destryed in similar fashion. It hastaken a circuitous
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Figure2: Therouting tableandlocal statisticsmaintained
ateachnode.

routeandis thereforenot allowedto contributeto the store
of informationregardingthe statusof the network.

It is importantto notethatthe forward antstravel on the
samequeuesas data paclets. In our experiments,these
queuesare modeledas FIFO queues.Hence,the forward
antsexperiencethe samedelayand congestiorasthe data
pacletswhenthemetricbeingusedis delay Thisallowsus
toreinforcecertainroutesmorethanotherroutesdepending
on the currentnetwork statusas perceved by the forward
ants.

Whena forward antreacheghe nodethatis its intended
destination the node extractsall the relevant information
from the forward ant. Thatis, the sourceaddressthe hop
countandthe stack. The forward antis then‘killed’, i.e.
its memoryis deallocatedTheinformationobtainedby the
forward antis thenusedby the nodeto createa backward
ant.

It is importantto note that sincethe the forward ant is
broadcastt the sourceand intermediatenodes,eachfor-
wardantwill causethe broadcasbf multiple forwardants,
severalof which mayfind differentpathsto the destination,
generatingnultiple backwardantswith the samesourcese-
quencenumber

Sinceforwardantsarere-broadcasateveryintermediate
node,creatingmultiple forward ants,it canbe seenthata
forwardantbroadcasfrom the sourcenodemay find more
than onerouteto the destination,if morethanoneroutes
exist. In the casewhenthe network is closely connected
andthe network diameter(definedasthe minimumnumber
of hopsbetweerany two nodes)s small,asinglebroadcast
forward ant successfullyfinds several feasiblepathsto the
destinatiomodefrom the sourcenode.

Further the forward ant also collectsinformationabout
eachof thesepaths thatis, the numberof hopson the path
andthedelayontheintermediatesubroutesswell asonthe
entireroute. It shouldbe notedherethatthe RouteDiscov-
ery phaseis similar to thatof existing MANET algorithms
like AODV andDSR,in thesensehata flooding-baseép-
proachis usedwhich usesheinherentlybroadcasmedium
of the wirelesservironmentto its advantage.However, an
importantdifferenceis that our algorithm discovers a set
of routes.Further we obtaininformationaboutthesepaths
andusethis informationasfeedbacko the algorithm.

3.3 Backward ants

Whena forward ant reacheghe destinationnodethatit is
intendedfor, the destinationnode createsa new agent,a
backwardant. Thepurposeof thebackwardantis to retrace
the pathof the correspondindorward antthattriggeredits
creation. It usesthe informationcontainedin the forward
anton the reversepathto changethe probability distribu-
tion ateachnodeandupdatetheroutingtablesto reflectthe
currentstatusof the network moreaccurately

Whena noderecevesa forward ant thatis intendedfor
it, thenodecreatesanew agentabackwardant. ThelP ad-
dressof the sourcenodeof this agentis the destinatiorad-
dressof thebackwardantandthecurrentnodeis the source
of the backward ant. The backward ant is similar to the
forwardant,it containshefollowing fields:



e DestinationlP address The IP addresf the source
of theforwardant,

e SourcdP address ThelP addres®f thecurrentnode,
i.e. thenodecreatingthe backwardant,

e Hop count,

e Thestackof theforwardant,

e The sequenceumberof the forward ant- this is not
unigueanymorefor the setof backwardants.

The backward anttravelsin unicastfashionbackto the
sourcenode. It is forwardedon high priority queues.The
stackof theforwardantis usedto routeit. Usingtheaddress
atthetop of the stack,the nodeforwardsthe backward ant
to thecorrectnext hop.

Supposghataforwardantfrom sourcenodes is receved
at noded. Noded generates backward ant. Whenthe
backward ant is recevved at the next hop (also the penul-
timate hop of the correspondindorward ant), node f, the
stackof the backward antis poppedonce. The resulting
informationis thefollowing:

e ThelP addres®f thecurrentnodef,

e The NODE_TIME, the time at which the corre-
spondingforwardantwasrecevedatnodef.

e The time at which the backward ant was createdat
its sourcenoded, ANT_TIME. Then, the time
takento reachthe destinatiorof the forward antfrom
the currentnodeis the differenceANT TIME —
NODE_TIME,

e The numberof hopsfrom the currentnode f to the
destinationd arecalculatedby subtractinghevaluein
thehop countfield from the network diameter

Thesevaluesare usedto updatethe routing and local
statisticstablesat theintermediatenodesf.

If routing table entriesfor destinationd do not exist at
node f, new onesare createdwith the neighborlist of the
node f. All the neighboringnodesare given a probability
of 1/N, where N is the numberof neighborsof the node
f. Therouting tablesarethenreadjustecaccordingto the
probabilityrulesdiscussedh section2.2.2.

If routingtableentriesfor d alreadyexist at node f, they
are updatedso as to increasethe probability (goodness,
preferencepf takingasthe next hop,the nodefrom which
thebackwardanthasjustbeernreceved,nodef to reachthe
destinationd.

The updaterulesusedarethe sameasthoseusedfor the
previously discussedinicastalgorithm and have beende-
scribedin section2.2.2.

To furtherillustrate the functioning of the algorithmfor
individual antsaswell asindividual nodes Figure3 depicts
the algorithmflow for eachant, while Figure4 depictsthe
algorithmflow ateachnode.

Thechangesequiredto theroutingtablesdueto mobility
of nodesarethe sameasfor the unicastalgorithmandhave
beendiscussedh section2.2.3

3.4 Routing data packets

The datapacketscannow beroutedvia a numberof possi-
ble schemes:

Start

The Forward Ant created to explore routes to
a]gorithm destination of buffered data packet.

for each

Ant ~Broadcasttopies of
forward ant to neighbors
+Initialize ant stack
*Broadcast ant 01 normal queues

Copy of broadcast forward ant
received at neighboring node

-

No Yes

Node IP address added
to ant stack and ant is
rebroadcast to neighbors

Copy of forward ant is killed

)

Generate a backward ant to originator
of forward ant and send with high
priority

,

Pop next node from the ant stack
and go to next node in unicast fashion

!

Update routing tables at
node

Figure3: Algorithm for eachant.
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Copy of Forward
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ant with stack Re-broadeast JOTE] to destination at
on High copy of probabilities current node
Priority Queue Forward Ant for the
in unicast fashion destination
at the
current node
Forward to next

node after popping
Ant stack

Figure4: Algorithm ateachnode.



1. Thedatapacketscanberoutedonthebasisof thehigh-
estprobability for the next hop at a nodefor the data

paclet's eventualdestination.This createsa complete

globalrouteby usinglocal information.

2. The datapacketscanalsobe routedprobabilistically
Previousresults[3] for swarmintelligencealgorithms
shav excellentresultsfor this methodin the caseof
staticnetworkswith relatively smalltopologies.How-
ever, this might notbe a suitablemethodfor MANETSs
with rapidtopologychanges.

4 Simulation Results

Network Simulator2 [22] discreteeventsimulatorwasused
to simulateouralgorithm.At the physicallayer, radioprop-
agationdistancefor eachnodewas setto 250m and the
channelcapacitywas2Mbps. Our modeldoesnot support
radio capture[15] so, in the caseof paclet collisions all
pacletsare dropped. The IEEE 802.11Distributed Coor
dination Function(DCF) [12] asimplementedn NS2was
usedasthe Medium AccessControl (MAC) protocol. The
communicationmediumis broadcastand nodeshave bi-
directionalconnectvity. Eachsimulationwasrun for 900
secondsMultiple runswith differentseedvalueswerecon-
ductedfor eachscenaricandthe collecteddatawere aver-
agedover thoseruns. The algorithmwas developedas a
separateNS2 routing layer protocol. The mobility model
usedwasthe RandomWaypointmodel.

We usethethroughputthe goodputandthe averageend-
to-endpaclet transmissiordelayfor comparisonsAll the
simulationswere carried out with the sameseedfor the
given simulationscenaricand hencethe resultscan be di-
rectly comparedor theroutingalgorithms.

Data packets received at routers x 100
Goodput =

Total packets received at routers
(10)

4.2 Maobility speed

In theseexperiments,thenobility speedvasvariedbetween
0to20m/s,i.e,. (0,5,10,20,15,2pn/s.

10 15
Mobility (m/s)

25

Figure5: Variationin goodputwith mobility.

Figure 5 shavs the goodputas a function of the node
mobility speed.It is seenthatthe goodputdecreasewvith
increasan mobility. This is to be expectedsincewith an
increasen mobility, alargernumberof forwardantsarere-
quiredto besentto discovernew routesandmodify andup-
dateexistingrouteswhicharenolongeravailablefor paclet
transmission.

Packet Loss %

0 5 10 15
Mobility (m/s)

25

Figure6: Percentageacletlossfor varyingmobility.

Data packets recvd at destinations x 100

Throughput =
gnp Data packets sent from sources

The end-to-enddelayis the interval betweenthe instanta
sourcegenerates packet and the time at which the des-
tination recevesthe paclet. The end-to-enddelayis ag-
gregatedfor eachpaclet for eachsource-destinatiopair.
The averageper paclet end-to-enddelay throughtime in-
tervals of 100 secondss then calculatedasthe numberof
source-destinatiopairsandthenumberof pacletsreceved
is known.

4.1 Hop count based optimization

In theseexperiments,we usedthe hop countas the met-
ric for operationof the algorithm (insteadof delay). The
network consistedf 20 nodesrandomlyplacedin anarea
500m x 500. 4 sourceand destinationpairs were ran-
domly choserfrom these20 nodes Eachsourcdransmitted
1 packet/sec. Nodesin the simulationweremobile.

Figure6 shavsthepercentagpacletlossasafunctionof
the mobility. With 0 andlow mobility (1 m/s), the paclet
lossis 0. With speedf 5 m/s, the paclet lossis under
2%. However, with increasingmobility, the paclet loss
increasedinearly. Thus, even the increasedate of send-
ing ants(asevidencedby the decreasedoodput)doesnot
sene to maintaina low percentag®f paclketloss. To keep
the pacletlossedow, the rate of sendingantshasto bein-
creasedon-linearly

4.3 Rateof sending forward ants

In theseexperimentsthe rate of sendingforward antswas
variedfor differentmobility speedsandthe behaior of the
algorithmwasstudied.

Table 1 shows the variationin goodputand percentage
pacletlossasa function of the ANT_INTERV AL (the
time periodbetweenthe transmissiorof two forward ants)
for 20 nodesin an areaof 500m X 500m with speedsof



ANT_INTERVAL | Goodput %PacletLoss|
15 7.92 4.39
25 11.44 10.37
50 7.92 11.60
100 19.24 15.59
Table 1: Goodput and % Packet Loss with

ANT _INTERVAL with mobility of 10 m/s.

ANT_INTERVAL | Goodput| % PacketLoss
50 12.12 3.67
100 9.29 5.45
150 8.37 5.45

Table 2: Goodputand % Packet Loss as functions of
ANT_INTERVAL for mobility of 5 m/s.

10 m/s anda pausetime of 50 secs. For a high value of
ANT_INTERV AL, the paclet lossis high. This is ex-
plainedby the fact that information regardingthe current
stateof the network is not updatedrapidly. The algorithm
fails to adaptin mary casegesultingin high paclet loss.
However, asthe period betweenthe sendingof two con-
secutve forward antsis decreasedhe pacletlossreduces
significantly This shaws that the algorithm adaptsto the
changesn the network quickly asthe numberof forward
antsbeing sentincreases.With a valueof 15 seconddor
the ANT_INTERV AL, thepacletlossis 4.39%.

Table2 shavs similar resultswith speedof 5m/s. For a
low valueof ANT_INT ERV AL, the pacletlossis lower
thanfor a highervalue. Further it is importantto notethat
the pacletlossfor valuesof ANT_INTERV AL 100and
150arethesame.This is becauséheincreasan the num-
ber of forward antsthat are sentis not sufiicient to cause
anincreasdan performancen termsof goodputandpaclet
loss. Thegoodputthereforegoesdown sincethepacletloss
remainsconstant.

Table3 shavs similar resultswith speed®f 1m/s. Since
themobility is verylow, theadaptvity requiredof thealgo-
rithm is relatively low. Even by sendingantsat a higher
rate,thereis no changean the pacletloss,sinceasinglefor-
ward ant sentat the startof the simulationobtainsenough
datafor all datapacletsto be successfullyouted.

4.4 Reinforcement

The learningrule usedin our experimentis rule 2 in sec-
tion 2.2.2,which allows usinga costfunction, f(c) asde-
scribedin section2.2.2. In this experimentthe valueof the
reinforcementisedto updatetheroutingtablesatthenodes
is varied between0.1 and0.5 (0.1, 0.15,0.20,0.30, 0.40,
0.50).

Figure7 shavsthevariationof thegoodputasa function

ANT_INTERVAL | Goodput| % PacketLoss |
300 17.23 0
900 19.18 0

Table3: Goodputand% Packet Lossasfunctionsof mobil-
ity with 1 m/s.

of the valueof thereinforcement.The speedf thenodes
are5 m/s and 10 m/s. The goodputis higherfor speed
5 m/s, dueto the fewer numberof ant pacletsrequiredto
discover availableroutes.

Figure8 shavsthevariationof thepercentageacletloss
asafunctionof thevalueof thereinforcementfor speedof
5m/sand10m/s. As expectedthepacletlossis lowerfor
lower speedof movement.However, it is importantto note
thatwith anincreasingvalueof the reinforcemengpplied,
the paclet lossfirst increasesand then decreasesThis is
because weak (small) appliedreinforcemenimplies that
routesdo not getpositively reinforcedto a sufficiently high
degree. In the situationwhere mobility existsin the net-
work, this reduceghe adaptvity of the algortihm,leading
to staleroutesbeingusedfor thetransmissiorof datapack-
ets. If thereinforcemenappliedis increasedeyonda cer
tainvalue,it causesheroutesto bereinforcedtoofast. This
leadsto routesthatmaynotactuallybethebestroutesbeing
usedfor thetransmissiorof datapaclets.

5 Comparison with AODV

We comparedthe algorithm proposedin section 3 with
AODV [14, 15] in termsof throughputdelayandgoodput.

5.1 Goodput comparison

Figure 9 shawvs a comparisonof the goodputfor AODV
and PERA for a scenariowith 20 nodesin an areaof
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Figure7: Variationin goodputvs reinforcemenparameter
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Figure 8: Percentagaclet loss with varying reinforce-
mentparameter



500m X 500m with the nodesmoving with speedsof
1 m/s and a pausetime of 100 secs. Sincethe mobility
is low, the overall goodputfor bothalgorithmsis high.

120 4

100

80

—e—PERA
—s—AODV

60

Goodput

40

20

400 600 800 1000

Simulation time (seconds)

0 200

Figure9: Goodputcomp.of PERAandAODV atl m/s.

Figure 10 showvs a comparisorof PERAand AODV for
the samescenarioas above, but with a mobility speedof
10 m/s. The goodputis obsered to be lower than that
of AODV. This is becausdorward antsare sentmore fre-
quentlyto allow quick adaptatiorio thenetwork conditions.

——PERA
—=—AODV

0 200 400 600 800 1000

Simulation time (seconds)

Figure10: Goodputcomp.of AODV andPERAat10 m/s.

5.2 Throughput

Figures1l and 12 show the throughputcomparisonsfor

AODV andPERAfor mobility speed®f 1 m/sand10m/s

andpausetime 100 secs. At thelower speedthethrough-
putis the samefor both AODV andPERA, however, atthe
higher speed the throughputis slightly lessfor PERA in

somecases. This is becausavith mobility, PERA adjusts
graduallyto the changesn topology

5.3 Delay

Figures13and14 showv thecomparisorof delayfor AODV
and PERA. Both algorithms shov a large initial delay
which is requiredfor routesto be setup. Subsequently
AODV shawslargedelaysagainin situationswith high mo-
bility. PERA on the other hand, shavs low delaysin all
casesasinsteadof buffering datapacletsuntil a new route
id found, PERA deliversthe datapaclet throughan alter
nateroute.

Throughput
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Figure1l: Throughputomp.AODV/PERA,1 m/s.
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Figure12: Throughputtomp.AODV/PERA, 10 m/s.
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6 Conclusion

In this paperwe have proposed setof routing algorithms
for MANETSs basedon the swarm intelligenceparadigm.
In our experimentswe obsere that end-to-enddelay for
swarmbasedrouting is low comparedo AODV. However,
thegoodputfor thesealgorithmsis lowerthanfor AODV in
scenariosvith high mobility.
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